运算器实验
运算器实验报告
运算器实验报告实验背景运算器是计算机中一种重要的基本逻辑电路,用于进行算术和逻辑运算。
本次实验旨在设计一个基于逻辑门的4位二进制加法器,以实现两个4位二进制数的加法运算。
实验设备与材料1. 逻辑门:AND门、OR门、XOR门、NOT门2. 电路连接线3. 电压源4. 实验板5. 4个开关、8个LED灯实验原理在二进制数的加法中,我们需要对每一位进行逐个相加,并考虑进位的情况。
对于两个4位二进制数的加法,我们可以将其划分为4个单独的位加法运算,再结合进位的情况进行计算。
实验步骤1. 连接电路:根据逻辑门的真值表和逻辑方程,使用电路连接线将逻辑门按照设计要求连接在一起。
2. 设计输入:使用4个开关分别表示两个4位二进制数的每一位输入。
3. 设计输出:使用8个LED灯分别表示两个4位二进制数的每一位输出和进位。
4. 进行实验:按照设计的输入情况,观察LED灯的亮灭情况,验证加法器的正确性。
5. 记录结果:将实验结果记录在实验报告中。
实验结果与分析实验中,我们设计的4位二进制加法器成功实现了两个4位二进制数的加法运算。
通过观察LED灯的亮灭情况,我们可以判断出加法器的计算是否正确。
在实验过程中,我们发现在某些情况下,LED灯的亮灭可能存在短暂的闪烁现象,这是因为逻辑门的切换速度限制导致的,不会影响加法器的正常运算结果。
实验总结通过本次实验,我们深入理解了运算器的工作原理,并成功设计并实现了一个基于逻辑门的4位二进制加法器。
在实验中,我们熟悉了逻辑门的连接方法,并通过观察LED灯的亮灭情况验证了加法器的正确性。
此外,在实验中我们也发现了逻辑门的切换速度限制会导致LED 灯的闪烁现象。
在实际应用中,我们需要根据逻辑门的性能要求选择适当的门延迟时间,以保证运算器的稳定工作。
总体而言,本次实验对于我们理解运算器的工作原理,掌握逻辑门的应用具有重要意义。
我们相信通过进一步的学习和实践,我们能够设计出更加复杂和高效的运算器,为计算机的发展做出更大的贡献。
实验报告_运算器实验
实验报告_运算器实验一、实验目的本次运算器实验的主要目的是深入了解运算器的工作原理和功能,通过实际操作和观察,掌握其基本运算逻辑和数据处理过程,培养对计算机硬件系统的理解和实践能力。
二、实验设备本次实验所使用的设备包括计算机一台、相关的实验软件以及连接线路等。
三、实验原理运算器是计算机的核心部件之一,它负责执行各种算术和逻辑运算。
其基本组成包括算术逻辑单元(ALU)、寄存器、数据总线等。
算术逻辑单元(ALU)是运算器的核心,能够进行加法、减法、乘法、除法等算术运算,以及与、或、非等逻辑运算。
寄存器用于暂时存储参与运算的数据和运算结果。
数据总线则用于在各个部件之间传输数据。
在运算过程中,数据从寄存器通过数据总线传输到ALU 进行运算,运算结果再通过数据总线存储回寄存器或传输到其他部件。
四、实验内容与步骤(一)实验内容1、进行简单的算术运算,如加法、减法、乘法和除法。
2、执行逻辑运算,包括与、或、非操作。
3、观察运算结果在寄存器和数据总线上的传输和存储过程。
(二)实验步骤1、打开实验软件,连接好实验设备。
2、选择要进行的运算类型,如加法运算。
3、在相应的输入框中输入两个操作数。
4、点击“计算”按钮,观察运算结果在寄存器中的显示。
5、重复上述步骤,进行其他类型的运算。
五、实验结果与分析(一)实验结果1、加法运算:当输入操作数分别为 5 和 3 时,运算结果为 8,准确无误。
2、减法运算:输入 8 和 3,结果为 5,符合预期。
3、乘法运算:输入 2 和 4,得到结果 8,正确。
4、除法运算:输入 10 和 2,结果为 5,无差错。
5、逻辑运算:与运算:输入 1010 和 1100,结果为 1000。
或运算:输入 0101 和 1010,结果为 1111。
非运算:输入 1010,结果为 0101。
(二)结果分析通过对实验结果的观察和分析,可以得出以下结论:1、运算器能够准确地执行各种算术和逻辑运算,结果符合预期。
实验一运算器实验
实验一运算器实验简介:运算器是数据的加工处理部件,是CPU的重要组成部分,各类计算机的运算器结构可能有所不同,但是他们的最基本的结构中必须有算术/逻辑运算单元、数据缓冲寄存器、通用寄存器、多路转换器的数据总线的逻辑构件。
一、实验目的1、了解算术逻辑运算器(74LS181)的组成和功能。
2、掌握基本算术和逻辑运算的实现方法。
二、实验内容运用算术逻辑运算器74LS181 进行有符号数/无符号数的算术运算和逻辑运算。
三、实验元器件1、算术逻辑运算器(74LS181)。
2、三态门(74LS244、74LS245)及寄存器(74LS273、74LS373)。
3、二进制拨码开关SW-SPDT四、实验原理图1.1运算器电路原理图本实验的算术逻辑运算器电路如图 1.1所示:输入和输出单元跟上述实验相同:缓冲输入区八位拨码开关用来给出参与运算的数据,并经过三态门74LS245 和数据总线BUS相连,在控制开关SW_BUS处于高电平时允许输出到数据总线。
运算器则由两个74LS181以串行进位形式构成8位字长的算术/逻辑运算单元(ALU):ALU_L4B的进位输出端CN+4与ALU_H4B的进位输入端CN相连,使低4位运算产生的进位送进高4位运算中。
其中ALU_L4B为低4位运算芯片,参与低四位数据运算,ALU_H4B为高4位运算芯片,参与高四位数据运算。
ALU_L4B的进位输入端CN通过三态门连接到二进制开关CN,控制运算器仅为,ALU_H4B的进位输出端CN+4经过反相器74LS04,通过三态门接到溢出标志位CF指示灯(CF=1,即ALU运算结果溢出)。
ALU 除了溢出标志位CF外,还有两个标志位:零标志位ZF(ZF=1,即ALU运算结果为0,ZF对应发光二极管点亮)和符号标志位SF(SF=1,即运算结果为负数;SF=0 即运算结果为正数或0对应发光二极管点亮)。
图 1.2 运算器通路图ALU 的工作方式可通过设置两个74181芯片的控制信号(S0、S1、S2、S3、M、CN)来实现, 其74LS181逻辑功能表由表1-1给出,运算器ALU 的输出经过三态门(两片74LS244或一片74LS245)和数据总线BUS 相连。
运算器实验原理
运算器实验原理
运算器实验是一种电子电路实验,旨在探究运算器的原理和功能。
运算器是一种电路,它可以对数字信号进行特定的算术和逻辑运算,如加法、乘法、与、或、非等。
它通常被用作数字信号处理系统中的核心组件,例如计算机和数字信号处理器。
运算器实验原理主要包括以下内容:
1. 运算器的基本结构和功能原理。
2. 运算器的内部电路,例如加法器、乘法器、逻辑电路等。
3. 运算器的运算精度,包括浮点数精度和定点数精度。
4. 运算器的时钟频率和响应速度。
5. 运算器的测试方法和性能评估。
在运算器实验中,通常会使用逻辑电路芯片(例如74LS00、
74LS08等)来实现运算器的基本逻辑功能,而使用可编程逻
辑器件(例如FPGA、CPLD等)来实现更复杂的功能,例如
浮点数运算、定点数运算等。
实验者需要熟悉逻辑电路设计和程序设计的基本原理,以便能够进行有效的实验设计和调试。
实验过程中,需要使用数字示波器、信号发生器、直流电源等测试仪器,以对运算器的输入输出波形进行监测和分析。
同时,需要进行各种性能评估,例如电路响应速度、功耗、噪声等方
面的测试,以深入理解运算器的工作原理和特点。
总之,运算器实验是一项非常有挑战性和实用价值的电子电路实验,它可以帮助实验者掌握数字信号处理系统和计算机系统中的基本概念和技能,为未来的研究和工作打下坚实的基础。
运算器实验实验报告
运算器实验实验报告一、实验目的运算器是计算机中进行算术和逻辑运算的部件,本次实验的目的在于深入理解运算器的工作原理,掌握其基本结构和功能,并通过实际操作和测试,提高对计算机硬件系统的认识和实践能力。
二、实验设备本次实验所使用的设备包括:计算机、数字逻辑实验箱、导线若干等。
三、实验原理运算器主要由算术逻辑单元(ALU)、寄存器、数据通路和控制逻辑等组成。
ALU 是运算器的核心部件,能够执行加法、减法、乘法、除法等算术运算以及与、或、非等逻辑运算。
寄存器用于存储参与运算的数据和运算结果,数据通路负责在各部件之间传输数据,控制逻辑则根据指令控制运算器的操作。
在本次实验中,我们采用数字逻辑电路来构建运算器的基本功能单元,并通过连线和设置控制信号来实现不同的运算操作。
四、实验内容1、算术运算实验(1)加法运算首先,将两个 8 位二进制数分别输入到两个寄存器中,然后通过控制信号使 ALU 执行加法运算,将结果存储在另一个寄存器中,并通过数码管显示出来。
通过改变输入的数值,多次进行加法运算,观察结果是否正确。
(2)减法运算与加法运算类似,将两个 8 位二进制数输入到寄存器中,使 ALU 执行减法运算,观察结果的正确性。
2、逻辑运算实验(1)与运算输入两个 8 位二进制数,控制 ALU 进行与运算,查看结果。
(2)或运算同样输入两个 8 位二进制数,进行或运算并验证结果。
(3)非运算对一个 8 位二进制数进行非运算,观察输出结果。
3、移位运算实验(1)逻辑左移将一个 8 位二进制数进行逻辑左移操作,观察移位后的结果。
(2)逻辑右移执行逻辑右移操作,对比移位前后的数据。
五、实验步骤1、连接实验设备按照实验箱的说明书,将计算机与数字逻辑实验箱正确连接,并接通电源。
2、构建电路根据实验要求,使用导线将数字逻辑芯片连接起来,构建运算器的电路结构。
3、输入数据通过实验箱上的开关或按键,将待运算的数据输入到相应的寄存器中。
基本运算器实验设计报告
运算器数据通路2.实验步骤连接实验线路, 实验连线如下图所示。
仔细查线无误后, 接通电源。
实验连线图(2) 将时序与操作台单元的开关KK2 置为‘单拍’档,开关KK1.KK3 置为‘运行’档。
(3) 打开电源开关, 如果听到有‘嘀’报警声, 说明有总线竞争现象, 应立即关闭电源, 重新检查接线, 直到错误排除。
然后按动CON 单元的CLR 按钮, 将运算器的A、B 和FC、FZ 清零。
(4) 用输入开关向暂存器A 置数。
①拨动CON 单元的SD27…SD20 数据开关, 形成二进制数01100101(或其它数值), 数据显示亮为‘1’, 灭为‘0’。
②置LDA=1, LDB=0, 连续按动时序单元的ST 按钮, 产生一个T4 上沿, 则将二进制数01100101 置入暂存器A 中, 暂存器A 的值通过ALU 单元的A7…A0 八位LED 灯显示。
(5) 用输入开关向暂存器B 置数。
①拨动CON 单元的SD27…SD20 数据开关, 形成二进制数10100111(或其它数值)。
②置LDA=0, LDB=1, 连续按动时序单元的ST 按钮, 产生一个T4 上沿, 则将二进制数10100111置入暂存器B 中, 暂存器B 的值通过ALU 单元的B7…B0 八位LED 灯显示。
(6) 改变运算器的功能设置, 观察运算器的输出。
置ALU_B=0、LDA=0、LDB=0, 然后按表1-1-1置S3、S2、S1、S0 和Cn 的数值, 并观察数据总线LED 显示灯显示的结果。
如置S3、S2、S1、S0 为0010, 运算器作逻辑与运算, 置S3、S2、S1、S0 为1001, 运算器作加法运算。
如果实验箱和PC 联机操作, 则可通过软件中的数据通路图来观测实验结果(软。
计算机组成原理实验一运算器组成实验
实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。
RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。
双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。
而WR1、WR0用于选择写入的通用寄存器。
LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。
RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B输入端口。
运算器实验-计算机组成原理
实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
实验2 运算器 实验报告
实验2 运算器实验报告一、实验目的本次实验的主要目的是深入了解运算器的工作原理和功能,通过实际操作和观察,掌握运算器在计算机系统中的重要作用,提高对计算机硬件结构的理解和认识。
二、实验设备本次实验使用了以下设备:1、计算机一台,配置为_____处理器、_____内存、_____硬盘。
2、实验软件:_____。
三、实验原理运算器是计算机中执行算术和逻辑运算的部件。
它主要由算术逻辑单元(ALU)、寄存器、数据通路和控制电路等组成。
算术逻辑单元(ALU)能够进行加、减、乘、除等算术运算,以及与、或、非、异或等逻辑运算。
寄存器用于暂存操作数和运算结果,数据通路负责在各个部件之间传输数据,控制电路则根据指令控制运算器的操作。
在运算过程中,数据从寄存器或内存中读取,经过 ALU 处理后,结果再存回寄存器或内存中。
四、实验内容与步骤(一)加法运算实验1、打开实验软件,进入运算器实验界面。
2、在操作数输入框中分别输入两个整数,例如 5 和 10。
3、点击“加法”按钮,观察运算结果显示框中的数值。
4、重复上述步骤,输入不同的操作数,验证加法运算的正确性。
(二)减法运算实验1、在实验界面中,输入被减数和减数,例如 15 和 8。
2、点击“减法”按钮,查看结果是否正确。
3、尝试输入负数作为操作数,观察减法运算的处理方式。
(三)乘法运算实验1、输入两个整数作为乘数和被乘数,例如 3 和 7。
2、启动乘法运算功能,检查结果的准确性。
3、对较大的数值进行乘法运算,观察运算时间和结果。
(四)除法运算实验1、给定被除数和除数,如 20 和 4。
2、执行除法运算,查看商和余数的显示。
3、尝试除数为 0 的情况,观察系统的处理方式。
(五)逻辑运算实验1、分别进行与、或、非、异或等逻辑运算,输入相应的操作数。
2、观察逻辑运算的结果,理解不同逻辑运算的特点和用途。
五、实验结果与分析(一)加法运算结果通过多次输入不同的操作数进行加法运算,结果均准确无误。
计组实验-运算器实验
计算机组成原理实验课程实验报告实验名称运算器实验
实验二运算器
一.实验目的
了解简单运算器的数据传输通路。
验证运算功能发生器的组合功能。
掌握算术逻辑运算加、减、与的工作原理。
二.实验环境
Quartus 2 9.1
三.实验基本原理及步骤
算术逻辑单元运算器ALU181根据74LS181的功能,用VHDL硬件描述语言编辑而成,构成8位字长的ALU。
参加运算的两个8位数据分别为A[7..0]和B[7..0],运算模式由S[3..0]的16种组合决定,S[3..0]的值由4位2进制计数器LPM_COUNTER产生,计数时钟是Sclk(图2-1);此外,设M=0,选择算术运算,M=1为逻辑运算,C N为低位的进位位;
F[7..0]为输出结果,C O为运算后的输出进位位。
两个8位数据由总线IN[7..0]分别通过两个电平锁存器74373锁入,ALU功能如表所示。
四.仿真及软件设计
Vhd编程(非自己写,粘贴了群里文件):
将编程存为器件以及定制74373b,如图
bdf电路图:
五.实验结果分析及回答问题(或测试环境及测试结果)实验问题:
发现是
后来将IN[7…0]改为IN[7..0]
运行成功
仿真结果:
经检验结果正确:。
运算器实验报告
运算器实验报告
实验目的
本次实验的主要目的是研究计算机运算器的工作原理,并通过实验模拟计算器的加减乘除运算,以达到对运算器工作原理的理解与掌握的目的。
实验器材
该实验所需的器材主要有:
1.计算机运算器实验板
2.示波器
3.数字信号发生器
4.电缆线
5.万用表
6.电子元器件
实验步骤
1.根据实验板说明书进行组装,接通电源,检查实验板是否能够正常工作。
2.使用数字信号发生器提供输入信号,将输入信号通过运算器
进行运算,从而得到相应的输出信号。
3.使用示波器观测输入信号和输出信号的波形,以评估运算器
的各项性能指标。
4.通过电缆线将运算器连接到计算机,将运算器的输出信号保
存至计算机硬盘,以方便后续处理和分析。
实验结果
通过对实验板的组装和调试,我们成功地实现了模拟计算器的
加减乘除运算。
同时,我们还使用示波器观测到了输入信号和输
出信号的波形,并通过电缆线将运算器连接到计算机,将运算器
的输出信号保存到了计算机硬盘中。
实验总结
本次实验结束后,我们深刻地认识到了计算机运算器的重要性。
在计算机系统中,运算器扮演着极为关键的角色,通过对各种数
字信号进行加减乘除等运算,完成了计算机的复杂计算任务。
因此,对运算器的研究和掌握显得十分必要,尤其是在计算机科学
与技术领域,更是必不可少的一部分。
最后,我们要感谢老师对我们的指导和支持,在这个实验中,我们更加深入地了解了计算机的原理与工作机制。
希望在未来的学习中能够发扬这种学习精神,更好地掌握计算机科学与技术的核心内容,为我们的学习和研究提供有力的支撑。
基本运算器实验实验报告
基本运算器实验实验报告一、实验目的本次基本运算器实验的主要目的是深入理解计算机中基本运算的原理和实现方式,通过实际搭建和测试运算器电路,掌握加法、减法、乘法和除法等基本运算的逻辑实现,以及运算过程中的进位、借位和溢出等概念。
同时,通过实验培养我们的动手能力、逻辑思维能力和问题解决能力,为进一步学习计算机组成原理和数字电路等相关课程打下坚实的基础。
二、实验设备与环境1、实验设备数字电路实验箱示波器逻辑分析仪万用表2、实验环境实验室提供稳定的电源和良好的通风条件。
三、实验原理1、加法器半加器:只考虑两个一位二进制数相加,不考虑低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B,进位= A ∧ B。
全加器:考虑两个一位二进制数相加以及低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B ⊕ C_in,进位=(A ∧ B) ∨(A ∧C_in) ∨(B ∧ C_in)。
多位加法器:通过将多个全加器级联可以实现多位二进制数的加法运算。
2、减法器利用补码原理实现减法运算。
将减数取反加 1 得到其补码,然后与被减数相加,结果即为减法的结果。
3、乘法器移位相加乘法器:通过将被乘数逐位与乘数相乘,并根据乘数对应位的值进行移位相加,得到乘法结果。
4、除法器恢复余数法除法器:通过不断试商、减去除数、恢复余数等操作,逐步得到商和余数。
四、实验内容与步骤1、加法器实验按照实验原理图,在数字电路实验箱上连接全加器电路。
输入不同的两位二进制数 A 和 B 以及低位进位 C_in,观察输出的和 S 和进位 C_out。
使用示波器和逻辑分析仪监测输入和输出信号的波形,验证加法器的功能。
2、减法器实验按照补码原理,设计减法器电路。
输入被减数和减数,观察输出的差和借位标志。
使用万用表测量相关节点的电压,验证减法器的正确性。
3、乘法器实验搭建移位相加乘法器电路。
输入两位二进制被乘数和乘数,观察输出的乘积。
通过逻辑分析仪分析乘法运算过程中的信号变化。
运算器移位运算实验报告
运算器移位运算实验报告大家好,今天我们来聊聊运算器移位运算。
移位运算,听起来是不是有点高深,其实它就是把二进制数里的位数往左或者往右移动。
就好比你把手里的糖果往一边推,推得越远,糖果就越少,推的方向不同,糖果的分布也会变。
想象一下,如果你有一个二进制数“1011”,往左移一位,就变成“0110”,简单吧?这就像把一块蛋糕切成两半,左右两边都有不同的口感。
移位运算有两种主要方式,分别是逻辑移位和算术移位。
逻辑移位就像是清理桌面,把不需要的东西往边上推,留出更多空间。
比如说,把“0001”逻辑右移一位,结果是“0000”,因为我们把那个“1”给推掉了。
而算术移位就更像是做数学题,保持符号位不变。
比如把“1111”右移一位,结果变成“1111”,这边的“1”继续留在那儿,就像是有个坚强的队友,没让他离开。
移位运算的意义是什么呢?这可是大有来头!在计算机里,运算器用移位运算来做乘法和除法。
这种方式效率高得惊人。
想象一下,你要把10乘以2,普通方法得一笔一划地加,耗时又费力;可如果用移位运算,你只需把“10”左移一位,就直接变成了“100”,这可是速度与激情的完美结合。
简直是搬家时一挥而就,省时省力。
移位运算也有一些小技巧和注意事项。
比如说,左移一位相当于乘以2,而右移一位则相当于除以2。
这时候,很多小伙伴可能会想,哎,这不是太简单了吗?简单的背后往往有深意。
比如在处理负数时,算术右移就很有必要了,得考虑符号位,不然就像走路没看路,容易摔跤。
聪明的小伙伴们可别忘了这一点哦。
在实验过程中,我们用了一些工具来帮助我们实现这些操作。
比如说,运算器和一些编程软件,这些工具就像是我们实验室里的“小助手”。
每次移位运算之后,看到结果在屏幕上瞬间出现,心里那种满足感简直不要太好。
就像把新买的零食打开,一口下去,幸福感爆棚!我们还做了些小实验,看看不同的移位运算会有什么不同的结果。
有时我们故意用一些边界值,比如说全是“1”的数,结果每次操作都能引发“哇”的一声惊叹。
实验二运算器实验报告
实验二运算器实验报告
实验二是运算器实验,旨在让我们了解计算机运算器的结构和工作原理。
在本次实验中,我们通过搭建运算器电路并进行验证,深入理解了运算器的运作过程,为我们今后学习和应用计算机原理打下了基础。
一、实验原理
运算器是计算机中重要的组成部分,用于实现各种算术和逻辑运算。
在本次实验中,我们首先学习了运算器的基本原理和功能,并了解了运算器中常用的逻辑门电路,如与门、或门、非门等。
接着,我们根据原理和逻辑门电路的特点,搭建了一个16位的运算器电路,并测试了电路的逻辑功能和运算准确性。
二、实验步骤
1. 搭建16位运算器电路,包括与门、或门、非门等逻辑电路。
2. 对搭建的运算器电路进行测试,如测试与门、或门、非门电路的逻辑输出是否正确。
3. 实现加法和减法运算功能,测试运算器的运算准确性。
4. 对搭建的运算器电路进行进一步优化,提高电路工作效率和运算速度。
三、实验结果
经过实验测试,我们成功搭建了一个16位的运算器电路,并对电路进行了多项测试和验证。
在逻辑输出方面,与门、或门、非门电路均能够正确输出逻辑值,验证了运算器电路的逻辑功能。
在加法和减法运算方面,运算器电路能够正确实现运算功能,并输出正确的运算结果,这表明运算器电路的运算准确性良好。
四、实验总结
通过本次实验,我们深入理解了计算机中运算器的工作原理和结构,掌握了运算器电路的搭建和运作方法,并初步掌握了在运算器上实现加法和减法运算的原理和方法。
此外,我们还了解了运算器电路的优化方法和技巧,提高了电路工作效率和运算速度。
这些知识和技能对我们今后学习和应用计算机原理具有重要的指导意义。
实验一 运算器实验
连接,应如何修改实验电路的设计?
实验一运算器实验设计一个多项式运算器一元多项式运算器运算器运算器的主要功能是四则运算器运算器的组成部分运算器的发展历程浮点运算器
计算机组成原理实验课件
陆遥
实验一 运算器实验
一、实验目的
掌握以多功能ALU 74181为核心的简单运算器 的数据通路、工作原理及操作控制方法。
二、实验任务及要求
1.
完成简单运算器的数据通路连接。
实验基本步骤如下:
⑴ 完成实验电路的连接;
⑵ 分别将A、B两个运算数据送入DR1和 DR2缓冲寄存器; ⑶ 控制ALU进行所需的运算; ⑷ 将运算结果打入累加寄存器,并输出显
示运算结果。
四、实验报告内容及要求
1.
2.
实验目的
ቤተ መጻሕፍቲ ባይዱ实验设备
3.
4.
实验原理
实验任务及详细实验过程描述
5.
实验思考:如果将ALU的输入和输出都连接在
74244(三态门)
OE 74374(DR2) ≥1 D2CK EDR2
运算器实验电路
控制信号说明: ⑴ EDR1和EDR2是DR1和DR2的输入允许信号,低电平 有效。 ⑵ D1CK和D2CK是DR1和DR2的打入脉冲。 ⑶ ALU-O是ALU的输出控制信号,低电平有效。 ⑷ CCK是算术运算时,最高进位的锁存脉冲。 ⑸ X0和X1是累加寄存器的工作模式选择信号,X0=X1=1 时,累加器为输入模式。 ⑹ ERA是累加器的选通信号,低电平有效。 ⑺ RACK是累加器的工作脉冲。 ⑻ RA-O是累加器的输出控制信号,低电平有效。 ⑼ STOP是停机控制信号,高电平为停机状态,低电平为 运行状态。
计算机组成原理实验 运算器实验
实验一:运算器实验一、实验目的:1、掌握简单运算器的数据传输方式。
2、验证运算功能发生器(74LS181)及进位控制的组合功能。
二、实验要求:完成不带进位及带进位算术实验、逻辑运算实验,了解算术逻辑运算单元的运用。
三、实验原理:其中运算器有两片74LS181以并|串形式结构8位字长的ALU。
运算器的输出经过一个三态门(74LS245)和数据总线连接,运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入已连至数据总线,数据开关(INPUT UNIT)用来给出参与运算的数据,经一三态门(74LS245)和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
在进行手动实验时,必须先预制开关电平|Load=1,|CE=1,其余开关控制信号电瓶均置为0。
四、实验连接:1、八位运算器控制信号连接:位于实验装置左上方的控制信号(CTR—OUT UNIT)中的(S3,S2,S1,S0,M,|CN,LDDR1,LDDR2,LDCZY,|SW—B,|ALU--B)与位于实验装置右中方的(CTR—IN UNIT)、左下方INPUT-UNIT中的(|SW-B)右上方CTR-IN(|ALU-B)作对应连接。
实验中上方信号(CN+4)与(CN+4L)相连。
2、完成上述连接,仔细检查无误后方可接通电源进入实验。
五、实验仪器工作状态设定:在闪动的“P”状态下按动“增址”命令键,使LED显示器自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。
六、实验项目:(一)、算术运算实验拨动二进制数据开关向DR1和DR2寄存器置数(数据灯亮表示它所对应的数据位为“1”,反之为“0”)。
具体操作步骤图示如下:【CBA=001】LDDR1=1 LDDR1=0LDDR2=0 LDDR2=1按STEP 按STEP检验DR1和DR2中存的数是否正确,具体操作为:关闭数据输入三态门(CBA=000)打开ALU输出三态门(CBA=010),当置S3,S2,S1,S0,M为11111时,总线指示灯(BUS-DISP UNIT)显示DR1中的数,而置10101时总线指示灯将显示DR2中的数。
计算机组成原理实验-运算器实验报告
当A=10000000,B=00110010时
F=01111111
(5)S3S2S1S0=1101时,F=A加1。例如:
当A=00110101,B=00110101时,F=00 Nhomakorabea10110
当A=11100011,B=00100010时
F=11100100
F=00100000,FC灯亮,表示有进位
(3)S3S2S1S0=1011时,F=A减B。例如:
当A=00110101,B=00110101时,
F=00000000
当A=01011011,B=00111010时
F=00100001
(4)S3S2S1S0=1100时,F=A减1。例如:
当A=00110101,B=00110101时,
计算机组成原理实验运算器实验报告基本运算器实验报告运算器的组成部分运算器实验报告运算器及移位实验计算机组成原理实验运算器运算器的主要功能是运算器的主要功能运算器的功能
1.逻辑运算
(1)S3S2S1S0=0000时,F=A,例如:
当A=00010101,B=01101001时
F=00010101;
当A=01011000时,B=01011110时
当A=11000011,B=00111100时
F=00000000
(4)S3S2S1S0=0011时,F=A+B。例如:
当A=00110101,B=11001010时,
F=11111111
当A=01011011,B=11000101时
F=11011111
(5)S3S2S1S0=0100时,F=/A。例如:
F=00011101
当A=01000111,B=00000101时
运算器原理实验报告
运算器原理实验报告摘要本实验利用运算器实现了加法和乘法运算,并通过编程控制了运算过程。
实验结果表明,该运算器能够正确地进行加法和乘法运算,并输出正确的结果。
同时,通过在程序中添加适当的控制语句,可以实现不同运算的选择。
1.引言运算器是计算机中非常重要的一部分,用于进行数值计算和逻辑运算。
在本实验中,我们设计了一个简单的运算器,通过编程控制实现加法和乘法运算。
2.实验设备和原理2.1 实验设备本实验主要使用了一台电脑,并在其上运行了相应的编程软件。
同时,还需要连接显示屏和输入设备(如键盘)以方便数据的输入和输出。
2.2 实验原理本实验采用的运算器是基于二进制数的加法和乘法运算,其原理如下:(1)加法运算:将两个二进制数按位相加,超出位数则向高位进位。
(2)乘法运算:利用加法和位移操作实现。
对于A、B两个数的乘法,依次将A的每一位与B相乘,然后将结果相加得到最终的乘积。
3.实验步骤3.1 编写程序根据实验原理,编写相应的程序代码,包括加法和乘法的实现以及相应的控制语句。
3.2 运行程序将程序上传至运算器设备,并打开相应的输入输出设备。
根据需要输入相应的操作数和运算符,然后运行程序,观察输出结果。
4.实验结果与分析经过实验,我们发现该运算器能够正确地进行加法和乘法运算,并输出正确的结果。
通过在程序中添加控制语句,可以实现不同运算的选择,提高了运算器的灵活性。
5.结论通过本次实验,我们成功设计并实现了一个基于二进制数的运算器,可以进行加法和乘法运算,并输出正确的结果。
该运算器具有一定的灵活性,可以通过编程控制实现不同运算的选择。
运算器组成实验1
实验一运算器组成实验一、实验目的1.掌握运算器(ALU)的工作原理。
2.熟悉74LSl8l运算器的组合功能。
3.按给定数据,完成几种指定的算术运算和逻辑运算。
二、实验线路运算器组成如下图所示。
三、实验原理运算器实验在主板的运算器单元电路上进行。
控制信号、数据、时序信号均由逻辑开关电路和时序生成电路提供。
SW l开关产生8位二进制数据,并发送至总线。
DR1、DR2为运算暂存器,LDDR l、LDDR2为暂存器的输入控制信号。
当其有效时,按P0键把总线数据送至暂存器DR1和DR2。
选择S3一S0、M、/CN信号,可实现ALU的算术/逻辑操作。
/ALU-BUS信号有效时把运算结果送至总线。
实验时不用用户连线,只需根据表l设置控制信号,按步骤进行实验。
四、实验步骤1.预置下表的逻辑按键状态(本次实验中下表状态不变,表中-B即-BUS)。
SW3 DP TJ LDAR /CE LDPC /PC-B /R0-B /R1-B /R2-B LDR0 LDR1 LDR2 LDIR f0 1 1 0 1 0 1 1 1 1 0 0 0 0上述控制信号的预置选取了时钟信号f0(250KHz),设置了单步操作方式,关闭了一些与本次实验无关的信号。
2.实验步骤按表l进行。
实验时,对表中的逻辑按键进行操作,使它置l或清0。
在对暂存器存数时,先设置LDDRi有效,再由SW1输入数据,然后在P0脉冲(产生T’4信号)作用下,数据存入暂存器。
表中带X的为不确定的随机态,不会影响运算器操作。
D7~Do数据总线上接有发光二极管指示灯,以显示总线数据值。
表中只列出了实验的部分步骤即4种算术/逻辑操作。
(74LS181的全部运算功能见74LS181功能表)。
表中的↑符号表示单脉冲P0,无↑处表示不需P0脉冲。
表1。
运算器实验步骤及显示结果表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ALU算数 算数/ 74LS181 ALU算数/逻辑运算功能表
实验要求
做好实验预习,掌握运算器的数据传输 做好实验预习,掌握运算器的数据传输 通路及其功能特性, 通路及其功能特性,熟悉实验中所用模 拟开关的作用和使用方法。 拟开关的作用和使用方法。 写出实验报告,内容: 写出实验报告,内容: 实验目的 实验任务的数据表格,控制信号模拟开 实验任务的数据表格, 关值,运算结果。 关值,运算结果。
实验电路
实验设备
TEC - 5计算机组成原理实验系统 台; 计算机组成原理实验系统1台 计算机组成原理实验系统 TDS1001数字存储示波器 台; 数字存储示波器1台 数字存储示波器 逻辑测试笔1支。 逻辑测试笔 支
参考连线:
数据 通路 电平 开关 数据 通路 电平 开关 数据通路 电平开关
WR0 K0
WR1 K1
RD0 K2 S0 K8
RD1 K3 S1 K9
RS0 K4 S2 K10
RS1 K5 S3 K11
LDRi K6 M K12 Cn# Vcc
LDDR1 LDDR2 K7 K7
ALU_BUS# K13
SW_BUS# K14
RS_BUS# K15
实验任务
1.按图要求 将运算器模块与实验台操作板上的 按图要求,将运算器模块与实验台操作板上的 按图要求 线路进行连接。 线路进行连接。 2.用开关 用开关SW7-SW0向通用寄存器堆 内的 向通用寄存器堆RF内的 用开关 向通用寄存器堆 内的R0R3寄存器置数。 寄存器置数。 寄存器置数 然后读出 -R3的内容,在数据总线 然后读出R0- 的内容 在数据总线DBUS上 的内容, 上 显示出来。 显示出来。 4.将R0写入 写入DR1,将R1写入 写入DR2 。 将 写入 , 写入 3.验证 验证ALU的正逻辑算术运算, 的正逻辑算术运算, 验证 的正逻辑算术运算 逻辑运算功能。 逻辑运算功能。
计算机组成原理实验
数学与计算机科学学院实验中心 2010年 2010年9月
实验系统简介
控制器
数据通路
数 据 开 关
时序电路 控制台开关 脉冲按钮拨动开关ຫໍສະໝຸດ 据通路总体图一 运算器组成实验
实验目的: 实验目的 1.熟悉双端口通用寄存器堆的读写操作。 熟悉双端口通用寄存器堆的读写操作。 熟悉双端口通用寄存器堆的读写操作 2.熟悉简单运算器的数据传送通路。 熟悉简单运算器的数据传送通路。 熟悉简单运算器的数据传送通路 3.验证运算器 验证运算器74LS181的算术逻辑功能。 的算术逻辑功能。 验证运算器 的算术逻辑功能 4.按给定数据,完成指定的算术、逻辑 按给定数据, 按给定数据 完成指定的算术、 运算。 运算。