矢量场的环量 旋度ppt课件

合集下载

1.3矢量场的旋度

1.3矢量场的旋度
ex A x x( z y )
例:求矢量场 A ex x( z y) ey y( x z) ez z ( y x) 在
M(1,0,1)处的旋度及沿l 2ex 6e y 3ez
ex ( z y ) e y ( x z ) ez ( y x )
C2
A dl
5

2 A d S
S
证毕
10
例1.4 已知 。现有一个在 x y面内的 2 y 2, 2 闭合路径C,此闭合路径由 0,0和 之间的一段抛物线 x 和两段平行于坐标轴的直线组成,如图所示。
2014-4-11 12
10
5
2014-4-11
3、旋度的物理意义
矢量的旋度为矢量,是空间坐标的函数; 矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度;
旋度的计算
在直角坐标系下:

Az Ay Ax Az Ay Ax rotA ex ( ) ey ( ) ez ( ) y z z x x y
Ci
Cj
9

C
A dl

A dl rotA dS1 rotA dS 2
C
A dl rotA dS1 C1 A dl rotA dS 2 C2 ………
C1
A dl
C C
2014-4-11 2
1.3.2、矢量场的旋度:
M
质,取包含此点的一个面元 S ,其 边界为 C,保持面元 S 的 en 方向不 变,而 S 以任意方式趋近于零。则

旋度和散度课件PPT

旋度和散度课件PPT
元的表示
10. 正确理解亥姆霍兹定理的内容,并能正确应用。
物理量的表示
• 矢量:大写黑体斜体字母 A
大写斜体字母加表示矢量的符号 A
• 标量:小写斜体字母 u • 单位矢量:小写上加倒勾xˆ
ex ex
§1 .1 矢量表示法及其运算
1 .1 .1 矢量表示法及其和差
若一个矢量在三个相互垂 直的坐标轴上的分量已知, 这 个矢量就确定了。 例如在直角 坐标系中, 矢量A的三个分量模 值分别是Ax , Ay , Az, 则
解:
xˆ yˆ zˆ
AB 2 3 413xˆ22yˆ10zˆ
6 4 1
AB在C上的分量为:
ABC251.443
C
3

如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便 可以确定该未知矢量。设A为一已知矢量,pAX , PAX
p和P已知,试求X
解:
由P=AX,有
A P= A(A X)=(A·X)A-(A·A)X=pA- (A·A)X
X pAAP A A
作业
• P31 1-1 1-3
§1 .2 通量与散度, 散度定理
Flux, divergence of a vector field, divergence theorem
矢量场的空间变化规律通常用散度和旋度描述 §1.2.1 矢量场的通量
定义:若矢量场A分布于空间中,在空间中存在 任意曲面S,则
xˆ A×B各分量的下标次序具有规律性。例如, 分量第一项是y→z,
其第二项下标则次序对调: z→y, 依次类推。并有
xˆ yˆ zˆ A B Ax Ay Az
Bx By Bz
图 1 -3 矢量乘积的说明
1 .1 .3 三重积

场论,标量场的梯度, 矢量场的散度和旋度ppt课件

场论,标量场的梯度, 矢量场的散度和旋度ppt课件

若S 为闭合曲面
SA dS
在直角坐标系中,通量可以写成
ψ AdS Axdydz Aydzdx Azdxdy
S
S
物理意义:表示流入和流出闭合面S的矢量通量的代数和。
矢量场的通量
在电场中,电位移矢量在某一曲面上的面积分就是矢量通过该曲面的电通量; 在磁场中,磁感应强度在某一曲面上的面积分就是矢量通过该曲面的磁通量。 20
2、散度的物理意义及特点:
1) 矢量场的散度代表矢量场的通量源的分布特性; 表示矢量场在一点处的流入或流出的大小
2) 矢量场的散度是一个标量;
3) 矢量场的散度是空间位置的函数;
22
divA 0
发射源/正源
divA 0
吸收源/负源
divA 0
无源
23
散度 Divergence of a vector field
L
l1 xex ;l2 yey ;
l3 x(ex );l4 y(ey )
l3 l4
Ax (3)
Ax (x,
y y, z)
Ax (1)
Ax y
y
Ay (2)
Ay (x
x,
y, z)
Ay (4)
Ay x
x
y
A
x
(x, y, z) l1
A•
dl
(
Ay
Ax
)xy
L
x y
( A)z xy ( A)nˆ S
21
散度 Divergence of a vector field
1、定义:当闭合面 S 向某点无限收缩时,矢量 A 通过该闭合面S 的 通量与该闭合面包围的体积之比的极限称为矢量场 A 在该 点的散度,以 div A 表示,即

1.4 矢量场的环量及旋度

1.4 矢量场的环量及旋度

1.4 矢量场的环量及旋度要研究产生矢量场的另一种场源。

1.4.1矢量场的环量矢量场的环量就是指矢量场的闭合线积分。

这里先研究变力做功问题,以便引导出矢量场线积分的概念。

用F (r )表示力场,沿图示路径l ,求由a 点到b 点所作的功。

将l 划分为N 个线元段,根据a 到b 的走向将各线元段表为线元矢量。

设第i 个线元矢量Δl i 与其上近似不变的力F i 之间的夹角为θi ,则元功为i i i i i i l F A l F ∆⋅=∆≈∆θcos将所有元段上的元功求和,求当N →∞、Δl i →0时的极限⎰∑⋅=∆⋅==→∆∞→l Ni i i l N A l F l F d )(lim 10即得沿路径l 由a 到b 变力F (r )作的功,它是标量。

若将式中的F (r )看成是任意的矢量场,则⎰⋅l l F d 就代表矢量场F (r )沿路径l 的标量线积分。

矢量场沿闭合路径的线积分,称为矢量场的环量(circulation)。

用C 表示⎰⋅=ll F C d (1.4.1)矢量场的环量可能为零,也可能不为零:① 若有0d =⋅⎰l l F ,该矢量场就是保守场或守恒场; ② 若有0d ≠⋅⎰l l F ,该矢量场叫做旋涡场。

对于场中的任意闭合路径矢量场的环量,与该闭合路径所围部分含有的旋涡源之间存在关联性,使环量具有检源作用。

在直角坐标系中,设矢量场为F ( x,y,z ),l 为任意闭合路径,环量可写成ib a⎰⎰++=⋅=lz y x lz F y F x F C )d d d (d l F (1.4.2)1.4.2矢量场的旋度为了表征矢量场中旋涡源的空间分布特性,要引入矢量场旋度概念。

在连续、可微的矢量场F (r )中,过观察点P 任作一面元∆S ,按其正法向方向确定面元矢量∆S=∆S n 'e 。

l 为面元的周界,其循行方向与∆S 的方向按惯例应符合右手法则,如图所示。

沿l 的循行方向求⎰⋅l l F d ,让∆S 向着P 点收缩,若极限sls ∆⋅⎰→∆l F d lim 0存在,它表示P 点处∆S 为如图取向时在单位面积周界上F (r )的环量。

矢量场的环量 旋度

矢量场的环量  旋度

在矢量场中,一个给定点 M处沿不同方向n,其环量面密度
的值是不同的。
二、矢量场旋度
1、旋度的定义
方向:环量面密度取最大值的面元正法线方向。
大小:等于该环量面密度最大值。即
rotA
nlim
l
A dl
S0 S
max
2、旋度在坐标系下的表示 ro A t A
在直角坐标系中的表示
ex ey ez A
x y z Ax Ay Az
在圆柱坐标系中的表示
e e ez
A
1
z
A A Az
在球坐标系中的表示
er re rsine
A
r2
1
sin
r
Ar rA rsinA
3、旋度的性质
矢量场的旋度是一个矢量。
矢量场在某点处的旋度表示该点的旋涡源密度。
矢量场在某点处沿 n方向的环量面密度,等于旋度在该
方向上的投影。
4、旋度运算的基本公式
C0 (C 为常 ) 矢量
(cA )c A
( A B ) A B
( u A ) u A u A
( A B ) B A A B
三、斯托克斯定理
斯托克斯定理是矢量场的曲面积分与曲线积分之间的一个转
【例题1】求矢量场A=x(z-y)ex+y(x-z)ey+z(y-x)ez在点M(1,0, 1)处的旋度以及沿n=2ex+6ey+3ez方向的环量面密度。
【解】矢量场A的旋度
ex
roAt A
x
ey
ez
y
z
x(zy) y(xz) z(yx)
( z y ) e x ( x z ) e y ( y x ) e z 在点M(1,0,1 )处 的A 旋度M e x2 e ye z

《环流量与旋度》课件

《环流量与旋度》课件

05
CHAPTER
环流量与旋度的物理意义
环流量的物理意义
01Biblioteka 0203描述流体在封闭曲线上 的流动特性
反映流体在空间中流动 的总体效果
是流体运动的一个重要 参数,对于研究和解决 流体运动问题具有重要
意义
旋度的物理意义
表示向量场中某点附近的旋转程 度
反映向量场中某点附近的旋转特 性和流动趋势
是描述向量场的一个重要参数, 对于研究和解决流体动力学问题
旋度的计算方法
微分法
定义
通过微分运算来计算旋度,利用向量场中点的变化率来定义旋度。
公式
$nabla times vec{F} = lim_{Delta rightarrow 0} frac{Delta vec{S}}{Delta V}$,其中 $Delta vec{S}$是曲面上的面积向量,$Delta V$是体积增量。
《环流量与旋度》ppt课件
目录
CONTENTS
• 环流量与旋度概述 • 环流量的计算方法 • 旋度的计算方法 • 环流量与旋度的应用 • 环流量与旋度的物理意义
01
CHAPTER
环流量与旋度概述
环流量的定义与性质
定义
环流量是矢量场中封闭曲线上矢 量所围成的面积分。
性质
环流量与路径无关,只与起点和 终点的位置有关;环流量是矢量 场的一个重要物理量,反映了矢 量场中某区域的通量分布情况。
电磁场涡旋
在研究电磁波的传播和辐射问题时 ,需要用到电场和磁场的涡旋,它 们与磁场和电场的旋度有关。
在量子力学中的应用
量子旋度
在量子力学中,旋度被用来描述微观粒子的自旋角动量,对 于理解量子力学的各种现象,如自旋、角动量等具有重要意 义。

复变函数第四版-第二章_2.4 矢量场的环量及旋度

复变函数第四版-第二章_2.4 矢量场的环量及旋度

从(4.13)式知,我们知道旋度的一个重要性质,就是:旋度 矢量在任一方向上的投影,就等于该方向上的环量面密度,即 有
ro t n A μ n ( 4 .1 5)
例如在磁场H 中,旋度rot H 式这样一个矢量,在给定点 处,它的方向乃是最大电流密度的方向,其模即为最大电流密 度的数值,而且它在任一方向上的投影,就给出该方向上的电 流密度。在电学上称rot H 为电流密度矢量。
例5.
2 2 2 2 设ay2z2i+z2x2j+x2yj x 2 y 2 k2k,证明 A= y z iz x
A ro t A 0


0 2 D A 2 xz 2 xy 2
2
2 yz 0 2 yx
2
2
2y z 2 2 zx 0
2
2 2

于是有
3 7
2
6 7
2
2 7
8
2 7

18 7
第二章 场论
12
• 旋度
看环量面密度的计算公式(4. 11)把其中的三个数( Ry −Qz ) ,( Pz − Rx ) ,(Qx − Py ) 视为一个矢量R 的三个坐标,即取
R ( R y Q z ) i ( Pz R x ) j ( Q x Py ) k ( 4 .1 2 )
l
dl lim
s M
I S
s M
s

dI dS
( 4 .9 )
就是在点M 处沿方向n 的电流密度。
又在流速场v 中的一点M 处,沿n 的环量面密度,由(4.3)式为
n lim
v dl

第10讲矢量场的环量及旋度2

第10讲矢量场的环量及旋度2

3.梯度、散度、旋度小结 例如在电磁场(矢量场)中放入点电荷时,电 荷就会受到作用力;
取不同的路径做线积分,环量一般不同;
取不同的曲面做面积分,通量一般不同; 该空间中的各点的旋度、散度与电荷电流的分 布及电磁场运动有关,因此一般也不同; 这是电磁场内禀属性的反映,也是电磁场物质 性的反映。
1.旋度运算的基本公式 旋度在直角坐标系中的表达式为,
R Q P R Q P R rotA ( )i ( ) j ( )k y z z x x y
用行列式表示为,
i R rotA x P j y Q k z R
uA grad
A
上式两端同时点乘 ,得到,
A urotA A gradu A 0
1.旋度运算的基本公式 例:设矢量场
A
的旋度为 rotA 0 ,若存在非零
函数 u( x, y, z)使 uA为某数量场 ( x, y, z) 的梯度, 即 uA grad,试证明 A rotA (习题5第10题)。
A P( x, y, z )i Q( x, y, z ) j R( x, y, z )k
用一个标量场来描述矢量场。
P Q R divA x y z
3.梯度、散度、旋度小结
旋度矢量 rotA 是矢量场非均匀性的一种量度,
即用一个矢量场来描述一个矢量场。
rot( gradu) 0表明任何梯度场都是无旋场。
div(rotA) 0 表明旋度场是无源场。 div( A B) B rotA A rotB 旋场,则 A B为无源场。
表明若

第9讲矢量场的环量及旋度1

第9讲矢量场的环量及旋度1

Q P ( Pdx Qdy) (( )dxdy x y l S
l 的方向为内边线顺时针,外边线逆时针。
2.环量面密度
环量只能描场中述以
通向任意方向
l
为边界的一块曲面
S

总的流(电流强度);不能反映场中任意一点处
n 的流的密度(电流密度)。
n
流密度:矢量场中 M 点处沿任一方向
1.环量
dl ndl dl cos(t , x)i dl cos(t , y) j dl cos(t , z )k
dxi dyj dzk
l
t dl
cos(t , x), cos(t , y), cos(t , z) 为 l 切线矢量 t 的方向余弦。
《矢量分析与场论》
第9讲 矢量场的环量及旋度(1)
张元中
中国石油大学(北京)地球物理与信息工程学院
《矢量分析与场论》
主要内容
1. 环量 2. 环量面密度 3. 旋度
教材:第2章,第4节
1.环量
环量反映矢量场 A 和环线 l 之间的相互作用。 环线 l 为封闭曲线,其方向规定为:环线 l 和 流 I 成右手螺旋法则。
根据中值定理
[( R Q P R ) cos(n, x) ( ) cos(n, y ) y z z x
(
Q P ) cos(n, z )]M * S x y
2.环量面密度
其中 M *为 S 上的某一点,当 S M 时,有 M * M , 于是

dl
A
在直角坐标系中,环量表示为:
A dl ( Pdx Qdy Rdz )

矢量与场论课件—旋度

矢量与场论课件—旋度

z轴)的环量面密度。 下面我们来推导直角坐标系中 环量面密度的计算公式。为了
n
S
en
M
简化计算,我们直接选择无限

dl
小的矩形回路,使场点M位于
F
矩形中心,并且使矩形的空间取向端正(它的边
或者与坐标轴平行,或者与坐标轴垂直)。
大理大学工程学院 罗凌霄编写 6
设空间有矢量场 E ,在平面yoz的平行平面上以任
定义 在矢量场 F 中,过任一点 M 作沿任意方向的 n 轴,过 M 点作 n 轴的垂直平面,在此平面内取任意
回路 l 圈围点 M ,并且使 l 的绕行方向与n 轴方向

en 符合右手螺旋关系。当回 路向M点无限收缩时,F 沿回

n
S en
M
路l 的环量与回路l
积 S 的比值
lim
圈l围F 的dl面
ex ey ez
rot E



x y z
Ex Ey Ez
大理大学工程学院 罗凌霄编写 14
因为

E =(ex
x

ey
y

ez
z
)

(ex
Ex

ey Ey

ez Ez )

ex

x
(ex Ex

ey
Ey

ez Ez
的大小等于该点处 E 的环量 面密度的最大值,矢量场
的旋度的方向沿着该点处 E 的环量面密度取最大值时
所环绕的 轴的方向。 矢量场 E 的旋度用rot E 表示。
大理大学工程学院 罗凌霄编写 12

1.3矢量场的环量旋度

1.3矢量场的环量旋度

方向上的投影。
4、旋度运算的基本公式
C 0
(C为常矢量 )
(cA) c A
(A B) A B
(uA)
u
A
u
A
(A B) B A A B
三、斯托克斯定理
斯托克斯定理是矢量场的曲面积分与曲线积分之间的一个转
换关系。
AБайду номын сангаасdS A dl
S
l
四、旋度与散度的区别
矢量场的旋度是矢量函数,矢量场的散度是标量函数。 旋度描述场量与旋涡源的关系,散度描述场量与通量源的关系。
lim
S 0
l
S
在矢量场中,一个给定点 M 处沿不同方向n ,其环量面密度
的值是不同的。
二、矢量场旋度
1、旋度的定义
方向:环量面密度取最大值的面元正法线方向。
大小:等于该环量面密度最大值。即
rotA n lim
A dl
l
S0 S
max
2、旋度在坐标系下的表示
rotA A
在直角坐标系中的表示
§1.3 矢量场的环量 旋度
一、矢量场的环量与环量面密度
A1(、r)矢矢沿量量闭场场合的路A(环径r)量l沿的场环中量的。一条闭合路径
l
的曲线积分称为矢量场
S nS
A dl
l
P
A
C
环流的计算
物理意义:若某一矢量场的环量不等于零,则场中有产生该矢
量场的旋涡源。
2、环量面密度
A dl
rotn A
q
4
0
y
z r3
z
y r3
ex
z
x r3
x
z r3

矢量场的环量__旋度

矢量场的环量__旋度
Biblioteka rotn Alim
S 0
l
S
在矢量场中,一个给定点 M 处沿不同方向n,其环量面密度
的值是不同的。
二、矢量场旋度
1、旋度的定义
方向:环量面密度取最大值的面元正法线方向。
大小:等于该环量面密度最大值。即
rotA
nlim
A dl
l
S0 S
max
2、旋度在坐标系下的表示
rotA A
在直角坐标系中的表示
§1.3 矢量场的环量 旋度
一、矢量场的环量与环量面密度
1、矢量场的环量
矢量场 A(r) 沿场中的一条闭合路径 l 的曲线积分称为矢量场
A(r) 沿闭合路径 l 的环量。
S nS
A dl
l
P
A
C
环流的计算
物理意义:若某一矢量场的环量不等于零,则场中有产生该矢
量场的旋涡源。
2、环量面密度
A dl
ex ey ez A
x y z
Ax Ay Az
在圆柱坐标系中的表示
e e ez
A
1
z
A A Az
在球坐标系中的表示
er re r sine
A
1
r 2 sin r
Ar rA r sinA
3、旋度的性质
矢量场的旋度是一个矢量。
矢量场在某点处的旋度表示该点的旋涡源密度。
矢量场在某点处沿 n方向的环量面密度,等于旋度在该
l
四、旋度与散度的区别
矢量场的旋度是矢量函数,矢量场的散度是标量函数。 旋度描述场量与旋涡源的关系,散度描述场量与通量源的关系。
如果矢量场的旋度为零,则称为无旋场(或保守场);如果 矢量场散度为零,则称为无源场。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例题1】求矢量场A=x(z-y)ex+y(x-z)ey+z(y-x)ez在点M(1,0, 1)处的旋度以及沿n=2ex+6ey+3ez方向的环量面密度。
【解】矢量场A的旋度
ex
rotA A
x
ey
ez
y
z
x(z y) y(x z) z(y x)
(z y)ex (x z)ey ( y x)ez
方向上的投影。
4、旋度运算的基本公式
C 0
(C为常矢量 )
(cA) c A
(A B) A B
(uA) u A u A
(A B) B A A B
三、斯托克斯定理
斯托克斯定理是矢量场的曲面积分与曲线积分之间的一个转
换关系。
A dS A dl
S
§1.3 矢量场的环量 旋度
一、矢量场的环量与环量面密度
1、矢量场的环量
矢量场 A(r) 沿场中的一条闭合路径 l 的曲线积分称为矢量场
A(r) 沿闭合路径 l 的环量。
S nS
A dl
l
P
A
C
环流的计算
物理意义:若某一矢量场的环量不等于零,则场中有产生该矢
量场的旋涡源。
2、环量面密度
A dl
rotn A
lim
S 0
l
S
在矢量场中,一个给定点 M 处沿不同方向n,其环量面密度
的值是不同的。
二、矢量场旋度
1、旋度的定义
方向:环量面密度取最大值的面元正法线方向。
大小:等于该环量面密度最大值。即
rotA
nlim
A dl
l
S0 S
max
2、旋度在坐标系下的表示
rotA A
在直角坐标系中的表示
ex ey ez A
x y z
Ax Ay Az
在圆柱坐标系中的表示
e e ez
A
1
z
A A Az
在球坐标系中的表示
er re r sine
A
1
r 2 sin r
Ar rA r sinA
3、旋度的性质
矢量场的旋度是一个矢量。
矢量场在某点处的旋度表示该点的旋涡源密度。
矢量场在某点处沿 n方向的环量面密度,等于旋度在该
E
q
4 r 3
r
q
4 r 3
(xex
yey
zez )
求自由空间任意点(r≠0)电场强度的旋度。
【解】
ex
ey
ez
E
q
4 x y z
xyz r3 r3 r3
q
4
0
y
z r3
z
y r3
ex
z
x r3
x
z r3
ey
x
y r3
y
x r3
ez
0
在点M(1,0,1)处的旋度 A M
ex
2ey
ez
n方向的单位矢量
n
ห้องสมุดไป่ตู้
22
1 62
32
(2ex 6ey
3ez )
2 7
ex
6 7
ey
3 7
ez
在点M(1,0,1)处沿n方向的环量面密度
AM
n
2 7
6 7
2
3 7
17 7
【例题2】在坐标原点处放置一点电荷q,在自由空间产生的
电场强度为
l
四、旋度与散度的区别
矢量场的旋度是矢量函数,矢量场的散度是标量函数。 旋度描述场量与旋涡源的关系,散度描述场量与通量源的关系。
如果矢量场的旋度为零,则称为无旋场(或保守场);如果 矢量场散度为零,则称为无源场。
旋度描述场分量在与其垂直的方向上的变化规律;散度描 述场分量沿着各自方向上的变化规律。
相关文档
最新文档