变量代换在微积分中的体现

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量代换在微积分中的体现

简单的东西总是容易使人理解和信服,科学的主要任务就是寻找复杂现象背后的基本规律,因此牛顿第二定律只是F=Ma 一个表达式这么简单,但其丰富内涵不言而喻。对于数学简单与准确更是不变的追求。

可是在处理一些数学问题时常因表达式的繁琐、怪异而找不到突破口,联想到“曹冲称象”的故事,转变研究对象,问题就会变得简便易操作。具体到数学上就是变量代换的运用。 把某个式子(多项式或函数)用另一个新的变量代替,从而使问题简化,这叫变量代换,也叫换元法。其实质是转化,关键是设定变量,依据是等量代换,目的就是变换研究对象使复杂问题简单化,非标准问题标准化。在众多的数学方法中,变量代换因其直观性,可操作性以及非凡的化简能力受到重视。

微积分是高等数学的核心内容,变量代换在微积分中得到了充分体现,其形式灵活多样不拘一格。具体的技巧有比值代换,三角代换,倒代换,极坐标变换,等价无穷小等等。形式多样拓宽了解题思路但也会因其灵活而不好把握。不过只要明白了本质,明确解题目的则有利于解题能力提升和数学思维的培养。

极限理论是微积分的基础,学习极限往往需要求解一些极限,极限的解法很多。运用两个重要极限以及等价无穷小可以很好体现变量代换的作用。下面先给出两个重要极限:

lim

X→0SinX

X

=1 lim x→∞

(1+1x )x

=e

怎样利用其求极限,举例分析,例如求 lim X→0

tan3X X

的极限。可令U=3X 则X=U/3

经适当变形lim

X→0

tan3X X

=lim

U→0

sinU U

3

cosU

=3不难发现主要是把X →0时tan3X X

这样的0

0型化成3X →0时

sinU U

3

cosU

这样的可计算的极限,再通过极限运算法则求解。由此不难推广到X 为任意形式,

即令U=U(X)当X →0时U →0便可得到lim

u→0sinU

U

=1即

lim x→0sinU(x)

U(x)

=1

同样对lim x→∞

(1+1x

)x

=e 令U=U(X)当X →X 0或X →∞U →∞则

lim U→∞

(1+1

U(x))

U(x)

=e

例如计算 lim x→∞

(1−1x

)kx

( k 为整数) 的极限

令 t=-x x →∞时 t →∞ lim x→∞

(1−1

x

)kx = lim t→∞

(1+1

t

)t(−k)=

1e k

另外等价无穷小的代换可有效简化表达式如求极限lim

x→0

1−cos2x

x

注意到当x →0

1-cos2x ~2x 2

直接代入表达式可化简得lim x→0

zx 2

xcosx =lim x→0

2x

sinx =2 等价无穷小虽简单有效但需要记

忆一些公式,否则很容易出错。

在运用等价变换的过程中要注意其等价条件是否成立,这也是变量代换的基本原则之一,

即要等价性,另一方面还考虑是否简化了运算即简便行原则。在这两个前提下可适当选取变量来达到化简的目的。

变量代换的另一特点在于其桥梁和纽带的作用,运用其作为中间变量来思考问题而不必真的设出变量,当然设出变量并不影响结果但主要是辅助性手段。可以说复合函数本身就体现了变量代换的方法,对于复合函数求导直接利用公式即可,有时候写出中间变量反而增加书写量,例如求y=ln(1+X 2)的导数,可设U=1+X 2 则y ′=(ln U )’U ’=

2x 1+x 2

也可以直接把1+X 2

作为一整体,运用复合函数求导法则得到y ′=2x

1+x 2 。当然变量代换作用不容忽视。例如: 设f(x)=x(x-1)(x-2)⋯(x-100) 求f ′(0)。 直接求解比较麻烦可以 设g(x)= (x-1)(x-2)⋯(x-100)

则 f(x)=xg(x)这时对f ′ (x )求导得 f ′ (x)=g(x)+x g ′(x) f ′(0)=g(0)+0∙g ′(0)=g(0)=100! 这里的变量代换实际上是构造函数,好像已经超出变量代换的范围,不过要说的是变量代换的思想已经渗透到数学的每一部分中,比如说复合函数极大的丰富了初等函数的类型,但其运用到的技巧中包含变量代换,因此单纯的谈论某一方法并没有多大意义,具体来说只是更好的理解其本质。

积分学极大的拓宽了数学的应用,多重积分的计算最终都是化为定积分。定积分与不定积分的计算中换元法又起着重要作用,可以说没有了变量代换定积分将变得举步维艰,其形式的多变灵活充分展现了定积分的解题艺术。 我们先看一道题目 例如求I=∫

1+ln X (X ln X)2

dx 其中(x ln x)’=1+ln x

设 U= X ln X 则∫u ′

u 2dx=∫u −2du=- 1

u

+c

这里用到的是第一类换元法,即凑微分法。主要是设中间变量U=φ(X)且φ(X)可微,便可得

到∫g (x )dx=∫[φ(x )]φ′(x)dx=[∫f (u )du ]u=φ(x )

把函数g(x)积分转化为f(u)的积分。

如果是选择变量代换x=φ(t )可将∫f (x )dx 化为∫φ(t )φ′(t)dt 例如求I =∫x+√a 2−x 2

为正常数)

可令x =asint xϵ(0,a ) t ϵ(0,π2⁄) 则I=∫COSt

sint+cost

π2

⁄0

dt=∫sinudu

cosu+sinu π2

⁄0

令u=2⁄-t=∫dt π

2⁄

0=π4

这两类换元法的应用并没有严格的界限,可以适当的选择。 再比如求I=∫X 3(1+X 2)2

dX

可以令

U=1+x 2 I= 1

2∫

U−1

U 2

du=12ln |u |+ 121u +c= 12ln(1+x 2)+12(1+x 2)

+c

也可以令

x=tant 则dx=set 2tdt I=∫sin 3t

cost dt =−∫

1−cos 2t sint

dcost =−ln |cost|+12cos 2t +c =12ln(1+x 2)+

12(1+x 2)

+c

相关文档
最新文档