数学试卷参考答案和评分标准
2024年深圳市高三年级第二次调研考试数学试题参考答案及评分标准
2024年深圳市高三年级第二次调研考试数学试题参考答案及评分标准本试卷共4页,19小题,满分150分。
考试用时120分钟。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
三、填空题:本题共3小题,每小题5分,共15分。
12. 5 13. 8π 14.3π;+∞,)(注:第一空2分,第二空3分)四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.(13分)如图,三棱柱-ABC A B C 111中,侧面⊥BB C C 11底面ABC ,且=AB AC ,=A B A C 11.(1)证明:⊥AA 1平面ABC ;(2)若==AA BC 21,∠=︒BAC 90,求平面A BC 1与平面A BC 11夹角的余弦值.证明:(1)取BC 的中点M ,连结MA 、MA 1.因为=AB AC ,=A B A C 11,所以⊥BC AM ,⊥BC A M 1.由于AM ,⊂A M 1平面A MA 1,且1AMA M M =,因此⊥BC 平面A MA 1.…………………………………………………2分因为⊂A A 1平面A MA 1,所以⊥BC A A 1.又因为A A //1B B 1,所以⊥B B BC 1,因为平面⊥BB C C 11平面ABC ,平面BB C C 11平面=ABC BC ,且⊂B B 1平面BB C C 11,所以⊥B B1平面ABC .因为A A //1B B 1,所以⊥AA 1平面ABC .…………………………………………………………6分解:(2)(法一)因为∠=︒BAC 90,且=BC 2,所以==AB AC A BCA 1B 1C 1M以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系, 则A (0,0,2)1,B,C,C 1.所以1(2,0,2)A B =-,1(0,2,2)A C =-,11(0,2,0)A C =. ………………………………………8分设平面A BC 1的法向量为m =x y z (,,)111,则1100A B A C ⋅=⋅=m m ⎩⎪⎨⎪⎧,可得⎩⎪-=⎨⎪-=⎧y x 001111,令=z11,则m =, 设平面A BC 11的法向量为n =x y z (,,)222,则11100A B A C ⋅=⋅=n n ⎩⎪⎨⎪⎧,可得⎩⎪=⎨⎪-=⎧y x 00222,令=z 12,则n =,……12分 设平面A BC 1与平面A BC 11夹角为θ,则m n m n ===⋅θ||||cos ||,所以平面A BC1与平面A BC 11. …………………………………………13分 (法二)将直三棱柱-ABC A B C 111补成长方体-ABDC A B D C 1111.连接C D 1,过点C 作⊥CP C D 1,垂足为P ,再过P 作⊥PQ A B 1,垂足为Q ,连接CQ .因为⊥BD 平面CDD C 11,且⊂CP 平面CDD C 11, 所以⊥BD CP .又因为⊥CP C D 1,由于BD ,⊂C D 1平面A BDC 11,且1BD C D D =,所以⊥CP 平面A BDC 11.由于⊂A B 1平面A BDC 11,所以⊥A B CP 1. 因为CQ ,⊂PQ 平面CPQ ,且CQ PQ Q =,所以⊥A B 1平面CPQ .因为⊂CQ 平面CPQ , 所以⊥CQ A B 1.则∠CQP 为平面A BC 1与平面A BC 11的夹角或补角,………………………………………………11分 在△A BC 1中,由等面积法可得=CQ . 因为==PQ A C 11∠==CQ CQP PQ cos 因此平面A BC 1与平面A BC 11. ………………………………………………13分16.(15分)已知函数(f x =+ax x )(1)e ,'f x ()是f x ()的导函数,且()()2e f x f x -='x . (1)若曲线()=y f x 在=x 0处的切线为=+y kx b ,求k ,b 的值; (2)在(1)的条件下,证明:f x kx b +().C 1ABB 1CA 1yMC 1ABB 1C A 1PQ DD 1解:(1)因为()(1)e x f x ax =+,所以()(1)e x f x ax a '=++, …………………………………………2分 则()()e x f x f x a '-=.因为()()2e x f x f x '-=,所以2a =. …………………………………………4分 则曲线()y f x =在点0x =处的切线斜率为(0)3f '=.又因为(0)1f =,所以曲线()y f x =在点0x =处的切线方程为31y x =+,即得3k =,1b =. ………………………………………………………………………………………6分 (2)证:设函数()(21)e 31x g x x x =+--,x ∈R ,则()(23)e 3x g x x '=+-. ………………………………………………………………………………8分设()()g x h x '=,则()e (25)x h x x '=+, ………………………………………………………10分 所以,当52x >-时,()0h x '>,()g x '单调递增.又因为(0)0g '=,所以,0x >时,()0g x '>,()g x 单调递增;502x -<<时,()0g x '<,()g x 单调递减. 又当52x -时,()(23)e 30x g x x '=+-<,综上()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, ……………………………………13分 所以当0x =时,()g x 取得最小值(0)0g =, 即(21)e 310x x x +--,所以,当x ∈R 时,()31f x x +. ……………………………………………………………15分17.(15分)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”.已知0()1P B <<,证明:(|)(|)P A B P A B >.解:(1)设甲工厂试生产的这批零件有m 件,乙工厂试生产的这批零件有n 件,事件M =“混合放在一起零件来自甲工厂”, 事件N =“混合放在一起零件来自乙工厂”,事件C =“混合放在一起的某一零件是合格品”, 则()mP M m n =+,()n P N m n=+, ()(|)()(|)(94%98%97%)m nP C P C M P M P C N P N m n m n=+=+=+⨯⨯+, ………………………2分 计算得3m n =. 所以1()4m P M m n ==+.…………………………………………………………………………………3分 X 的可能取值为0,1,2,3,1(3,)4X B , …………………………………………………5分13()344E X =⨯=, …………………………………………………6分00331327(0)()()4464P X C ===,11231327(1)()()4464P X C ===,2213139(2)()()4464P X C ===,3303131(3)()()4464P X C ===.所以,X 的分布列为:………………………………………………8分证明:(2)因为在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,所以(|)(|)P B A P B A >.………………………………………………………………………………10分 即()()()()P AB P AB P A P A >. 因为()0P A >,()0P A >, 所以()()()()P AB P A P AB P A >.因为()1()P A P A =-,()()()P AB P B P AB =-, 所以()1())(()())()P AB P A P B P AB P A ->-(.即得()()()P AB P A P B >, ……………………………………………………………………12分 所以()()()()()()()P AB P AB P B P A P B P AB P B ->-.即()(1())()(()())P AB P B P B P A P AB ->-. 又因为1()()P B P B -=,()()()P A P AB P AB -=, 所以()()()()P AB P B P B P AB >.因为0()1P B <<,0()1P B <<, 所以()()()()P AB P AB P B P B >. 即得证(|)(|)P A B P A B >. …………………………………………………………………………15分18.(17分)设抛物线2:2C x py =(0p >),直线:2l y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线2y =-于点M .对任意k ∈R ,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN △的面积不小于.解:(1)设点11(,)A x y ,22(,)B x y ,由题可知,当0k =时,显然有0AM BM k k +=; 当0k ≠时,直线OM 的方程为1y x k=-,点(2,2)M k -. 联立直线AB 与C 的方程得2240x pkx p --=, 224160p k p ∆=+>,所以122x x pk +=,124x x p =-, ………………………………………………………………………3分因为直线AM ,AB ,BM 的斜率成等差数列,所以121222222y y k x k x k +++=--. 即121244222kx kx k x k x k +++=--,122112(4)(2)(4)(2)2(2)(2)kx x k kx x k k x k x k +-++-=--, 化简得2122(2)(4)0k x x k ++-=. …………………………………………………5分将122x x pk +=代入上式得22(2)(24)0k pk k +-=, 则2p =,所以曲线C 的方程为24x y =. …………………………………………………………………………8分 (2)(法一)设直线:l y kx n '=+,联立C 的方程,得2440x kx n --=.由0∆=,得2n k =-,点2(2,)N k k , …………………………………………10分 设AB 的中点为E ,因为1222x x k +=,21212()42222y y k x x k +++==+,则点2(2,22)E k k +. ……………12分 因为222222k k +-=,所以点M ,N ,E 三点共线,且点N 为ME 的中点, 所以AMN △面积为ABM △面积的14. ……………………………………………………………14分 记AMN △的面积为S ,点(2,2)M k -到直线AB :20kx y -+=的距离2d =,所以3222221212211(24)||1()4(2)22881k S AB d k x x x x k k +=⨯=+⨯+-⨯=++,当0k =时,等号成立.所以命题得证. ………………………………………………………………………………………17分(法二)设直线:l y kx n '=+,联立C 的方程,得2440x kx n --=.由0∆=,得2n k =-,则点2(2,)N k k .所以直线MN 与x 轴垂直. ……………………………………………………12分记AMN △的面积为S ,所以121||||22x x S MN -=⨯⨯1||4MN =⨯ …………………………………14分21|2|2k =⨯+322(2)22k =+.当0k =时,等号成立.所以命题得证. ……………………………………………………………………………………17分19.(17分)无穷数列1a ,2a ,…,n a ,…的定义如下:如果n 是偶数,就对n 尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a ;如果n 是奇数,就对31n +尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a .(1)写出这个数列的前7项;(2)如果n a m =且m a n =,求m ,n 的值; (3)记()n a f n =,*n ∈N ,求一个正整数n ,满足()(())n f n f f n <<<…2024(((())))ff f f n <个…….解:(1)11a =,21a =,35a =,41a =,51a =,63a =,711a =. ……………………………3分 (2)由已知,m ,n 均为奇数,不妨设nm .当1n =时,因为11a =,所以1m =,故1m n ==; ……………………………5分 当1n >时,因为314n n m +<,而n 为奇数,n a m =,所以312n m +=. ………………6分 又m 为奇数,m a n =,所以存在*k ∈N ,使得312km n +=为奇数. 所以3(31)95231122kn n n m ++=+=+=. 而95462n n n +<<,所以426k n n n <<,即426k <<,*k ∈N ,无解. …………………………7分 所以1m n ==. ……………………………………………………………………………8分 (3)显然,n 不能为偶数,否则()2nf n n <,不满足()n f n <. 所以,n 为正奇数.又1(1)1f a ==,所以3n. …………………………………………………………………10分设41n k =+或41n k =-,*k ∈N .当41n k =+时,3(41)1()31414k f n k k n ++==+<+=,不满足()n f n <; ……………12分 当41n k =-时,3(41)1()61412k f n k k n -+==->-=,即()n f n <. ……………14分 所以,取202521n k =-,*k ∈N 时,202520242024220233(21)13(321)1()321(())32122k k n f n k f f n k -+⨯-+<==⨯-<==⨯-202232023220233(321)1(((())))3212k f f f n k ⨯-+<<==⨯-………20232202420243(321)1(((())))3212k f f f n k ⨯-+<==⨯-……即()(())n f n f f n <<<…2024(((())))ff f f n <个……. ……………………………………………………17分注:只要给出21m n k =-,并满足条件*,m k ∈N ,2025m 中的其一组,m k 的值,就认为是正确的.。
2023年全国中学生数学奥林匹克竞赛甘肃赛区预赛试题参考答案及评分标准
2023年全国中学生数学奥林匹克竞赛(甘肃赛区预赛)试卷参考答案及评分标准一、填空题(共10小题,每小题7分,满分70分。
请直接将答案写在题中的横线上)二、解答题(共6小题,满分80分。
要求写出解题过程)11.(13分)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c cos sin 2A Bc B +=.(1)求C ∠的大小;(2)若a b +=,求sin A .【解】:(1cos sin sin 2A BB C B +=,因为有sin 0B ≠sin .2A BC +=因为cos cos()sin2222A B CC π+=-=,2sin cos 222C C C =,因为sin02C≠,所以cos 22C =,因为(0,)C π∈,所以26C π=,从而.3C π=………………6分(2)因为3C π=,由余弦定理得222,c a b ab =+-将3()3c a b =+代入上式得2221()3a b a b ab +=+-,整理得222520a ab b -+=,解得2a b =或2.b a =①当2a b =时,c =,所以222222cos 02b c a A bc +-==,因为(0,)A π∈,所以2A π=.②当2b a =时,c =,所以222222cos 22b c a A bc +-==,因为(0,)A π∈,所以6A π=.所以1sin 2A =或1.…………………………13分12.(13分)如图,已知长方形ABCD 中,21AB AD ==,,M 为DC 的中点.将ADM ∆沿AM 折起,使得平面ADM ⊥平面ABCM .(1)求证:AD BM ⊥;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E AM D --的余弦值为55.【解】:(1)因为平面AMD ⊥平面ABCM ,2,1AB AD ==,M 是DC 的中点,,故AD DM =,取AM 的中点O ,连结有OD ,则DO ⊥平面ABCM ,取AB 中点N ,连接ON ,则ON AM ⊥,以O 为原点如图建立空间直角坐标系……………3分13.(13分)已知数列}{n a 中,12a =,且21()2n n n a a n N a *+=∈+.证明:(1)212n n a -≤;(2)12122244222n n na a a a a a +++<+++ .【证明】:(1)由12a =,且212n n n a a a +=+,得0n a >,故1202nn n n a a a a +--=<+,则{}n a 为递减数列.11221112222n n n n n a a a a a a +==-≤-=+++,即112n n a a +≤,故21.2n n a -≤…………………………………6分(2)由12()2nn n n a a a n N a *+=-∈+,可得121223112224()2()()222n n n n na a a a a a a n a a a a a ++++=-+-++-+++ 1231n n a a a a na +=+++- ,21121()22n -<++++ 11221) 4.2n -=+-<(故有1212224 4.222n n na a a a a a +++<+++ ……………………………………13分14.(13分)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第1n +次状态的概率分布只跟第n 次的状态有关,与第1n -,2n -,3n -,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (n N *∈)次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b .(1)求1X 的分布列;(2)求数列{}n a 的通项公式;(3)求n X 的数学期望.【解】:(1)由题意可知,X 1的可能取值为0,1,2,由相互独立事件概率乘法公式可知:P (X 1=0)=122339⨯=,P (X 1=1)=1122533339⨯+⨯=,P (X 1=2)=212339⨯=,故X 1的分布列如下表:X 1012P295929………………3分(2)由全概率公式可知:P (1n X +=1)=P (n X =1)P (1n X +=1|n X =1)+P (n X =2)P (1n X +=1|n X =2)+P (n X =0)P (1n X +=1|n X =0)=1122()3333⨯+⨯P (n X =1)+2(1)3⨯P (n X =2)+2(1)3⨯P (n X =0)=59P (n X =1)+23P (n X =2)+23P (n X =0),即:1522(1),933n n n n n a a b a b +=++--所以112,93n n a a +=-+所以1313(),595n n a a +-=--又a 1=P (X 1=1)=59,所以,数列3{}5n a -是以135a -为首项,以19-为公比的等比数列,所以132121(()545959n n n a --=-⨯-=-,即:321(.559nn a =+⨯-………………8分(3)由全概率公式可得:P (1n X +=2)=P (n X =1)P (1n X +=2|n X =1)+P (n X =2)P (1n X +=2|n X =2)+P (n X =0)P (1n X +=2|n X =0)=21(33⨯P (n X =1)+11)3⨯(P (n X =2)+0×P (n X =0),即:12193n n n b a b +=+,又321(),559nn a =+⨯-所以112321[()]39559nn n b b +=+⨯+⨯-,所以111111111([()],5593559n nn n b b ++-+⨯-=-+⨯-又b 1=P (X 1=2)=29,所以111121105599545b -+⨯-=--=(,所以111()0559nn b -+⨯-=,所以111()559nn b =-⨯-,所以()20(1)2 1.n n n n n n n E X a b a b a b =++⨯--=+=………………13分15.(13分)已知点F 是抛物线2:4C x y =与椭圆22221(0)y x a b a b+=>>的公共焦点,椭圆上的点M 到点F 的最大距离为3.(1)求椭圆的方程;(2)过点M 作C 的两条切线,记切点分别为,A B ,求△MAB 面积的最大值.【解】:(1)抛物线C :x 2=4y 的焦点为F (0,1),∴c =1.∵椭圆上的点M 到点F 的最大距离为3,∴a +c =3,b 2=a 2-c 2,解得a =2,b 2=3,∴椭圆的方程为22143y x +=.………………5分(2)设M (x 0,y 0),则2222000031,3434y x y x +==-联立2224143x yy x ⎧=⎪⎨+=⎪⎩,得3y 2+16y -12=0,y ∈[-2,2],解得y =23,∴y 0∈[-2,23),设A (x 1,y 1),B (x 2,y 2),求导x 2=4y ,可得12y x '=,∴切线MA ,MB 的方程分别为:y 214x -=12x 1(x -x 1),y 224x -=12x 2(x -x 2),可得x 1,x 2为方程t 2-2x 0t +4y 0=0的两个不相等实数根.∴x 1+x 2=2x 0,x 1x 2=4y 0,∴AB k =22210212*********x x x y y x x x x x x --+===--,∴直线AB 的方程为:y 214x -=214x x +(x -x 1),化为y =214x x +x 124x x -,代入可得y =2x x -y 0,化为x 0x -2y -2y 0=0,∴点M 到直线AB 的距离d=2,|AB |,∴△MAB 面积S =12d |AB |=2001|4|4x y -把2200334y x =-代入上式可得S=20031|34|44y y --=322001(12316)16y y --,∵y 0∈[2-,23),由t =12203y --16y 0=2081003(33y -++,∴y 0=2-时,t 取得最大值32.∴△MAB面积的最大值为………………13分16.(15分)已知函数()(2e )ln f x x x =-,其中e 2.71828= 为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若12,x x ∈(0,1),且21121212ln ln 2e (ln ln )x x x x x x x x -=-,证明:12112e 2e 1x x <+<+.【解】:(1)2e()(1ln )f x x x'=-+,因为y =2ex在(0,+∞)上是减函数,y =1ln x +在(0,+∞)上是增函数,所以()f x '在(0,+∞)上单调递减,又因为(e)0f '=,所以当x ∈(0,e )时,()(e)0f x f ''>=,()f x 单调递增;当x ∈(e ,+∞)时,()(e)0f x f ''<=,()f x 单调递减.………………5分(2)证明:由题意,121212ln ln 2eln 2eln x x x x x x -=-,即121211(2e ln (2e )ln x x x x -=-,11221111(2e ln (2e )ln x x x x -=-,设111a x =,221a x =,则由1x ,2x ∈(0,1),得1a ,2a ∈(1,+∞),且f (1a )=f (2a ),不妨设12a a <,则即证122e 2e 1a a <+<+,由(2e)0f =及()f x 的单调性知,121e 2e a a <<<<,令()()(2e )F x f x f x =--,1<x <e ,则()F x '=()f x '+(2e )f x '-=24e 2ln[(2e )](2e )x x x x ----,因为2(2e )e x x -≤,所以()F x '>2224e 2ln e 0e--=,所以F (x )在(1,e )上单调递增,则F (x )<F (e )=0,所以f (x )<f (2e -x ),取1x a =,则11()(2e )f a f a <-,又12()()f a f a =,则21()(2e )f a f a <-,又12e a e ->,2e a >,且f (x )在(e ,+∞)上单调递减,所以212e a a >-,即122e a a +>.从而12112e x x +>成立.………………10分下证122e 1a a +<+,①当21a e <+时,由1e a <得122e 1a a +<+,②当2e 12e a +≤<时,令()()(2e 1)G x f x f x =-+-,e 12e x +<<,则222e(2e 1)()()(2e 1)2ln[(2e 1)](2e 1)G x f x f x x x x x+'''=++-=---++-++,记2(2e 1)t x x =-++,e 12e x +≤<,又2(2e 1)t x x =-++在[e 1,2e)+上为减函数,所以2(2e,e e]t ∈+,2e(2e 1)2t +-在(2e ,e 2+e )单调递减,ln t 在(2e ,e 2+1)单调递增,所以2e(2e 1)2t+--ln t 单调递减,从而()G x '在[e +1,2e )上单调递增,又(2e)G '=2e(2e 1)2e(2e 12e)++--2-ln 2e (2e +1-2e )=2e -1-ln 2e ,ln x ≤x -1,所以(2e)G '>0,又(e 1)G '+=2e(2e 1)(e 1)(2e 1e 1)+++---2-ln (e +1)(2e +1-e -1)=e 1e 1-+ln(e 1)-+<0,从而由零点存在定理得,存在唯一x 0∈(e +1,2e ),使得0()0G x '=,当0[e 1,)x x ∈+时,()G x '<0()G x '=0⇒()G x 单调递减;当0(,2)x x e ∈时,()G x '>0()G x '=0⇒()G x 单调递增;所以()G x ≤max {(e 1),(2e)}G G +,又(e 1)(e 1)(2e 1e 1)(e 1)(e)(e 1)ln(e 1)e G f f f f +=+-+--=+-=-+-,ln 1e x x ≤⇒ln x ≤e x ⇒ln(e 1)+≤e 1e+,所以e 11(e 1)(e 1)e 0e eG ++<--=-<,显然,G (2e )=f (2e )-f (2e +1-2e )=0-0=0,所以G (x )<0,即f (x )-f (2e +1-x )<0,取x =2a ∈[e +1,2e ),则22()(2e 1)f a f a <+-,又12()()f a f a =,则12()(2e 1)f a f a <+-,结合22e 12e 1(e 1)e a +-<+-+=,1e a <,以及()f x 在(0,e)单调递增,得到122e 1a a <+-,所以122e 1a a +<+.综上,可得12112e 2e 1x x <+<+.………………15分。
厦门数学中考试题参考答案及评分标准
考生须知: 厦门市2007年初中毕业及高中阶段各类学校招生考试数学试题(试卷满分: 150 分; 考试时间:120分钟) 1. 解答的内容一律写在答题卡上, 考生不得擅自带走• 2. 作图或画辅助线要用 0.5毫米的黑色签字笔画好. 一、选择题(本大题共 7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有 一个选项是正确的) 下列计算正确的是 A . — 3X 2 = — 6 B. — 1— 1 = 0 已知点 A (— 2, 3),则点A 在 A .第一象限 B .第二象限 下列语句正确的是 A.画直线AB = 10厘米 C.画射线OB = 3厘米 下列事件,是必然事件的是 A. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是B. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是偶数C. 打开电视,正在播广告 D •抛掷一枚硬币,掷得的结果不是正面就是反面 1.2. 3. 4.6. 7. 否则以0分计算.交卷时只交答题卡,本卷由考场处理, C. ( — 3)2= 6 C.第三象限D. 2 -1 = 2 D.第四象限B.画直线 D.延长线段AB 到点C,使得BC = AB I 的垂直平分线 方程组丿x + y = 5, 的解是,2x — y = 4.X= 3, x = 3, x =— 3, x =— 3, A .彳 B . C .丿D. \ly = 2. w=— 2.j= 2. 丁=— 2.5. 如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形下列两个命题:①有一个内角是60° ,那么这个等腰三角形一定是等边三角形 .则以下结论正确的是A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为 69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地 .后来 小宝借来一副质量为 6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地 .小宝的体重可能是 A. 23.2 千克B. 23千克C. 21.1 千克D. 19.9 千克二、填空题(本大题共 10小题,每小题4分,共40分) 9.已知/ A = 50°,则/ A 的补角是 计算15 车序号1 2 3 4 5 6 车速(千米/时) 85 100 90 82 70 82 不等式2x — 4> 0的解集是 ________ . _______ 一名警察在高速公路上随机观察了 6辆车的车速,如下表所示: 则这6辆车车速的众数是 _______________ 千米/时. 已知图1所示的图形是由6个大小一样的正方形拼接而成的,此图形能否折成正方体 _________ (在横线上填“能”或“否”). 已知摄氏温度(C )与华氏温度「F )之间的转换关系是: 5摄氏温度=9 % (华氏温度—32).若华氏温度是68 F, 则摄氏温度是 C . 已知在 Rt △ ABC 中,/ C = 90°,直角边 AC 是直角边 BC 的2倍,贝U sin / A 的值 是 如图2,在平行四边形 ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若/ DAE = 20° , / AED = 90°,则/ B = __________ 度;若E C = 1,AD = 4厘米,则CF = _____________ 厘米. AB 3 在平面直角坐标系中, O 是坐标原点•点P (m , n )在反 图2 、 k 厂 比例函数y = X 的图象上.若m = k , n = k — 2,则k = ____________ ;若m + n = ,2k, OP = 2, k 且此反比例函数 y = -满足:当x > 0时,y 随x 的增大而减小,则 k =—— X 解答题(本大题共 9小题,共89分) 2 “ 2 ——1 V + X (本题满分8分)计算X 一 十J 厂+ 1. x x (本题满分8分)一次抽奖活动设置了如下的翻奖牌,如果你只能有一次机会在 字中选中一个翻牌,(1)求得到一架显微镜的概率;9个数(2)请你根据题意写出一个事件,使这个事件发生的概率是2 9.10. 11. 12. 13. 14.15. 16. 17. 三、 18. 19.1 2 3 4 5 6 789翻奖牌正面一架 两张 谢谢显微镜球票 参与 一张 一副 一张 唱片 球拍 唱片 两张 一张 一副 球票唱片球拍翻奖牌反面(本题满分8分)已知:如图3, AB 是O O 的弦,点(1) 若/ OAB = 35°,求/ AOB 的度数; (2) 过点C 作CD // AB ,若CD 是O O 的切线,求证:点C 是AB 的中点.21. (本题满分9分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式1h = v o t — 2g t 2 ( O v t W 2),其中重力加速度 g 以10米/秒2计算.这种爆竹点燃后以 V o = 20 米/秒的初速度上升, (1) 这种爆竹在地面上点燃后,经过多少时间离地15米?(2) 在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明 理由. 22. (本题满分10分)已知四边形ABCD ,对角线AC 、BD 交于点O.现给出四个条件:①AC 丄BD :②AC 平分对角线 BD :③ AD // BC :④ / OAD = Z ODA.请你以其中的三个 条件作为命题的题设,以“四边形 ABCD 是菱形”作为命题的结论,(1 )写出一个真命题,并证明;(2 )写出一个假命题,并举出一个反例说明.23. (本题满分10分)已知:如图4,在厶ABC 中,D 是AB 边上的一点,BD > AD ,/ A =Z ACD ,(1)若/ A =Z B = 30 °,BD =3,求 CB 的长;(2 )过D 作/ CDB 的平分线 DF 交CB 于F ,C若线段AC 沿着AB 方向平移,当点 A 移到点D 时,F判断线段AC 的中点E 能否移到线段 DF 上,并说明理由. ______________________________ADB20. 图3图424. (本题满分12分)已知抛物线的函数关系式:y= x2 3+ 2( a —1) x+ a2-2a (其中x是自变量),(1)若点P(2,3)在此抛物线上,①求a的值;②若a> 0,且一次函数y= kx+ b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程) ;(2)设此抛物线与x轴交于点A (x1, 0)、B (x2, 0).若xi^^3< x2,且抛物线的顶点3在直线x= 4的右侧,求a的取值范围.25. (本题满分12分)已知:如图5, PA、PB是O O的切线,A、B是切点,连结OA、OB、OP,(1)若/ AOP = 60°,求/ OPB 的度数;A(2 )过O作OC、OD分别交AP、BP于C、D两点,判断直线CD与O O的位置关系,并说明理由①若/ COP = Z DOP,求证:AC = BD;②连结CD,设△ PCD的周长为I,若I = 2AP,图526. (本题满分12分)已知点P (m, n) ( m>0)在直线y= x+ b (0< b< 3)上,点A、B4 2 2在x轴上(点A在点B的左边),线段AB的长度为3匕,设厶FAB的面积为S,且S=?b 2+ 3b,3(1 )若b = 2,求S的值;(2 )若S= 4,求n的值;(3)若直线y= x + b ( 0< b< 3)与y轴交于点C,A PAB是等腰三角形,当CA // PB时,求b的值.厦门市2007年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准题号 1 2 3 4 5 6 7 选项A BDD AC C、选择题(本大题共 7小题,每小题3分,共21分)二、填空题(本大题共 8. 3. 9. 130 度. 10小题,每小题4分,共40 分)10.5.11. x >2.12.82千米/时.13. 台匕 冃匕.14. 20 C .15.5 16. 70 度2厘米.17.3; 2.三、解答题(本大题共 (本题满分8分) 2 , 2 解:匸1X + X x 9小题,共89分) 18. 2 2x — 1 x • ~~2~7~■x x + x 19. (本题满分 (1)解:8分) ]9.20. (x — 1)( x + 1) x — 1 + 1=x.x(x + 1) + 1解:••• 0A = OB ,” 1 分 •• / OAB = Z OBA . ” 2 分 • • / OAB = 35° , ” 3 分 •• / AOB = 110°. ”4 分(2)证明:连结0C ,交AB 于E .(1) 如得到“一副球拍”或得到“两张球票”或 “一架显微镜或谢谢参与” . (2)解:得到 (本题满分8分)CD 是O 0的切线, ••• 0C 丄 CD .CD // AB , • / OEB = Z OCD . • 0E 丄AB . •/ 0A = OB ,• △ AOB 是等腰三角形,OE 是等腰三角形 AOB 顶角的平分线.•••点C 是AB 的中点.21.(本题满分9分)(1)解:由已知得,15 = 20t — |x 10X t 2,整理得,t 2 — 4t + 3= 0.解得,h= 3, t 2= 1当t =3时,不合题意,舍去• •当爆竹点燃后1秒离地15米.2(2)解:由题意得, h =- 5t + 20t.20•顶点的横坐标t =-莎)=2.2或:h =— 5( t — 2) + 20•顶点的横坐标t = 2.又••• 一 5V 0,二抛物线开口向下.•在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升•22.(本题满分10 分)(1)真命题:如图,已知四边形ABCD ,对角线AC 、BD 交于点O.若平分对角线BD , AD // BC ,则四边形ABCD 是菱形.证明:•/ AD // BC ,• / CBO =Z ADO .•/ AC 垂直平分 BD , • Rt △ AOD 也 Rt △ COB . • AD = BC .•四边形ABCD 是平行四边形.(2)假命题1:已知四边形ABCD ,对角线AC 、BD 交于点O.若AC 丄BD , AC 平分对 角线BD ,/ OAD = Z ODA ,则四边形 ABCD 是菱形. 反作等腰直角三角形 ABD ,/ A = 90°,以BD 为一边,作等边三角形 BCD ,连结AC 、BD 交于点O. 贝U AC 丄BD , AC 平分对角线 BD ,/ OAD = Z ODA”9分•/ AC 丄 BD , 四边形ABCD 是菱形.AC 丄 BD , ACD3分但四边形ABCD不是菱形. ,,10分假命题2 :已知四边形ABCD,对角线AC、BD交于点O.若AC丄BD, AD // BC, / OAD = Z ODA,则四边形ABCD是菱形. ”6分反例:作等腰直角三角形AOD,/ AOD = 90° .延长DO至B, AO至C,取OB = OC (OB M OD ).连结AB、BC、CD ,贝U AC 丄BD , AD // BC,/ OAD = Z ODA. ,, 9 分则四边形ABCD是等腰梯形,不是菱形•,,10分假命题3:已知四边形ABCD,对角线AC、BD交于点O.若AC平分对角线BD , AD // BC,/ OAD = / ODA,则四边形ABCD是菱形. ”6分反例:作等腰三角形AOD ( OA = OD,/ AOD丰90°).延长DO至B,AO至C,取OB= OC= OA = OD.连结AB、BC、CD,贝U AD 丰 AB,AC 平分对角线BD,AD // BC,/ OAD = / ODA. ,,9分则四边形ABCD是矩形,不是菱形.5510分23.(本题满分10分)(1)解:•/ /A =/ ACD = 30°,CF ••• / CDB = 60° . ,, 1 分E又T/ B = 30°,A D B• / DCB = 90° . ,, 2 分亠亠BC在Rt△ BDC 中,cosB = BD,553分厂血3BC —BD •cosB — 3 •—.v2 2554分(2)解: •/ / CDB — / A +/ ACD,且DF 是/ CDB 的平分线,• 2 / FDB —2/ A,• / FDB —/ A. •AC // DF.5分方法 1 T / FDB =/ A,/ B =/ B,△ BDF s\ BAC.DF = BDAC = BA.BD > AD, DF 1> —AC 2BD、1 -- 〉_BA 2•/ E是AC的中点,•AE >1.即DF > AE.点E可以移到线段DF上.10分方法2:记点M为线段AB的中点,T BD >AD,点M在线段BD上.过M作MN // AC交BC于N./ BMN = / A,Z B =Z B,△ BMN BAC.BN = BM = 1BC = BA = 2N是BC的中点.MN // AC, AC// DF MN // DF.点N在线段BF上.点M在线段BD上,••• MN v DF.••• M为AB的中点,N是BC的中点,AE v DF.•••点E可以移到线段DF上.方法3:记点M为线段AB的中点,T BD > AD,”8分MN = AE.”9分”10分点M在线段BD上.过M作MN // AC交BC于N. / BMN = / A,Z B =Z B,△BMN BAC.MN = BM = 1AC = BA = 2.1E 为 AC 的中点,••• MN = 2AC = AE.MN // AC , AC // DF , 点M 在线段BD 上, MN BM 彳DF BD MN v DF. AE v DF.点E 可以移到线段DF 上.方法4:如图,延长 DF 至G ,使得DG = AC.•四边形ADGC 是平行四边形. • CG // AB.•••/ CGF =Z FDB ,/ GCF = Z FBD .△ CFG BFD. GF = CG FD = DB . CG = AD , AD v DB.即 計• GF + FD v 2F D. • DG > 2.1 FD > 2AC.又••• E 是AC 的中点,24.(本题满分12分)(1 [① 解:由题意得,3=4 + 2( a — 1) X 2 + a — 2a,”1 分 整理得,a 2+ 2a — 3= 0. ”2 分 解得,a 1=— 3, a 2= 1.”4 分9 / 12MN // DF.9分 10分CG DB v 1.• FD > AE.点E 可以移到线段DF 上. 9分 10分②解:y = x — 2.、.22(2)由题意得,x + 2( a — 1) x + a — 2a = 0解得,X 1 = — a , X 2 = — a + 2.解得一-,/3 v a v 2 — /3.3 1• 3 — a >4,解得 a v 4.3 I I1 8• S^- • AB • n , • -x- • n = 4.X 1< 3 v X 2,—a v” :3 v — a + 2.可以解得顶点坐标为(1 — a , — 1).11分10分△ OCP ^A ODP.CP = DP.•/ FA 、PB 是O O 的切线, • FA = PB. .AC = BD.② 证明 1:连结 CD.•/ l = 2AP , PA = PB ,CD = AC + BD.•/ OA = OB ,且/ OAC = Z OBD = 90° .•/ OC 1 = OC , DC 1= DC , OD = OD , ••• △ OCDOCD.10 / 1225. 12分(本题满分12分)(2)① 证明:•••/ COP =Z DOP ,/ CPO = Z DPO , PO = PO ,(1).将厶OAC 绕点O 逆时针旋转,使点 A 与B 重合. 记点C 的对称点为 C 1,. AC = BC 1,OC = OC 1.vZ OAC =Z OBD = 90°,•••点 C 1在PB 的延长线上.过O 作OE 丄CD , E 是垂足.即0E 是点0到直线CD 的距离, 112 X CD® 2 X CD &0B = OE.直线CD 与O O 相切.证明 2:过 O 作 OE 丄CD.设 OE = d , CE = x, DE = y.2 A —2 , A —22_122 , . -.22d = AC + AO — x , d = BD + AO — y ,••• AC 1 4— BD 2+ y 2— x 2= 0”8 分••• ( AC + x)( AC — x) = (BD + y)( BD — y)l = 2AP , FA = PB , • x + y = AC + BD.”9 分AC — x = y — BD.• ( AC + x)( y — BD) = (BD + y)( BD — y). (y — BD) (AC + x + BD + y )= 0.• ( AC + x + BD + y )M 0, - -y — BD = 0.BD = y.• d = AO. •直线CD 与O O 相切.26.(本题满分12分)32 9 23 (1)解:• b = -,• S = x + x-23 4 3 2=5 =2.” 2 2 2 (2)解:• S = 4,• 4 = 3b + 3b.• b 2 + b — 6 = 0. 解得 b =— 3 (舍去),b = 2.• AB 的长度为3.4 1 1 ,2 3n = 3.2 2 1⑶解:• S = 3b 2 + 3b , S = 2 •丨 AB| • n ,11分 12分10分11分 12分1分2分 3分4分5分 6分31 42 2 2 2 • §b • n = 3b + 3b. ■/ b z 0,n = b + 1. /• m + b = b + 1./• m = 1.P (1, b +1)过P 作PD 垂直x 轴于点D ,则点D (1 , 0). 4 1PD — AB = b + 1 — 3b = 1 — 3b. ” 8 分 1■/ 0 v b v 3,二 1 — §b > 0.”9 分••• PD > AB. •/ PA > PD , PD >AB ,「. PA > PD > AB ,即 PA >AB. •••PA 工 AB.同理 PB z AB”10 分2 2••• △ PAB 是等腰三角形,• PA = PB. • A (1— 3b , 0), B (1+ -b , 0)方法 1:v CA // PB ,••• / OAC =Z DPB ,• Rt △ AOC s Rt △ BDP.23• 4b — b — 3 = 0. •- b = 1 或 b = — 4 (不合题意,舍去)b = 1.方法2:延长PA 交y 轴于点C 1,v PA = PB ,/ CAO = Z PBA =Z PAB =Z OAC 1• OC 1= OC ,• C 1 (0, — b ).设直线 PA 的解析式为:y = kx +1. "k + t = b + 1, "k = 2b + 1, 则有* 解得,’L. t =— b. L_t =— b.•直线PA 的解析式为:y = (2 b + 1)x — b.” 11分/ 2 2--0 = (2 b +1) (1 — 3b )— b.•- 4 b — b — 3 = 0.3CO = OA PD = DB1 — 3b11分3b12分Rt △ AOC 也 Rt △ AOC .•- b= 1或b=—4 (不合题意,舍去).•b= 1. ”12分。
数学考前猜想卷02(参考答案及评分标准)
2025年1月“八省联考”考前猜想卷02数学·参考答案与评分标准一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
12345678CBAAADBA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ABDACABD三、填空题:本题共3小题,每小题5分,共15分。
12.240或384013.214.(20,e ⎤⎦四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步棸。
15.(13分)【详解】(1)学生甲恰好答对3道题有以下两种情况:第一种情况是学生甲答对A 组的2道题和B 组的1道题,其概率21122112C 13229P ⎛⎫⎛⎫=⨯⨯⨯-= ⎪ ⎪⎝⎭⎝⎭;...........................................................................(2分)第二种情况是学生甲答对A 组的l 道题和B 组的2道题,其概率21222211C 13329P ⎛⎫⎛⎫=⨯⨯-⨯= ⎪ ⎝⎭⎝⎭.故学生甲恰好答对3道题的概率12211993P P P =+=+=..............................................(5分)(2)由题意可知X 的所有可能取值为0,1,2,3,4.22211(0)113236P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,2211222212111(1)C 111C 13323226P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯-+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,222211222121221113(2)11C 1C 132********P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-+-⨯+⨯⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,22211(4)329P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,...........................................................................................(9分)由(1)可知1(3)3P X ==,则X 的分布列为X01234P1361613361319故1113117()0123436636393E X =⨯+⨯+⨯+⨯+⨯=.............................................................(13分)16.(15分)【详解】(1)证明:由三棱柱的性质可知11//CC AA .因为1AA ⊥平面ABC ,所以1CC ⊥平面ABC .因为AB ⊂平面ABC ,所以1CC AB ⊥.........................................................................(2分)因为D 为AB 的中点,且ABC V 是等边三角形,所以CD AB ⊥.因为1,CD CC ⊂平面1CC D ,且1= CC CD C ,所以AB ⊥平面1CC D ......................................................................................................(6分)(2)取11A B 的中点1D ,连接1DD .由题意可得1,,DB DC DD 两两垂直,故以D 为坐标原点,1,DB DC DD,的方向分别为,,x y z 轴的正方向,建立如图所示的空间直角坐标系.设2AB =,则()()()()()()111,0,0,1,0,0,0,3,0,0,0,0,1,0,3,0,3,3A B C D A C --,故()()()()112,0,0,1,3,3,1,0,3,0,3,0AB AC DA DC ===-=....................................(8分)设平面1ACD 的法向量为()111,,n x y z =,则111130,30,n DA x z n DC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ 令13x =,得()3,0,1n = .设平面1ABC 的法向量为()222,,m x y z =,则2122220,330,m AB x m AC x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ 令23y ()3,1m =- .设平面1ACD 与平面1ABC 所成的锐二面角为θ,则10cos 20102n m n m θ⋅=⨯即平面1ACD 与平面1ABC 1020............................................(15分)17.(15分)【详解】(1)()ln f x x a x =-,()11f =,()1af x x'=-,()11f a '=-,所以在点1,1处的切线方程为1(1)(1)y a x -=--,整理得:()10a x y a --+=;..........................................................................................(4分)(2)函数()ln f x x a x =-定义域为0,+∞,()1a x a f x x x'-=-=..........................(6分)当0a ≤时,'≥0,此时()f x 在0,+∞上单调递增;当0a >时,令()0f x '=,得x a =,此时在(0,)a 上'<0,()f x 在(0,)a 单调递减,在(,)a +∞上'>0,()f x 在(,)a +∞单调递增,综上:0a ≤时,()f x 的递增区间为0,+∞,无递减区间;0a >时,()f x 的递减区间为(0,)a ,递增区间为(,)a +∞;..........................................(9分)(3)由(2)可知,当0a >时,()ln 0f x x a x =-=才有两个不相等的实根,且00x >,则要证0(1)a x a ->,即证011a a x ->,即证0111a x ->,而00ln 0x a x -=,则000(1ln xa x x =≠,否则方程不成立),所以即证000ln 11x x x ->,化简得00ln 10x x -->,................................................................(11分)令000()ln 1g x x x =--,则000011()1x g x x x -'=-=,当001x <<时,00()g x '<,所以0()g x 在0,1单调递减,当01x >时,0()0g x '>,所以0()g x 在1,+∞单调递增,...........................................(13分)所以()()010g x g ≥=,而01x ≠,所以0()0g x >,所以0(1)a x a ->,得证....................................................................................................(15分)18.(17分)【详解】(1)设动圆的半径为r,圆222:(16F x y -+=的圆心2F ,半径4R =,显然点1(F 在圆2F 内,则214MF R r MF =-=-,于是12124MF MF F F +=>,因此动点M 的轨迹C 是以1F ,2F 为焦点,长轴长为4的椭圆,.................................(2分)长半轴长2a =,半焦距c =,则短半轴长1b ==,所以轨迹C 的方程为2214x y +=.........................................................................................(4分)(2)(i )设11(,)P x y ,22(,)Q x y ,(4,)T m ,由(1)知(2,0)A -,(2,0)B ,显然112AP k y x +=,()0426AQ AT m m k k -===--,而1122BP BTy m k k x ===-,则1122y m x =-.(7分)21111211112623(2)3(4)AP AQy y y y m k k x x x x ⋅=⋅=⋅=++--,又221114x y +=,即2211)1(44y x =-,所以21211(4)143(4)12APAQx kk x -⋅==--,为定值............................................................................(11分)(ii )由2244x ty nx y =+⎧⎨+=⎩消去x 得222(4)240t y tny n +++-=,22222244(4)(4)16(4)0t n t n t n ∆=-+-=+->,由(i )得122122224,44y y y y tn n t t -+=-=++,又112AP AQ k k ⋅=-,......................................(14分)则()()()()()1212122212121212222222y y y y y y x x ty n ty n t y y t n y y n ⋅==+++++++++++()()222222222244142241616124244n n t t n n n n n t n t t --+===-+++-⋅-++++,解得1n =,满足0∆>,因此直线PQ 的方程为1x ty =+,所以直线PQ 过定点(1,0).................................................................................................(17分)19.(17分)【详解】(1)由11a =,且{}n a 为“2数列”,得12+-=n n a T ,即12+=+n n a T ,...........(2分)则211223=+=+=a T a ,3212222135=+=+=+⨯=a T a a ,4312322213517=+=+=+⨯⨯=a T a a a ,54123422213517257=+=+=+⨯⨯⨯=a T a a a a ..............................................................(5分)(2)设数列的公比为()0q q >,由2-=n n G Tn b ,得2log =+n n n G T b ,....................................................................................(6分)即212123log ni n i n n G a a a a a b ====+∑LL ,则1211231211log ++++===⋅⋅⋅⋅⋅+∑n n i n n n i G a a a a a a b .两式相减得()2112312121log log n n n n n a a a a a a b b +++=⋅⋅⋅⋅⋅-+-,即()21123121log n n n a a a a a a q ++=⋅⋅⋅⋅⋅-+.因为{}n a 是首项为2的“k 数列”,所以1+-=n n a T k ,....................................................(8分)即1231+⋅⋅⋅⋅⋅=-n n a a a a a k ,所以()()211121log n n n a a k a q +++=--+,即()121log n k a k q ++=+对任意的*n ∈N 恒成立.因为2112=+=+=+a T k a k k ,()32122234a T k a a k k k k =+=+=++=+,则()()22321log 1log k a k q k a k q ⎧+-=⎪⎨+-=⎪⎩,即()()()()2212log 134log k k k q k k k q ⎧++-=⎪⎨++-=⎪⎩,解得1k =-,2q =..........................................................................................................(11分)又由21121log =+a a b ,即2142log =+b ,得14b =,所以12n n b +=.检验可知1k =-符合要求,故数列的通项公式为12n n b +=...................................(12分)(3)因为{}n a 为“k 数列”,所以1+-=n n a T k ,即1123+=⋅⋅⋅⋅⋅+n n a a a a a k 对任意的*n ∈N 恒成立,因为11a >,0k >,所以211=+>a a k .再结合11a >,0k >,21a >,反复利用1123+=⋅⋅⋅⋅⋅+n n a a a a a k ,可得对任意的*n ∈N ,1n a >.设函数()ln 1f x x x =-+,则()11f x x'=-......................................................................(15分)由()0f x '=,得1x =.当1x >时,'<0,所以()f x 在1,+∞上单调递减.所以当1x >时,()()ln 110f x x x f =-+<=,即()ln 11x x x <->.又1n a >,所以ln 1n n a a <-.可得11ln 1<-a a ,22ln 1<-a a ,⋅⋅⋅,ln 1n n a a <-,累加可得1212ln ln ln ++⋅⋅⋅+<++⋅⋅⋅+-n n a a a a a a n ,即()12ln n n a a a S n ⋅⋅⋅⋅⋅<-,即ln <-n n T S n ,所以ln >+n n S T n ..............................................................................................................(17分)。
2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
2024北京东城区高三(上)期末数学试卷及答案
东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。
2023年全国高中数学联合竞赛(A)卷参考答案及评分标准
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图, 是以AB 为直径的固定的半圆弧, 是经过点A 及 上另一个定点T 的定圆,且 的圆心位于ABT 内.设P 是 的弧 TB(不含端点)上的动点,,C D 是 上的两个动点,满足:C 在线段AP 上,,C D 位于直线AB 的异侧,且CD AB .记CDP 的外心为K .证明:(1) 点K 在TDP 的外接圆上;(2) K 为定点. ΩωPD ABT C证明:(1) 易知PCD 为钝角,由K 为CDP 的外心知2(180)2PKD PCD ACD .由于90APB ,CD AB ,故PBA ACD ATD .……………10分 所以2180PTD PKD PTA ATD ACD PTA PBA . 又,K T 位于PD 异侧,因此点K 在TDP 的外接圆上. ……………20分(2) 取 的圆心O ,过点O 作AB 的平行线l ,则l 为CD 的中垂线,点K 在直线l 上. ……………30分由,,,T D P K 共圆及KD KP ,可知K 在DTP 的平分线上,而9090DTB ATD PBA PAB PTB ,故TB 为DTP 的平分线.所以点K 在直线TB 上.显然l 与TB 相交,且l 与TB 均为定直线,故K 为定点. ……………40分 ωΩl D P OK B ATC二.(本题满分40分)正整数n 称为“好数”,如果对任意不同于n 的正整数m ,均有2222n m n m ⎧⎫⎧⎫⎪⎪⎪⎪≠⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,这里,{}x 表示实数x 的小数部分. 证明:存在无穷多个两两互素的合数均为好数.证明:引理:设n 是正奇数,且2模n 的阶为偶数,则n 是好数.引理的证明:反证法.假设n 不是好数,则存在异于n 的正整数m ,使得2222n m n m .因此22n n 与22m m 写成既约分数后的分母相同.由n 为奇数知22n n 是既约分数,故2m 的最大奇因子为2n ,从而m 的最大奇因子为n .设2t m n ,其中t 为正整数(从而m 是偶数).于是22222m m t m n. 由22222m t n n n可得2222(mod )m t n n ,故 222(mod )m t n n . (*)设2模n 的阶为偶数d .由(*)及阶的基本性质得2(mod )m t n d ,故2m t n 是偶数.但2m t 是偶数,n 是奇数,矛盾.引理得证.……………20分回到原问题.设221(1,2,)k k F k .由于1221k k F ,而k F 221k,因此2模k F 的阶为12k ,是一个偶数.对正整数l ,由221(mod )l k F 可知21(mod )l k F ,故由阶的性质推出,2模2k F 的阶被2模k F 的阶整除,从而也是偶数.因2k F 是奇数,由引理知2k F 是好数.……………30分对任意正整数,()i j i j ,211(,)(,(21)2)(,2)1i i j i i i j i F F F F F F F ,故123,,,F F F 两两互素.所以222123,,,F F F 是两两互素的合数,且均为好数. ……………40分三.(本题满分50分) 求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在9个互不相同的红色的数129,,,x x x 满足1289x x x x +++< ,或者存在10个互不相同的蓝色的数1210,,,y y y 满足12910y y y y +++< .解:所求的最小正整数为408.一方面,若407k =时,将1,55,56,,407 染为红色,2,3,,54 染为蓝色,此时最小的8个红数之和为1555661407++++= ,最小的9个蓝数之和为231054+++= ,故不存在满足要求的9个红数或者10个蓝数.对407k <,可在上述例子中删去大于k 的数,则得到不符合要求的例子. 因此407k ≤不满足要求. ……………10分 另一方面,我们证明408k =具有题述性质.反证法.假设存在一种1,2,,408 的染色方法不满足要求,设R 是所有红数的集合,B 是所有蓝数的集合.将R 中的元素从小到大依次记为12,,,m r r r ,B 中的元素从小到大依次记为12,,,n b b b ,408m n +=.对于R ,或者8R ≤,或者128m r r r r +++≥ ;对于B ,或者9B ≤,或者129n b b b b +++≥ .在1,2,,16 中至少有9个蓝色的数或至少有8个红色的数.情形1:1,2,,16 中至少有9个蓝色的数.此时916b ≤.设区间9[1,]b 中共有t 个R 中的元素12,,,(08)t r r r t ≤< .记12t x r r r =+++ ,则112(1)2x t t t ≥+++=+ . 因为12912,,,,,,,t b b b r r r 是9[1,]b 中的所有正整数,故{}{}12912,,,,,,,1,2,,9t b b b r r r t =+ .于是 12912(9)n b b b b t x ≤+++=++++- 1(9)(10)2t t x =++-. (*) ……………20分 特别地,116171362n b ≤⨯⨯=.从而9R ≥. 对任意(1)i i m t ≤≤-,由(*)知1(9)(10)2t i n r b i t t x i +≤+≤++-+.从而 811811(9)(10)2t m t t i r r r r r x t t x i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(10)(8)(8)(9)(7)22t t t t t t x =++-+---- 111(9)(10)(8)(8)(9)(7)(1)222t t t t t t t t ≤++-+----⋅+ 2819396407t t =-++≤(考虑二次函数对称轴,即知1t =时取得最大). 又136n b ≤,这与,n m b r 中有一个为408矛盾. ……………40分情形2:1,2,,16 中至少有8个红色的数.论证类似于情形1.此时816r ≤.设区间8[1,]r 中共有s 个B 中的元素12,,,(09)s b b b s ≤< .记1s y b b =++ ,则1(1)2y s s ≥+. 因为12128,,,,,,,s b b b r r r 是8[1,]r 中的所有正整数,故 {}{}12128,,,,,,,1,2,,8s b b b r r r s =+ . 于是1(8)(9)2m r s s y ≤++-. 特别地,116171362m r ≤⨯⨯=.从而10B ≥. 对任意(1)i i n s ≤≤-,有1(8)(9)2s i m b r i s s y i +≤+≤++-+.从而 911911(8)(9)2s n s s i b b b b b y s s y i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(8)(9)(8)(9)(10)22s s s s y s s =-++--+--111(9)(8)(9)(8)(1)(9)(10)222s s s s s s s s ≤-++--⋅++-- 2727369395s s =-++≤(在2s =时取得最大), 又136m r ≤,这与,n m b r 中有一个为408矛盾.由情形1、2知408k =具有题述性质.综上,所求最小正整数k 为408. ……………50分四.(本题满分50分)设4110a -=+.在20232023⨯的方格表的每个小方格中填入区间[1,]a 中的一个实数.设第i 行的总和为i x ,第i 列的总和为i y ,12023i ≤≤.求122023122023y y y x x x 的最大值(答案用含a 的式子表示). 解:记2023n =,设方格表为(),1,ij a i j n ≤≤,122023122023y y y x x x λ= . 第一步:改变某个ij a 的值仅改变i x 和j y ,设第i 行中除ij a 外其余1n -个数的和为A ,第j 列中除ij a 外其余1n -个数的和为B ,则jij i ij y B a x A a +=+.当A B ≥时,关于ij a 递增,此时可将ij a 调整到,a λ值不减.当A B ≤时,关于ij a 递减,此时可将ij a 调整到1,λ值不减.因此,为求λ的最大值,只需考虑每个小方格中的数均为1或a 的情况. ……………10分第二步:设{}1,,1,ij a a i j n ∈≤≤,只有有限多种可能,我们选取一组ij a 使得λ达到最大值,并且11n nij i j a ==∑∑最小.此时我们有,,1,.i j ij i j a x y a x y ⎧>⎪=⎨≤⎪⎩(*) 事实上,若i j x y >,而1ij a =,则将ij a 改为a 后,行和及列和变为,i j x y '',则11j j j i i iy y a y x x a x '+-=>'+-, 与λ达到最大矛盾,故ij a a =.若i j x y ≤,而ij a a =,则将ij a 改为1后,λ不减,且11n nij i j a ==∑∑变小,与ij a 的选取矛盾.从而(*)成立.通过交换列,可不妨设12n y y y ≤≤≤ ,这样由(∗)可知每一行中a 排在1的左边,每一行中的数从左至右单调不增.由此可知12n y y y ≥≥≥ .因而只能12n y y y === ,故每一行中的数全都相等(全为1或全为a ).……………20分 第三步:由第二步可知求λ的最大值,可以假定每一行中的数全相等.设有k 行全为a ,有n k -行全为1,0k n ≤≤.此时()()()n nk k n k n k ka n k ka n k na nn a λ-+-+-==. 我们只需求01,,,n λλλ 中的最大值. ()11(1)1111()(1)nn n k k n k n kk a n k a n a ka n k a k a n n a λλ++++--⎛⎫- ⎪==+ ⎪+--+⎝⎭. 因此1111(1)n k k a a k a n λλ+⎛⎫- ⎪≥⇔+≥ ⎪-+⎝⎭ 11(1)n n x x k x n-⇔+≥-+(记n x a =) 2111(1)n n x x x k x n-++++⇔≥-+ 2111n n x x x n k x -++++-⇔≤- 211(1)(1)1n n x x x x x--+++++++=+++ . 记上式右边为y ,则211(2)1n n n n x x y x x ---+-++=+++ . 下面证明(1010,1011)y ∈. ……………30分 首先证明1011y <.1011y < 2021202220222021101110111011x x x x ⇔+++<+++1010101210132021202210111010210101011x x x x x x ⇔+++<++++ .由于220221x x x <<<< ,故101010101012011(1011)101110121011101222k k k x x x =-<⋅⋅<⋅⋅∑101110110k k kx +=<∑. ……………40分 再证明1010y >,等价于证明2021202200(2022)1010kk k k k x x ==->∑∑. 由于2021202100(2022)(2022)10112023k k k k x k ==->-=⨯∑∑, 20222022010101010202310102023k k x x a =<⨯<⨯∑,只需证明1011202310102023a ⨯>⨯,而410111101010a -=+<,故结论成立. 由上面的推导可知1k k λλ+≥当且仅当1010k ≤时成立,从而1011λ最大.故 2023max 101120231011(10111012)2023a aλλ+==. ……………50分。
2024年全国中学生数学奥林匹克竞赛(预赛)一试参考答案与评分标准(A卷)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r . 根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x ≤−,则2()24f x x x =−,在这一区间上的最小值为(116f −=+;2.若(13x ∈−−,则()88f x x =−+,在这一区间上的最小值为(316f =−+…………15分3.若31x ∈− ,则2()24f x x x =−+,在这一区间上的最小值为((3116f f =−+=−+;4.若13x ∈− ,则()88f x x =−,在这一区间上的最小值为(116f −+=−+;5.若3x ≥+,则2()24f x x x =−,在这一区间上的最小值为(316f =+.综上所述,所求最小值为((3116f f =−+=−.…………20分。
高考数学试题2024新高考新题型考前必刷卷01(参考答案)
2024年高考考前信息必刷卷(新题型地区专用)01数学·答案及评分标准(考试时间:120分钟试卷满分:150分)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
12345678DDBDADAA二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
91011ADABCAC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
12.513.①④14.①③四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
15.(13分)【解析】(1)当1a =时,函数31()ln 222f x x x x x =--+的定义域为(0,)+∞,求导得21()ln 212f x x x '=+-,(2分)令21()ln ,0212g x x x x =+->,求导得233111()x g x x x x-'=-=,(4分)当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在(0,1)上递减,在(1,)+∞上递增,()(1)0g x g ≥=,即(0,)∀∈+∞x ,()0f x '≥,当且仅当1x =时取等号,所以函数()f x 在(0,)+∞上单调递增,即函数()f x 的递增区间为(0,)+∞.(6分)(2)依题意,5(2)2ln 204f a =->,则0a >,(7分)由(1)知,当1x ≥时,31ln 2022x x x x--+≥恒成立,当1a ≥时,[1,)x ∀∈+∞,ln 0x x ≥,则3131()ln 2ln 202222f x ax x x x x x x x=--+≥--+≥,因此1a ≥;(9分)当01a <<时,求导得231()(1ln )22f x a x x '=+-+,令231()(1ln )22h x a x x =+-+,(11分)求导得()23311a ax h x x x x -=-=',当1x <<时,()0h x '<,则函数()h x ,即()f x '在上单调递减,当x ∈时,()(1)10f x f a ''<=-<,因此函数()f x 在上单调递减,当x ∈时,()(1)0f x f <=,不符合题意,所以a 的取值范围是[1,)+∞.(13分)16.(15分)【解析】(1)由题意得584018x =-=,422220y =-=;(4分)(2)由22()()()()()n ad bc a b c d a c b d χ-=++++,得22100(40221820) 4.625 3.84158426040χ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%以上的把握认为“生育意愿与城市级别有关”.(8分)(3)抽取6名育龄妇女,来自一线城市的人数为20624020⨯=+,记为1,2,来自非一线城市的人数为40644020⨯=+,(10分)记为a ,b ,c ,d ,选设事件A 为“取两名参加育儿知识讲座,求至少有一名来自一线城市”,基本事件为:(1,2),(1,),(1,),(1,),(1,),(2,),(2,),(2,),(2,),(,),(,)a b c d a b c d a b a c ,(,),(,),(,),(,)a d b c b d c d ,事件(1,2),(1,),(1,),(1,),(1,),(2,),(2,)(2,),(2,)A a b c d a b c d 共有9个,(13分)93()155P A ==或63()1155P A ⎛⎫=-= ⎪⎝⎭(15分)17.(15分)【解析】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,(2分)又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,(4分)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;(6分)(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,(7分)如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,(9分)所以()0,2,0CD =- ,()1,0,1AD =--.设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =-,(11分)假设存在点N ,使得AN 与平面ACD 所成角为60 ,(12分)设BN BC λ=uuu r uu u r,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 60n ANn AN⋅︒==(13分)整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN与平面ACD 所成角为60︒,此时14=BN BC .(15分)18.(17分)【解析】(1)由已知得()11,0F -,22220000313434x y x y +=⇒=-(2分)则10122PF x ==+.所以当012x =时,194PF =;(5分)(2)设(),0M m ,在12F PF △中,PM 是12F PF ∠的角平分线,所以1122PF MF PF MF =,(6分)由(1)知10122PF x =+,同理20122PF x =-,(8分)即0012121122x m m x ++=--,解得014m x =,所以01,04M x ⎛⎫ ⎪⎝⎭,过P 作PH x ⊥轴于H .所以34PM MH PNOH ==.(10分)(3)记1F N P 面积的面积为S ,由(1)可得,(100001114423612S F M y y x x =⋅+=+=+()()02,00,2x ∈-⋃,则)20022S xx =+'-,(12分)当()()02,00,1x ∈-⋃时,0,S S '>单调递增;当)01,2x ∈时,0,S S '<单调递减.(16分)所以当01x =-时,S 最大.(17分)19.(17分)【解析】(1)由题意得124n a a a +++= ,则1124++=或134+=,故所有4的1减数列有数列1,2,1和数列3,1.(4分)(2)因为对于1i j n ≤<≤,使得i j a a >的正整数对(),i j 有k 个,且存在m 的6减数列,所以2C 6n ≥,得4n ≥.(6分)①当4n =时,因为存在m 的6减数列,所以数列中各项均不相同,所以1234106m ≥+++=>.(7分)②当5n =时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m ≥.(8分)若6m =,满足要求的数列中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.(9分)③当6n ≥时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m >.综上所述,若存在m 的6减数列,则6m >.(10分)(3)若数列中的每一项都相等,则0k =,若0k ≠,所以数列A 存在大于1的项,若末项1n a ≠,将n a 拆分成n a 个1后k 变大,所以此时k 不是最大值,所以1n a =.(12分)当1,2,,1i n =- 时,若1i i a a +<,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≥.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将i a 改为1i a -,并在数列末尾添加一项1,所以k 变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.(14分)若数列A 中存在相邻的两项13,2i i a a +≥=,设此时A 中有x 项为2,将i a 改为2,并在数列末尾添加2i a -项1后,k 的值至少变为11k x x k ++-=+,所以此时k 不是最大值,所以数列A 的各项只能为2或1,所以数列A 为2,2,,2,1,1,,1 的形式.设其中有x 项为2,有y 项为1,因为存在2024的k 减数列,所以22024x y +=,所以()2220242220242(506)512072k xy x x x x x ==-=-+=--+,(16分)所以,当且仅当506,1012x y ==时,k 取最大值为512072.所以,若存在2024的k 减数列,k 的最大值为512072.(17分)。
2024北京大兴区初三一模数学试卷及答案
大兴区2023~2024学年度第二学期初三期中检测数学参考答案及评分标准一、选择题(共16分,每题2分) 题号1 2 3 4 5 6 7 8 答案D B C B C D A D二、填空题(共16分,每题2分) 题号910 11 12 13 14 15 16 答案3x ≥ ()()22a x x +− 1x = -5 45 1 240 60,30三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27,28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式=2312222++−⨯························································· 4分 =42+. ··········································································· 5分18. 解:4125213x x x x ⎧⎪⎨⎪⎩-≥+,①-<.②解不等式①,得x ≥3. ································································· 2分解不等式②,得x >-1. ······························································· 4分所以不等式组的解集为x ≥3. ························································ 5分19.解:··························································· 2分. ·········································································· 3分∵,∴. ············································································· 4分∴.∴原式=2-1=1. ················································································ 5分2(1)(4)2a a a +++−222142a a a a =++++−2261a a =+−2310a a +−=231a a +=2262a a +=2261a a =+−原式20.解:设每本A 书籍厚度为x cm ,桌子高度为y cm. ····································· 1分由题意可得37965825,.x y x y ⎧+=⎪⎨⨯+=⎪⎩····································································· 3分 解得176x y ⎧=⎨=⎩,.············································································· 4分 答:每本A 书籍厚度为1cm. ···································································· 5分21. (1)证明:∵四边形ABCD 是正方形,∴AD ∥BC ,AD =BC . …………………………1分∵BE =FD ,∴AD -FD =BC -BE.即AF =CE . …………………………2分又∵AF ∥CE ,∴ 四边形AECF 是平行四边形. ……………………………………3分(2)解:∵四边形ABCD 是正方形,∴AB ∥CD ,∠BCD=∠D =90°,AD =CD. ……………………………4分∴∠BAE=∠G ,∠ECG =90°,∴tan ∠BAE = tan G =. 在Rt △ADG 中,∵ tan G =AD DG =,DG =9, ∴ AD =6.∴ CD =6.…………………………………………………………5分∴ CG =3.在Rt △ECG 中,∵ tan G = =CE CG , ∴ CE=2 . ··········································································· 6分22.解:(1)4; …………………………………………………………………………1分(2)7.55; ……………………………………………………………………………2分(3)①;………………………………………………………………………………4分(4)乙. ………………………………………………………………………………5分23232323. 解:(1)将A (1,3),B (-1,-1)代入0()y kx b k =+≠中,得3 1.,k b k b +=⎧⎨−+=−⎩ ············································································· 1分 解得21.,k b =⎧⎨=⎩∴函数的表达式为21=+y x . ························································ 2分 ∵过点(-2,0)且平行于y 轴的直线交于点C ,∴点C 的横坐标为-2.把x =-2代入,得y =-3.∴点C 的坐标为(-2,-3). ····························································· 3分 (2) 312≤≤n .··············································································· 5分24. (1) ②,①; ···················································································· 2分(2)①不能. ························································································ 3分 理由如下:由题意可得OE =2.6+3=5.6.把x =5.6代入上边缘抛物线表达式,得2156220388()==−−+y ..<0.5 所以绿化带不全在喷头口的喷水区域内.所以洒水车不能浇灌到整个绿化带. ················································· 4分 ②2≤OD ≤231−. ······································································ 6分25. (1)证明:∵AB 为⊙O 的切线,∴∠OBA =90°.∴∠A +∠AEB =90°.∵BC 为⊙O 的直径,∴∠CDB =90°.∴∠CDE +∠BDE =90°.∵BD =BA ,∴∠BDA =∠A .∴∠CDE =∠AEB. ···················································································· 1分又∵∠CDE=∠CBF,∴∠AEB=∠CBF.∴EF=BF. ···························································································2分(2) 解:连接CF.∵AB为⊙O的切线,∴∠OBA=90°.∴∠AEB+∠A=90°,∠EBF+∠FBA=90°.∵∠AEB=∠CBF,∴∠FBA=∠A.∴AF=BF.∴AF=BF=EF. ························································································3分设BF =EF=AF=x,则AE=2x.在Rt△ABE中,∵sin A=13,AE=2x,∴BE=23x. ·····························································································4分∵BC为直径,∴∠CFB=90°.∵∠BCF=∠BDA,∠BDA=∠A,∴∠BCF=∠A. ························································································5分∴sin A=sin∠BCF=1 3 .在Rt△BFC中,∵BF=x,∴BC=3x.∵BC=2OB=2(OE+BE),∴3x=2(52+23x).解得x=3.∴OB=9 2 .∴⊙O半径的长为92. ················································································6分26.解:(1)∵x 2=2,y 2=c ,∴4a +2b +c =c. ………………………………………………………………………………1分 ∴b =-2a .∴12b t .a=−= ························································································ 2分 (2) ∵ 2(0)y ax bx c a =++<,∴抛物线开口向下.∵ 抛物线的对称轴为x =t ,t +1<x 1<t +2,∴点M 在对称轴的右侧. …………………………………………………………………3分 ①当点N 在对称轴上或对称轴右侧时,∵抛物线开口向下,∴在对称轴右侧,y 随x 的增大而减小.由y 1>y 2,∴x 1<x 2.∴424≤≤t ,t .⎧⎨+⎩解得42≤≤t ,t .⎧⎨⎩∴2≤t . ……………………………………………………………………………4分 ②当点N 在对称轴上或对称轴左侧时,设抛物线上的点N (x 2, y 2)关于x =t 的对称点为()2N d ,y ',∴ t - x 2=d -t ,解得d =2t - x 2,∴()222N t x ,y '−.∵4<x 2<5∴2t -5<2t -x 2<2t -4.在对称轴右侧,y 随x 的增大而减小.由y 1>y 2,∴x 1<2t -x 2.∴5225≥≤t,t t .⎧⎨+−⎩解得57≥≥t ,t .⎧⎨⎩∴7≥t .综上所述,t 的取值范围是27≤或≥t t .…………………………………………………6分27. (1)补全图形如下:…………………………………………….1分(2) 解:∵AC= BC ,∠ACB =90°,∴∠A =∠ABC =45°.∴∠CDB =∠A +∠ACD =45°+α. ………………………………………………………….2分 ∵∠CDE =90°,∴∠EDB =∠CDE -∠CDB =45°-α.……………………………………………………….3分(3) 用等式表示线段BE ,BC ,AD 之间的数量关系是BC=AD+BE. ………………………4分 证明:过点D 作DM ⊥AB ,交AC 于点F ,交BC 的延长线于点M .∵∠MDB =∠CDE =90°,∴∠CDM =∠EDB .∵∠MBD =45°,∴∠M =∠MBD =45°.∴DM=DB.又∵DC=DE ,∴△DCM ≌△DEB .∴CM=BE .···························································································· 5分 ∵∠M =45°,∠ACB =90°,∴∠CFM =∠M =45°.∴CF=CM .∴CF=BE. ···························································································· 6分 E CA BD2在Rt △F AD 中,∵∠A =45°,∴cos A =. ∴AF=AD .∵AC=AF+FC ,∴AC=AD+FC.∵CF=BE ,BC=AC ,∴BC=AD+BE.············································································ 7分28.解:(1)① …………………………………………………………………….2分 ②如图1: 设射线与⊙T 相切于点,连接. ∴TM ⊥PM .当∠P =45°时,在Rt △PMT 中,.∴当点在⊙T 外且∠P ≥ 45°时,1<PT . ∴点在以T 为圆心,以为半径的圆上或圆内且在以1为半径的圆外. ············ 3分 如图2:直线上有且只有一个⊙T 的“伴随点”, ∴直线与以为圆心,为半径的圆相切. ∴b ≠0.设直线与轴,轴分别交于点,,与以为圆心,为半径的圆相切于点,连接, ∴.令,则;令,则,.,.在Rt △ATB 中,,90° . , 22AD AF =22223P P ,PM M TM 2222112PT MP MT =+=+=P 12∴<PT ≤P 21:2l y x b =+12y x b =+T 212y x b =+x y A B T 2C TC TC AB ⊥0x =y b =0y =2x b =−2,0),(0,)A b B b ∴−(2AT b ∴=−BT b =1tan 122b BT AT b ∠===−1290∠+∠=TC AB ⊥图2图190°... 在Rt △TCB 中, 1322tan =BC BC .CT ∠== . . . . ···························································································· 5分 (2)或. ································································ 7分 2390∴∠+∠=13∴∠=∠1tan 1tan 32∴∠=∠=22BC ∴=2222210(2)()22BT CT BC ∴=+=+=102b ∴=102b ∴=±213312,2222t t −−−<≤≤<213312,2222t t −−−<≤≤<。
2024年崇明区初三数学二模试卷及参考答案评分标准
一、【题型】
1.一元二次方程:
(1)求解一元二次方程ax2+bx+c=0的根;
(2)判断一元二次方程ax2+bx+c=0的根的性质;
2.不等式:
(1)解不等式ax2+bx+c>d,a>0的解集;
(2)解不等式ax2+bx+c<d,a>0的解集;
3.函数:
(1)求解函数f(x)=1-2x-3x2在区间(3,5)上的最大值;
(2)求函数f(x)=1-2x-3x2的单调性;
4.直线:
(1)求直线y=2x+3和y=2x+1的交点;
(2)已知直线y=2x+1与y=-x-1平行,求x的值;
5.平面向量:
(1)求两个平面向量a(2,1)和b(-1,3)的内积;
(2)求两个平面向量a(2,1)和b(-1,3)的外积。
6.三角函数:
(1)已知sinθ=-1/2,求cosθ的值;
(2)已知cosθ=-√3/2,求tanθ的值。
7.统计:
(1)求实验数据的平均数;
(2)求实验数据的方差。
8.几何:
(1)求等腰三角形的外接圆的半径;
(2)求矩形ABCD的周长。
9.概率:
(1)已知抛掷两个骰子,求和大于8的概率;
(2)已知抛掷两个骰子,求和为偶数的概率。
10.数列:
(1)已知数列{an}的通项公式,求第5项;。
2024 年长沙市初中学业水平考试模拟试卷数学参考答案1-5
2024年长沙市初中学业水平考试模拟试卷数学(一)参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案A B D D C C A B AB二、填空题(本大题共6个小题,每小题3分,共18分)11.196≥x 12.2(41)a -13.C 14.15.103π16.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式613=+……………………………………………………………(4分)4=.………………………………………………………………..………………(6分)18.解:原式22221221x x x x x =++-++-4x =.………………………………….……………………………………………(4分)当14x =-时,原式=14(14⨯-=-.……………………..………………………(6分)19.解:(1)如图1,过点A 作AG BC ⊥于点G ,过点D 作DH BC ⊥于点H .在Rt ABG △中,45B EAB ∠=∠=︒,90AGB ∠=︒,∴400tan 45AGBG ==︒(m ).在Rt DHC △中,30C FDC ∠=∠=︒,90DHC ∠=︒,∴tan 30DH HC ===︒(m ).由图易知四边形AGHD 为矩形,∴170GH AD ==(m ),∴4001701250BC BG GH HC =++=++(m ).答:橘子洲大桥主桥BC 的长约为1250m ;……………………………(3分)(2)如图2,过点Q 作QN BC ⊥于点N,交AD 于点M .在Rt QDM △中,30QDM FDC ∠=∠=︒,90QMD ∠=︒,∴111)1)22QM QD ==⨯=(m ),∴1)400459.5QN QM MN =+=+≈(m ).答:该无人机与桥面BC 的距离约为459.5m .……………………………………………………………………………………….(6分)20.解:(1)30;10;20;…………………………………………………………….………(3分)(2)D 组扇形所对的圆心角的度数为103603620304010︒⨯=︒+++;……(5分)(3)画树状图如下:由图可知,一共有12种等可能的结果,丁同学未被抽中的结果一共有6种,∴丁同学未被抽中的概率为61122P ==.…………………………………(8分)21.(1)证明:∵△ACD 是等边三角形,E 是AC 的中点,∴90DEC ∠=︒,AC DC =,AE EC =.∵2AC BC =,∴BC EC =.在Rt △ABC 和Rt △DEC 中,,,BC EC AC DC =⎧⎨=⎩∴△ABC ≌△DEC (HL );………………………………………………(4分)(2)解:如图,连接BD .在Rt ABC △中,1BC =,∴22AC BC ==.由勾股定理,得AB =.∵ADC △是等边三角形,∴2AD AC ==,60DAC ∠=︒.在△ABC 中,90ABC ∠=︒,2AC BC =,∴30BAC ∠=︒,∴90BAD BAC DAC ∠=∠+∠=︒,∴ABD △是直角三角形,∴BD =.………………………....……(8分)22.解:(1)设第一周到第三周“名师云课堂”收看人数的平均增长率为x .则224200(1)29282x +=,解得10.110%x ==,2 2.1x =-(舍).答:第一周到第三周“名师云课堂”收看人数的平均增长率为10%;…………………………………………………………………………………......…(5分)(2)29282(110%)32210⨯+≈(人).答:估计第四周有32210人收看“名师云课堂”.……………..……(9分)23.(1)证明:如图,连接BF 交AD 于点G .∵将□ABCD 沿AD 对折,得到□AFED ,∴BF AD ⊥于点G ,BG FG =,AD BC FE ∥∥,由平行线分线段成比例定理得,1BO BG EO FG==,∴BO EO =;…………………………………………………………………(4分)(2)解:由(1)得,若28BC AB ==,60C ∠=︒,BF ⊥AO ,则4AB AF ==,8FE BC ==,∴60BAO FAO C ∠=∠=∠=︒,90AGB AGF ∠=∠=︒,∴cos602AG AB =︒=g .由(1)得,GO 是BEF △的中位线,∴142GO FE ==,∴246AO AG GO =+=+=.∵sin 60BG AB =︒=g,∴2BF BG ==∴11622AFOB S AO BF ==⨯⨯g 四边形.…………………………(9分)24.(1)证明:在ABC △中,112A ACB ABC ∠∠∠=∶∶∶∶,又∵180A ACB ABC ∠+∠+∠=︒,∴1180454A ACB ∠=∠=︒⨯=︒,2180904ABC ∠=︒⨯=︒,∴AB CB ⊥.∵CB 是O ⊙的直径,∴直线AD 是O ⊙的切线;……………………(3分)(2)解:如图1,连接OG .由(1)得45ACB ∠=︒,∴90BOG ∠=︒,∴45OCG OGC ∠=∠=︒,90GOB CBD ∠=∠=︒,∴OG BD ∥.又∵OHG BHD ∠=∠,∴△OGH ∽△BDH .∵CGH △和CDH △在GH 和DH 上的高相等,∴1212S GH S DH ==,∴12OH GH OG BH DH BD ===.设OH a =,则2BH a =,3OB OG a ==,∴26BD OG a ==,∴DH ==∴sin BH BDH DH ∠==;……………….………………………(6分)(3)解:如图2,连接EF ,BG ,BF .∵BC 是直径,∴90BGC BEC BFC ∠=∠=∠=︒.∵45BCG ∠=︒,∴45CBG BCG ∠=∠=︒,∴GB CG =.由(2)得90CBD ∠=︒,∴90EBD CBE ∠+∠=︒.又∵90ECB CBE ∠+∠=︒,∴EBD ECB BGD ∠=∠=∠.∵EDB BDG ∠=∠,∴DBE DGB △∽△,∴BE DB GB DG=.①∵点C ,F ,E ,G 四点共圆,∴DFE DGC ∠=∠.∵EDF CDG ∠=∠,∴DEF DCG △∽△,∴EF DF CG DG =,②①÷②得,BE DB EF DF =.∵CB m CD n=,∴设CB mk =,CD nk =.(0k >)由勾股定理,得BD =.∵90DFB DBC ∠=∠=︒,BDF CDB ∠=∠,∴DBF DCB △∽△,∴DF DB DB DC=,∴222()DB k n m DF DC n-==,∴BE DB EF DF ==.……………(10分)25.解:(1)当自变量x k =时,2122y kx k k k =+=+,22232y kx k k =-=-.∵当自变量x k =时,函数1y ,2y 的图象上恰好是一对“共赢点”,∴2212220y y k k k +=+-=,解得10k =,22k =.∵0k ≠,∴2k =,∴一次函数1y ,2y 的解析式分别为124y x =+,2212y x =-.……(3分)(2)当x a =(0a ≠)时,1m y a =,2n y a =.情形一,若120y y +=,即0m n a a+=,此时0m n +=,∴当0m n +=时,函数1y ,2y 互为“共赢函数”,它们的图象上有无数对“共赢点”,其坐标可以表示为(a ,m a ),(a ,n a )(0a ≠);情形二,若120y y +≠,即0m n a a+≠,此时0m n +≠,∴当0m n +≠时,函数1y ,2y 不是“共赢函数”,它们的图象上不存在“共赢点”.综上所述,当0m n +=时,函数1y ,2y 互为“共赢函数”,它们图象上有无数对“共赢点”,其坐标可以表示为(a ,m a ),(a ,n a)(0a ≠);当0m n +≠时,函数1y ,2y 不是“共赢函数”,它们的图象上不存在“共赢点”.…………………………………………..……………………………………(6分)(3)如图,作PE DC ⊥于点E ,PF OB ⊥于点F .∵22212()y x mx m x m =-+=-,且0m >,∴A (0,2m ),C (m ,0).∵函数2y 与1y 互为“共赢函数”,且当自变量x 取任意实数时,函数1y ,2y 的图象上都存在“共赢点”,∴22222()y x mx m x m =-+-=--,∴B (0,2m -),∴2OA OB m ==,且DC AB ⊥,∴DC 是经过A ,B ,C 三点的圆的直径,∴90DAC DPC ∠=∠=︒,∴90DAO OAC ∠+∠=︒.又∵AO DC ⊥,∴90DOA AOC ∠=∠=︒,∴90ODA DAO ∠+∠=︒,∴ODA OAC ∠=∠,∴ODA OAC △∽△,∴OD OA OA OC=,∴2OA OD OC =g ,即22()m OD m =g ,∴3OD m =,∴3DC OD OC m m =+=+.∵PF OB ⊥于点F ,∴222PA AF PF =+,222PB BF PF =+,∴222222()()PA PB AF PF BF PF -=+-+22AF BF =-()()AF BF AF BF =+-(2)AB AF BF BF =+-(2)AB AB BF =-(22)AB OB BF =-2()2AB OB BF AB OF =-=g .∵PE DC ⊥于点E ,∴12PCD S PE DC =g △.∵PE DC ⊥于点E ,PF OB ⊥于点F ,EO BO ⊥于点O ,∴四边形PEOF 是矩形,∴PE OF =,∴2223244881△PCD t PA PB AB OF AB m m f s S PE DC DC m m m -======++g g ,去分母得280fm m f -+=.由26440f ∆=-≥得,216f ≤.∵0m >,∴2801m f m =+>,∴04f <≤,∴f 的最大值为4,此时1m =.经检验,符合题意.此时OA OB OC OD ===,AB DC =,且AB CD ⊥,∴四边形ACBD 为正方形.…………………………………………………(10分)数学(二)参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案C C B A D A B A D C二、填空题(本大题共6个小题,每小题3分,共18分)11.12x ≠12.45︒13.215cm π14.415.03x <≤16.7三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式1322=-++-⨯…………………………………………….………………(4分)2=.…………………………………………………………………………………(6分)18.解:原式22(1)(1)1(1)x x x x x -+-=-++2111x x x x--=-++11x =-+.…………………………………………………………………………(4分)当1x -时,原式===.……………………(6分)19.(1)证明:∵AB DE ∥,∴B DEF ∠=∠.∵BE CF =,∴BE EC CF EC +=+,∴BC EF =.在△ABC 和△DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABC ≌△DEF (SAS );………………………………………………(3分)(2)解:∵ABC DEF △△≌,∴60ACB F =∠=∠︒,∴180A B ACB =︒-∠∠-∠1805060=︒-︒-︒70=︒.……………………(6分)20.解:(1)在Rt △ACD 中,45ACD ∠=︒,∴904545CAD ∠=︒-︒=︒,∴ACD CAD ∠=∠,∴8AD CD ==m ,∴AC ==m .答:点C 到旗杆顶端A 的距离AC为m ;……………………………(4分)(2)在Rt △BCD 中,tan BD BCD CD∠=,∴tan 638 1.96315.704BD CD =︒≈⨯= m ,∴815.70423.7AB AD BD =+=+≈m ,答:学校旗杆的高度AB 约为23.7m .……………………………………(8分)21.解:(1)本次调查共抽查的学生人数为:1202060360÷=(人).补全统计图如图所示:……………………….…………………………………(2分)(2)10300050060⨯=(人).答:每周参加劳动的时间在3小时以上的大约有500人;……………(4分)(3)将这四位同学记为男1,男2,女1,女2,画树状图如下:由图可知,一共有12种等可能结果,其中一男一女的结果有8种,∴所选取的这两名学生恰好是一男一女的概率为82123=.……….…(8分)22.解:(1)设甲型路灯的单价为x 元,乙型路灯的单价为y 元.由题意得300400150000400300144000x y x y +=⎧⎨+=⎩,,解得180240x y =⎧⎨=⎩,.答:甲型路灯的单价为180元,乙型路灯的单价为240元;………(4分)(2)设第三批次购进乙型路灯m 盏.由题意得350180240400000150000144000m ⨯+--≤,解得11796m ≤.∵m 为正整数,∴m 最大为179.答:第三批次最多能购进乙型路灯179盏.………………………………(9分)23.(1)证明:∵DE AB ∥,DF AC ∥,∴四边形AEDF 为平行四边形.由作图可得AD 平分CAB ∠,∴CAD BAD ∠=∠.∵DE AB ∥,∴DAF ADE ∠=∠,∴EAD ADE ∠=∠,∴AE DE =,∴四边形AEDF 为菱形;…………………………………(4分)(2)解:设菱形AEDF 的边长为x .在Rt ABC △中,10AB =,6BC =,∴8AC ==.∵DE AB ∥,∴EDC ABC △∽△,∴ED AB AC =,∴8108x x -=,∴解得409x =,∴菱形AEDF 的周长为40160499⨯=.在Rt CDE △中,4032899CE =-=,409ED =,∴83CD =,∴4083209327AEDF S AE CD ==⨯=g 菱形.………………………………………(9分)24.解:(1)∵15x ≤≤,15y x=,26y x =-+,∴115y ≤≤,215y ≤≤,∴2y 是1y 的“包容函数”.……………………………………………………(2分)(2)当15x ≤≤时,22(2)1y x =-+,∴2110y ≤≤.①当0k >时,1y kx =+的函数值y 随x 的增大而增大,当1x =时,min y 1k =+;当5x =时,max y 51k =+,∴115110k k +⎧⎨+⎩≥,≤,解得905k ≤≤,∴905k <≤;②当0k <时,1y kx =+的函数值y 随x 的增大而减小,当1x =时,max y 1k =+;当5x =时,min y 51k =+,∴110511k k +⎧⎨+⎩≤,≥,,解得09k ≤≤(舍去).综上所述,实数k 的取值范围是905k <≤.…………………...…………(6分)(3)∵二次函数22y x mx n =-+与一次函数1y x =+互为“包容函数”,∴二次函数22y x mx n =-+与一次函数1y x =+函数值的取值范围相同.∵15x ≤≤,11y x =+,∴126y ≤≤.∵22222()y x mx n x m m n =-+=--+.当1x =时,221y n m =-+;当5x =时,21025y n m =-+;当x m =时,22y n m =-.①当5m >时,如图1,∴2102521n m y n m -+-+≤≤,∴10252216n m n m -+=⎧⎨-+=⎩,,解得7212m n ⎧=⎪⎨⎪=⎩,.(舍去)②当35m ≤≤时,如图2,∴2221n m y n m --+≤≤,∴22216n m n m ⎧-=⎨-+=⎩,,解得311m n =⎧⎨=⎩,,或13m n =-⎧⎨=⎩,,(舍去)∴311m n =⎧⎨=⎩,.③当13m ≤<时,如图3,∴221025n m y n m --+≤≤,∴2210256n m n m ⎧-=⎨-+=⎩,,解得311m n =⎧⎨=⎩,,或751m n =⎧⎨=⎩,.(均舍去)④当1m <时,如图4,∴2211025n m y n m -+-+≤≤,∴21210256n m n m -+=⎧⎨-+=⎩,,解得526m n ⎧=⎪⎨⎪=⎩,.(舍去)综上所述,当311m n =⎧⎨=⎩,时,二次函数22y x mx n =-+与一次函数1y x =+互为“包容函数”.…………………………............……(10分)25.(1)证明:如图,连接OC ,∴2POC A ∠=∠.∵1452A P ∠=︒-∠,∴290A P ∠+∠=︒,∴90POC P ∠+∠=︒,∴180()90PCO POC P ∠=︒-∠+∠=︒,∴PC OC ⊥.∵OC 是O ⊙的半径,∴PC 是O ⊙的切线.……………………………(3分)在Rt BCE △中,3BC ===.…(6分)(3)解:①∵AB 是O ⊙的直径,∴90ACB ∠=︒.又∵90OCP ∠=︒,∴ACO PCB ∠=∠.∵OA OC =,∴ACO OAC ∠=∠,∴PCB PAC ∠=∠.在PCB △与PAC △中,∵PCB PAC ∠=∠,P P ∠=∠,∴PCB PAC △∽△,∴PC PB CB PA PC AC ==,∴2(PC PB CB PA PC AC = ,∴2(BC PB AC PA =.在Rt ABC △中,tan BC BAC AC ∠=,∴22tan ()10BC PB x y BAC AC PA x =∠===,数学(三)参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案A A D D B D A A B C二、填空题(本大题共6个小题,每小题3分,共18分)11.3(2)x x -12.3π13.2x ≥14.2315.16.6-三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式141214=--⨯+…………………………………………………………………(4分)54=.…………………………………………………………………………………(6分)18.解:1212326x x x x --⎧⎪⎨⎪+-+⎩≤,①<,②解不等式①,得1x -≥,解不等式②,得2x <,∴该不等式组的解集为12x -≤<,………………………………………………(4分)∴该不等式组的正整数解为1x =.…………………….……...……………....…(6分)19.解:(1)角平分线;………………..………………………………………………………(2分)(2)由作图可知,OP 平分AOB ∠,∴AON BON ∠=∠.∵OM MN =,∴AON MNO ∠=∠,∴BON MNO ∠=∠,∴MN OB ∥.…..………………………………..…(6分)20.解:(1)随机抽样调查的样本容量是:10025%400÷=,C 所占的百分比是:140100%35%400⨯=,扇形统计图中“B ”所对应的圆心角的度数为:360(125%10%︒⨯--35%)-108=︒.故答案为:400,108;…..…………………………………………………….(3分)(2)选择D 类的人数有:40010%40⨯=(人),选择B 类的人数有:40010014040120---=(人).补全条形统计图如下:……………..……………………………………………(6分)(3)120800240400⨯=(人).答:估计该校八年级学生选择“厨艺”劳动课的有240人.………(8分)21.(1)证明:∵四边形ABCD 是菱形,∴AC BD ⊥,12AO OC AC ==,∴90DOC ∠=︒,∵DE AC ∥,12DE AC =,∴DE OC =,DE OC ∥,∴四边形OCED 是平行四边形.又∵90DOC ∠=︒,∴四边形OCED 是矩形;………………………(4分)(2)解:由(1)可知,四边形OCED 是矩形,∴90ECA ∠=︒,122EC OD BD===.由勾股定理可得,6AC ==,∴11641222ABCD S AC BD ==⨯⨯=g 菱形.…………………………………..(8分)22.解:(1)设A 型座椅的单价是x 元,B 型座椅的单价是y 元.根据题意得550028500x y x y +=⎧⎨+=⎩,,解得30002500,x y =⎧⎨=⎩.答:A 型座椅的单价是3000元,B 型座椅的单价是2500元;……(4分)(2)∵A 型座椅数量不少于B 型座椅数量的13,∴1(80)3a a -≥,解得20a ≥.根据题意得30002500(80)500200000w a a a =+-=+.∵5000>,∴w 随a 的增大而增大,∴20a =时,w 取得最小值,最小值为50020200000210000⨯+=.答:w 关于a 的函数解析式是500200000w a =+,购买两种座椅的总费用最少需要210000元.…………………………………………………………(9分)23.(1)证明:∵BE AB ⊥,∴90ABE ∠=︒.∵点F 是AE 的中点,∴BF AF EF ==.在ACF △和BCF △中,AC BC AF BF CF CF =⎧⎪=⎨⎪=⎩,,,∴ACF BCF △≌△(SSS );………………………………………………(4分)(2)解:∵ACF BCF △≌△,∴CBF CAF ∠=∠,∴1tan tan 3CAF CBF ∠=∠=,∴在Rt ACD △中,13CD AC =,即13CD BC =,∴12CD BD =.由(1)可知45ACF BCF ∠=∠=︒.∵AC BC =,∴45CBA ∠=︒,∴45CBE ∠=︒,∴BCF CBE ∠=∠.又∵CDF BDE ∠=∠,∴CFD BED △∽△,∴12CD DF BD DE ==.∵2DF =,∴4DE =,∴6EF =,∴6BF =.………………………(9分)24.(1)证明:如图,作OF AC ⊥于F ,作OG BD ⊥于G ,∴2AC AF =,2BD BG =.∵90OGE AEB OFE ∠=∠=∠=︒,∴四边形OGEF 是矩形.∵ABC BAD ∠=∠,∴ADC BCD =,∴AC BD =,∴AF BG =.连接OB ,OA .∴Rt AOF △≌Rt BOG △(HL ),∴OF OG =,∴四边形OGEF 是正方形,∴OE 平分AEB ∠;………………………(3分)(2)解:在Rt AOF △中,222AF OA OF =-.同理可得,222BG OB OG =-,∴222222222(2)(2)4()4(AC BD AF BG OA OF OB OG OA +=+=-+-=+222222)4(2)84OB OE r m r m -=-=-.……………………………………(6分)(3=12S S +=.∵121122S S AE DE BE CE =g g g ,341122S S AE BE DE CE =g g g ,∴1234S S S S =,∴12S S +=,∴120S S -=,∴20-=,∴12S S =,∴1323S S S S +=+,∴ABD ABC S S =△△,∴AB CD ∥,∴180BCD ABC ∠+∠=︒.∵180BCD BAD ∠+∠=︒,∴ABC BAD ∠=∠,∴ ADC BCD =,∴AC BD =.……………..…(10分)25.解:(1)反比例函数6y x =是23→上的“民主函数”.理由如下:∵反比例函数6y x=在第一象限,y 随x 的增大而减小,∴当2x =时,3y =,当3x =时,2y =,即图象过(2,3)和(3,2),满足题意当23x ≤≤时,23y ≤≤,∴反比例函数6y x=是23→上的“民主函数”;…………………………(3分)(2)∵一次函数+y kx b =在m n →上是“民主函数”,由一次函数的图象与性质得,①当0k >时,即图象过点(m ,m )和(n ,n ),∴mk b m nk b n +=⎧⎨+=⎩,,解得10k b =⎧⎨=⎩,,∴y x =;②当0k <时,即图象过点(m ,n )和(n ,m ),∴mk b n nk b m +=⎧⎨+=⎩,,解得1k b m n =-⎧⎨=+⎩,,∴直线解析式为y x m n =-++.综上所述,当0k >时,直线的解析式为y x =,当0k <,直线的解析式为y x m n =-++;…………………………………………………………………(6分)(3)抛物线的顶点式为22()24b b y a x c a a =++-,顶点坐标为(2b a -,24b c a -).∵0a >,+0a b >,∴122b a -<,∴抛物线22()24b b y a x c a a=++-在13x ≤≤上y 随x 的增大而增大,∴当1x =时,y 取最小值,当3x =时,y 取最大值,∴14933a b c a a b c ++==⎧⎨++=⎩,,解得14034a b c ⎧=⎪⎪=⎨⎪⎪=⎩,,,∴抛物线的函数解析式为21344y x =+.∵抛物线与直线3y =相交于A ,B 两点,设A (A x ,3),B (B x ,3).假设A 点在B 点的左侧,即213344x +=,解得13x =-,23x =,∴在ABC △中,A (3-,3),B (3,3),C (0,34),∴6AB =,154AC =,154BC =.∵外心M 在线段AC 的垂直平分线上,设M (0,t ),则MA MC =,318t =,∴M (0,318).在ABC △中,根据内心的性质,设内心G 到各边距离为d ,得1916()242ABC S AB BC CA d =⨯⨯=⨯++⨯△,∴1d =.∵ABC △是等腰三角形,y 轴为ACB ∠的角平分线,∴内心G 在y 轴上,∴G (0,2),∴3115288M G MG y y =-=-=.……………………………………………(10分)数学(四)参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案DC B B CD B AA C 二、填空题(本大题共6个小题,每小题3分,共18分)11.12.(2-,3)-13.1614.48π15.116.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式324=-+…………………………………………..…………………(4分)0=.…………………………………………………………………...……………(6分)18.解:原式221121a a a a a a --=÷+++21(1)1(1)a a a a a -+=+- 1a a +=.……………………………………………………………………………(4分)当23a =时,原式152a a +==.………………………………………………(6分)19.(1)证明:∵BAD CAB ∠=∠,ADB ABC ∠=∠,∴△ABD ∽△ACB ;…………………………………………………………(3分)(2)解:∵△ABD ∽△ACB ,∴AB AC AD AB =,得686AD =,解得92AD =,∴72CD AC AD =-=.…………………………………………..……………(6分)20.解:(1)根据题意得100.250÷=.故答案为:50.…………………………………………………………………(2分)(2)501641020a =---=,16500.32c =÷=.补全频数分布直方图如图所示:……………………………….…………………………(5分)(3)164120048050+⨯=(人).答:估计全校学生成绩为“优”等的学生有480人.…………………(8分)21.解:(1)如图,过点B 作BM DD '⊥.∵50AB =cm ,37D AB '∠=︒,BM DD '⊥,∴sin 50sin 37500.6030BM AB BAM =∠=⨯︒≈⨯= (cm ).答:B 点与支撑柱DD '的距离为30cm ;…………………………...……(4分)(2)∵50=AB cm ,37D AB '∠=︒,BM DD '⊥,∴cos 50cos37500.8040AM AB BAM =∠=⨯︒≈⨯= (cm ).如图,过点B 作BH DE ⊥于点H ,过点A 作AF BH ⊥于点F ,过点C 作CG BH ⊥于点G ,CE DE ⊥于点E .∵BM DD '⊥,BH DE ⊥,D D DE '⊥,∴四边形MDHB 为矩形,∴28040320BH DM AD AM ==+=+=(cm ),∴D D BH '∥,∴37ABH D AB '∠=∠=︒.∵72ABC ∠=︒,∴723735CBH ∠=︒-︒=︒,∴cos 700.8257.4BG BC CBH =∠=⨯= (cm ),∴32057.4262.6CE GH BH BG ==-=-=(cm ).答:路灯C 离地面的距离为262.6cm .……………………………………(8分)22.解:(1)设葡萄种植基地销售的A ,B 两种葡萄每千克的售价分别是x 元、y 元.根据题意,得24344x y x y =-⎧⎨=+⎩,,解得128x y =⎧⎨=⎩,.答:葡萄种植基地销售的A ,B 两种葡萄每千克的售价分别是12元,8元;…………………………………………………………………………………(4分)(2)设包装A 品种葡萄a 包,则包装B 品种葡萄4002a -包,总利润为w 元.根据题意,得80128(400)3600a a a ⎧⎨+-⎩≥,≤,解得80100≤≤a .400(18123)(20822)24002a w a a -=--+-⨯-⨯=+.∵20>,∴w 随a 的增大而增大.∴当100a =时,2100400600w =⨯+=最大.答:当包装A 品种葡萄100包时,所获总利润最大,最大总利润为600元.……………………………………………………………………………….…(9分)23.解:(1)BF AC ⊥.理由:∵四边形ABCD 为矩形,∴AD BC =,90BCD ∠=︒.∵BE AD =,∴BC BE =.在Rt BCF △和Rt BEF △中,BC BE BF BF =⎧⎨=⎩,,∴Rt Rt BCF BEF △≌△(HL ),∴CBF EBF ∠=∠.又∵BE BC =,∴BF AC ⊥;………………………………………...……(4分)(2)∵8AB =,6BC =,∴8AB CD ==,10AC =.∵BF AC ⊥,∴122AB BC AC BG =g g ,∴245AB BC BG AC ==g ,∴185CG =.∵3tan 4AD GF DCA CD CG ∠===,∴33182744510GF CG ==⨯=,∴2427155102BF BG GF =+=+=.…………………………………………(9分)24.解:(1)①在228y x x =--中,令0y =得2280x x --=,解得14x =,22x =-.∵122x x =-,∴此函数是“强基函数”;②在21y x x =++中,令0y =得210x x ++=.∵2141130∆=-⨯⨯=-<,∴此方程无解,此函数不是“强基函数”;故答案为①.……………………………………………………………..………(2分)(2)∵222)1(y x t x t t =-+++是“强基函数”,令0y =得,22()210x t x t t -+++=,解得11x t =+,2x t =.∴12t t +=-或2(1)t t =-+,解得13t =-或23t =-.当13t =-时,22391y x tx t =+++22x x =-+217()24x =-+,∴函数的对称轴为直线12x =.∵12≤≤x -,10>a =,∴当1x =-或2x =时,函数最大,此时最大值为:2max 17(1)424y =--+=;当23t =-时,22391y x tx t =+++22x x =-+25(1)4x =-+,∴函数的对称轴为直线1x =.∵12≤≤x -,10>a =,∴当=1x -时,函数值最大,2max (11)48y =--+=.综上所述,当13t =-时,函数的最大值为4;当23t =-时,函数的最大值为8.………………………………………………………………………………..(6分)(3)①在1+-=x y 中,令0y =得1x =,∴点C 的坐标为(1,0).由12,,y x y x =-+⎧⎪-⎨=⎪⎩得12,,x y =-⎧⎨=⎩或21,,x y =⎧⎨=-⎩(舍去)∴点A 的坐标为(1-,2),∴直线AC 的解析式为1y x =-+.∵点B 的坐标为(3-,0),∴直线AB 的解析式为3y x =+,∵点P 的坐标为(1x ,2x ),且122x x =-,∴点P 在直线2x y =-上.∵点P 位于△ACB 内部,∴123y x y x ⎧=⎪⎨⎪=+⎩,,解得2x =-.在2x y =-中,令0y =得0x =,∴1x 的取值范围是120<<x -;…………….…………………………..……(8分)②存在.理由如下:∵1x 为整数,120<<x -,∴11-=x ,∴此时221x -=-,解得212=x ,∴12111122b b x x a +=-=-=-+=-,即12b =,12111122c c x x a ===-⨯=- ,∴12c =-,∴该“强基函数”的解析式为21212-+=x x y .………………………(10分)25.解:(1)如图,连接CO .∵AC BC =,∴CO AB ⊥.∵CF 是O ⊙的切线,∴∥CE AB ,∴△ABE 和△ABC 同底等高.∵AB 是⊙O 的直径,∴90ACB ∠=︒,∴11111222ABE ABC S S AC BC ===⨯⨯=△△ ,∴△ABE 的面积为12;…………………………………………………………(3分)(2)如图,过点E 作AB EM ⊥于点M ,∴四边形COME 是矩形,∴CO EM =.∵△ABC 是等腰直角三角形,∴AB =,︒=∠45ABC,∴2CO =.∵15CBE ∠=︒,∴︒=︒-︒=∠-∠=∠301545CBE ABC ABE ,∴在△EBM中,22BE EM CO ===…………………….……..…(6分)(3)由(2)知,ABC △为等腰直角三角形,∴AB ==.∵22CH k AB =,∴CH CH k AC BC ==.∵1AC BC ==,∴CH k =,∴1AH AC CH k =-=-,BH =由(1)得∥CE AB ,∴△CEH ∽△ABH ,∴22123()(1)△△CEH ABH S S CH k S S AH k ===-.∵DAH CBH ∠=∠,DHA CHB ∠=∠,∴ADH BCH △∽△,∴2224(S AH SBH ==,∴222222134(1)1S S S S k k k k =+=-g g g .…………………………...……(10分)数学(五)参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案D A C C D B A A C B二、填空题(本大题共6个小题,每小题3分,共18分)11.2(1)x +12.2413.414.15415.1616.143m <<三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解:原式85=--+(4分)3=--.………………………………………………………………………(6分)18.解:4211223x x x x +-+⎧⎪⎨--⎪⎩>,①≤,②解不等式①,得1x ->,解不等式②,得10x ≤,∴原不等式组的解集为110x -<≤.………………………………………………(6分)19.解:(1)如图111A BC △即为所作;……………………………………………...………(2分)(2)如图,线段1MC 绕点M 顺时针旋转90︒扫过的图形为扇形12C MC .∵M (1,1),1C(1-,3),∴1MC ==,∴线段1MC 在旋转过程中扫过的面积为122902360C MC S =⨯π⨯=π扇形.…………………………………………………………………………….…………(6分)20.解:(1)50(114%24%22%28%)6⨯----=(人).答:八年级学生中测试成绩为10分的有6人;…………………………(3分)(2)614%724%822%928%1012%8a =⨯+⨯+⨯+⨯+⨯=,9b =,8c =;……………………………………………………………………(6分)(3)两个年级平均数相同,但七年级方差较小,∴七年级的成绩更稳定.…………………………………………..…………(8分)21.(1)证明:∵90ACB ∠=︒,DE AB ⊥,BD 平分ABC ∠,∴BCD BED ∠=∠,CBD EBD ∠=∠.在CBD △和EBD △中,BCD BED CBD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴CBD EBD △≌△(AAS ),∴BC BE =;……………………………(4分)(2)解:由(1)得CBD EBD △≌△,∴DC DE =.设DC DE x ==.∵9EF =,∴9DF x =-.在Rt CDF △中,222DF CD CF =+,∴222(9)3x x -=+,解得4x =,∴4DC DE ==.………………………………..………………………………(8分)22.解:(1)设甲种树苗每棵的价格是x 元,乙种树苗每棵的价格是y 元.根据题意得1510160010x y x y +=⎧⎨+=⎩,,解得6070x y =⎧⎨=⎩,.答:甲种树苗每棵的价格是60元,乙种树苗每棵的价格是70元;………………………………………………………………………………….(4分)(2)设购买甲种树苗m 棵,则购买乙种树苗(40m -)棵,购买两种树苗共花费w 元.∵购买乙种树苗的数量不少于甲种树苗数量的3倍,∴403m m -≥,解得10m ≤.根据题意得6070(40)102800w m m m =+-=-+.∵100-<,∴w 随m 的增大而减小,∴当10m =时,w 取得最小值,最小值为101028002700-⨯+=,此时4030m -=.答:购买甲、乙两种树苗至少要花费2700元,此时购买甲种树苗10棵,乙种树苗30棵.………………………..………………………….……………(9分)23.(1)证明:∵四边形ABCD 为矩形,∴AB CD ∥,∴F BAF ∠=∠.由对称可知BAF MAF ∠=∠,∴F MAF ∠=∠,∴AM FM =;…………………………………………(3分)(2)解:由(1)可知ACF △是等腰三角形,AC CF =.在Rt ABC △中,∵3AB =,4BC =,∴5AC =,∴5CF AC ==.∵AB CF ∥,∴ABE FCE △∽△,∴35BE AB CE FC ==.设CE x =,则4BE x =-.∴435x x -=,解得52x =,∴512tan 52CE F CF ∠===;…………………(6分)(3)解:如图,由AB CF ∥可得ABE FCE △∽△,∴53AB BE FC CE ==,即353FC =,∴95CF =.由(1)可知AM FM =.设DM x =,则3MC x =-,则245AM FM x ==-.在Rt ADM △中,222AM AD DM =+,即22224()45x x -=+,解得1115x =,∴2461515AM x =-=.…………………………………………………………(9分)24.(1)解:若□ABCD 是“奇妙四边形”,则□ABCD 是正方形.理由如下:∵四边形ABCD 是平行四边形,∴ABC ADC ∠=∠.∵四边形ABCD 是圆内接四边形,∴180ABC ADC ∠+∠=︒,∴90ABC ADC ∠=∠=︒,∴平行四边形ABCD 是矩形.∵四边形ABCD 是“奇妙四边形”,∴AC BD ⊥,∴□ABCD 是正方形.故答案为:③;……………………………..……………………………………(2分)(2)证明:如图,过点B 作直径BE ,连接AE .∵BE 是O ⊙的直径,∴90EAB ∠=︒,∴90ABE E ∠+∠=︒.∵AC BD ⊥,∴90DBC ACB ∠+∠=︒.∵E ACB ∠=∠,∴DBC ABE ∠=∠,∴»»DC AE =,∴DC AE =,∴22222AB CD AB AE BE +=+=,∴2222(2)4AB CD R R +==;………………………………………………(6分)(3)解:如图,连接AC ,交PD 于点G ,交BD 于点E .∵四边形ABCD 是“奇妙四边形”,∴AC BD ⊥.的长度最小值为2.初中学业水平考试数学模拟试卷参考答案及评分标准第21页(共21页)25.解:(1)由题意可得A (12c ,0),B (c -,0),C (0,c ),∴2111()()222y x c x c x bx c =-+=++,整理得22211112442x cx c x bx c +-=++,∴21414c b c c ⎧=⎪⎪⎨⎪-=⎪⎩,,解得14b c =-⎧⎨=-⎩,,∴该抛物线的解析式为2142y x x =--;…………………..……..………(3分)(2)当点M 在BC 右侧时,∵ABC BCM ∠=∠,∴∥CM AB ,∴点M 与点C 关于抛物线的对称轴对称,∴M (2,4-).当点M 在BC 左侧时,∵ABC BCM ∠=∠,∴CM BM =,∴点M 与点O 重合,∴点M 不在抛物线上.综上所述,抛物线上存在点M ,使ABC BCM ∠=∠,点M 的坐标为(2,4-);……………………………………………………………….…………(6分)(3)设过A ,B ,D 三点的圆为⊙N ,设点N 的坐标为(1,n ),点D 的坐标为(m ,h ),连接AN ,DN .由题可得2222(21)(0)9AN n n =--+-=+,222(1)()DN m n h =-+-,∴222(1)()9m h n n -+-=+,整理得2282m m n h h---=.∵点D 在抛物线上,∴2142m m h --=,∴2282m m h --=,∴222h n h h-==.∵2()DE h n =-,∴2()22EF h h n n h =--=-=,∴1162622ABE S AB EF ==⨯⨯=△ .………………………………………(10分)。
数学评分标准(此答案只供参考)
数学评分标准(此答案只供参考)一年级:一、口算:每小题0.2分二、填空;三、判断题按要求每空给分。
四、计算题第3小题每空0.5分,第4小题列式和计算结果各占0.5分。
其余按要求每空给分。
五、看图列式:列式和计算结果各占2分。
三年级:一、填空:第8小题:涂一涂占0.5分,比一比占0.5分。
其余按要求给分。
二、判断题,三、选择题,按要求给分。
四、计算:第2题用竖式计算:①②③小题计算占2.5分,横式写结果0.5分,④⑤计算占2分,验算1.5分,横式写结果0.5分。
五、实践操作:1、填空各1.5分,写原因2分。
2、能画出正确的长方形4分,涂对颜色占4分。
六、解决问题:1、(18+17)×3……..2.5分=35×3……………..3.5分=105(人)………..4.5分(结果和单位各占0.5分)答:………………5分2、520×5……………2.5分=2600(千克)……….4分(结果1分,单位0.5分)3吨=3000千克………5分2600千克<3000千克……5.5分答:………………………….6分3、9×40-72…………..3分=360-72……………..4分=288(千克)……………5.5分(结果1分,单位0.5分)答:……………………..6分4、(1) 10-3×3…………..1分=10-9………………1.5分=1(元)……………….2.5分(结果0.5分,单位0.5分)答:…………………….3分(2)328+203……………2.5分=531(元)………………. 3.5分550-531…………….4.5分=19(元)…………………5.5分答:…………………..6分(注:2个单位共占0.5分)一、填空题:注意第7小题答案不唯一,其余按各题要求给分。
二、第二题选择、第三题判断按要求给分。
四、计算:3、笔算:没带★号的,每小题3分,其中竖式计算2.5分,横式写结果0.5分。
2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准
[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。
初三(2)区第一次月考数学试卷参考答案和评分标准
初三(2)区第一次月考数学试卷参考答案和评分标准 2010/10一、每小题4分,共32分二、每空4分,共16分9. 0 ; 10. 12 ; 11. 4 ;三、三、解答题:(共13小题,满分72分)13.(5分)计算2012()(1)2π-+--.(5分)解一元二次方程:22(1)3(1)x x +=+. 解:原式=2412-+ ……4分 解:22(1)3(1)0x x +-+==7……5分 (1)[2(1)3]0x x ++-=(1)(21)0x x +-=…………3分 10x +=或210x -=11x =-或212x =…………5分15. (5分)用配方法解关于x 的一元二次方程:240x x c ++=解:24x x c +=-2444x x c ++=-2(2)4x c +=-…………2分 当4c <时,0>, 2x += 2x =-±3分当4c =时,40c -=,2(2)0x += 122x x ==-…………4分当4c >时,40c -<, 此方程无实根…………5分 16.(5分)某公司2002年生产课桌椅20万套,2004年生产课桌椅达到了28.8万套,求这两年平均每年增长的百分率是多少?解:设这两年平均每年增长的百分率是x 根据题意得:220(1)28.8x +=…………3分 解得:120%x =或 2220%x =-…………4分 增长率不能为负数,所以2220%x =-舍去∴20%x = 答:这两年平均每年增长的百分率是20%…5分17.(5分)已知抛物线122-+=x x y 经过点(m , 0), 求代数式4121m m ++的值.解: 抛物线122-+=x x y 经过点(m , 0) ∴2210m m +-=…………1分 ∴212m m =- 4121m m ++=22()121m m ++ =2(12)121m m -++…………3分=2144121m m m -+++ =144(12)121m m m -+-++=1448121m m m -+-++= 6…………5分 18.(5分)如图,已知点A 1),点B ,32),将△AOB 绕点O 逆时针旋转90°,画出旋转后的图形,则旋转后与点A 相对应的点的坐标是(-1,和点B 相对应的点的坐标是(-32,2)∴ ''A OB S ∆为所求评分标准:1.画出图形正确2分,结论1分 2.点坐标,每空1分19. (5分)已知二次函数211()(21)22=--+++y m x m x m 与x 轴有两个不同交点,求 m 的取值范围。
2024.06温州市中职学业水平测试数学试卷(附答案)
因为轴截面 ABCD 的面积 = × = 2 × 2 = 4 = 16cm ,
………1 分
解得 = 2cm.
所以该等边圆柱的体积 V Sh πr h 16π cm .
2
3
………2 分
ห้องสมุดไป่ตู้
35.(6 分)
第 34 题图
解:(1)将圆 C 方程化成标准方程( − 1) + ( − 2) = 4, ………1 分
U
32.(5 分)
解:原式 1 3 2 1
………2 分
………4 分
5.
………1 分
33.(6 分)
解:因为 是第二象限的角,所以 cos 0 , tan 0 ,
因为 sin 2 cos 2 1 ,
所以 cos 1 sin
2
………2 分
= 10( x 20) 2 16000 ,
………1 分
所以当降价 20 元时,销售额最高为 16000 元.
………1 分
四、选做题(每小题 2 分,共 10 分)
1.B.
2.D.
3.B.
4.C.
5.5.
数学试题参考答案
第 2 页 共 2 页
因此圆心 C 的坐标为(1,2),半径为 2,
………1 分
(2)由(1)圆心 C(1,2)到直线 x y 1 0 的距离
1 2 1
d
2
2,
………2 分
设直线与圆的交点分别为 A、B,由垂径定理可知,
………2 分
所求的弦长|| = 2√ − = 2√2.
36.
(6 分)
2024.06温州市中职学业水平测试
数学试题参考答案及评分标准
数学试题参考答案及评分标准一、选择题(本大题共8小题,每小题3分,共24分)9.20° 10.2 11. )1)(2(++x x 12.m=1 13. 43≠≥x x 且 14. (1,3--) 15.22-=+=x y x y 或 (全对才给分) 16. 21<<-x 三、解答题(本大题共5小题,每小题6分,共30分) 17.解不等式① 得x ≥ 1 ……………………………………………… 2分 解不等式② 得x < 4 ……………………………………………… 4分 所以这个不等式组的解集为:1≤x <4 …………………………………………… 6分 18.解:方程两边同乘以42-x ,得4)2(42-=+-x x , …………………………………………2分即062=-+x x , …………………………………………3分 解之得31-=x ,22=x , …………………………………………4分 经检验2=x 是原方程的增根,所以原方程的根为3-=x . …………………………………6分 19.解:过点P 作P C ⊥AB 于C 点,据题意得AB 6602018=⨯=, ∠PAB=90°-60°=30°, ∠PBC=90°-45°=45°,∵∠PCB=90°,∴PC=BC ………………………………………………4分 在Rt △PAC 中PCPC+=630tan 0即PC PC +=633 …………………………5分 解得PC=6333>+∴海轮不改变方向继续前进无触碓危险. ………………………………………6分 20.解:设女同学平均体重x 千克,则男同学平均体重为1.2x 千克;设男同学y 人,则女同学为1.2y 人 …………………………………………………1分 根据题意得方程: 1.2xy +1.2xy =48(+y 1.2y )…………………………………3分PCB A整理得:2.4xy =48×2.2y ……………………………………………………………4分 ∵0≠y 解得=x 44(千克) 1.2=x 52.8(千克) …………………………………5分 答:男同学平均体重为52.8千克,女同学平均体重为44千克. ……………………6分 21.解:(1)如:田、日等(只要是轴对称图形就给分) …………………1分(2)这个游戏对小兰有利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
70
中考模拟试卷参考答案和评分标准
一. 选择题(本题共10小题,每小题3分,共30分)
二、11.x(x-9) 12.外切 13.21 14. 3 15.(1,4)或(3,4) 16. (3,1) 三、解答题 (本题有8题,共66分) 17.(本题6
分)
(1)原式= = (前4各1分,共6分) 18.(本题6分) 解:作图3分,点的坐标各1分
(1)如右图
(2)点A 1、B 1、C 1的坐标
A 1( 4 , -3 )
B 1( 5 , 0 )
C 1( 1 , -1 )
19.(本题6分)
解:(1)略 (3分)
(2)根据题意得: 30A ∠=︒ , 60P B C ∠=︒
所以6030A P B ∠=︒-︒,所以APB A ∠=∠ ,所以AB =PB ·······························1分 在R t B C P ∆中,90,60C PBC ∠=︒∠=︒,PC =450,
所以PB =
450sin 60==︒
·
··································2分 答:略.
20. (本题8分)
133
3232-+-⨯23
32+
(1)2分
(2)今年销量的极差是 36 ,去年销量的中位数是 30 。
(4分) (3)
(2分) 21.(本题8分)
解:(1)可以得到36个不同形式的二次函数 (图表略)(4分).
(2)点在直线上的有(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)六个,这样概率
为 (4分)
22.(本题10分)
(1)x =1,y =2;x =2,y =6,代人y =ax 2+bx ,得⎩⎨
⎧=+=+6
242b a b a ,解得⎩⎨
⎧==1
1b a
∴y=x 2+x ;h=41x -165-(x 2+x)=-x 2+40x -165 (4分) (2)h =-x 2+40x -165=-(x -20)2+235,
当x =20时h 最大,即开放20个月,纯收益达到最大 (3分) (3)∵x =4时h<0,x =5时h>0,
∴这套大型游乐设施开放5个月后,就能收回投资. (3分)
23.(本题10分)
解:(1)∵∠ABC 与∠ADC 互补,
∴∠ABC +∠ADC =180°. ∵∠A =90°,
∴∠C =360°-90°-180°=90°.(2分)
(2)过点A 作AE ⊥BC,垂足为E.则线段AE 把四边形ABCD 分成△ABE 和四边形AECD 两部分,把△ABE 以A 点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形. 过点A 作AF ∥BC 交CD 的延长线于F ,
∵∠ABC +∠ADC =180°,又∠ADF +∠ADC =180°, ∴∠ABC =∠ADF.
∵AD =AB ,∠AEC =∠AFD =90°,∴△ABE ≌△ADF.
∴AE =AF.∴四边形AECF 是正方形. (3分)
145
9.144100037
7073503939≈≈⨯++++
B D
C
61366=÷
(3)解法1:连结BD ,
∵∠C =90°,CD =6,BC =8,∆Rt BCD 中, 106822=+=BD . 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =
2
1×BD ×AM =25.∴AM =5.
又∵∠BAD =90°,∴△ABM ∽△ABD. ∴
AM
MD BM
AM =.
设BM =x ,则MD =10-x , ∴
5
105x x -=.解得x =5.
∴AB =25. (5分) 解法2:连结BD ,∠A =90°. 设AB =x ,BD =y ,则x 2+y 2=102,① ∵
2
1xy =25,∴xy =50.②
由①,②得:(x –y )2
=0. ∴x =y. 2x 2
=100. ∴x =25.
24.(本题12分)
解:(1)过点C 作CE ⊥AB ,BE=2,CE=4
在RT △BCE 中,BC=25
(2)∵PQ ∥CB ,∴∠QPA=∠B ,
因为∠QAP=∠CEB=90°,所以△APQ ∽△EBC ,
∴
2
48y =-x
y=16-2x
(3)①当∠QCP=90°时,如图1,可证△QCD ∽△PCE ,
B
D
C
E
PE QD CE
CD =
2
4
2164
6---=
x x
解得x=
30
7
②当∠CQP=90°时,如图2,可证△CDQ ∽△QAP 所以
AP
DQ AQ
CD =
x
x ---=
-8)
216(4x
2166 解得x1=7.5,x2=8(增根,舍去), ③当∠CPQ=90°时,如图1,
因为PQ ∥BC ,所以∠PCB=90°,可证△PCE ∽△BCE 所以
BC
CE BP
=BC (25)2
=2x,
X=10>8,舍去。
综上,当x=
307
或x=7.5时,△QCP 是直角三角形。