垂径定理知识点及典型例题教程文件

合集下载

冀教版九年级数学 28.4 垂径定理(学习、上课课件)

冀教版九年级数学  28.4 垂径定理(学习、上课课件)

C. 21 cm D. 2 21 cm
感悟新知
解题秘方:连接半径,构造垂径定理的基本图形 . 知1-练
解:如图 28-4-2, 连接 OA.
∵ OE=2 cm, DE=7 cm,
∴ OD=5 cm,
在使用垂径定理时,若已知圆心,作 垂直于弦的半径(或直径)或连接圆
∴ OA=5 cm, 心和弦的一个端点(即连半径),是
感悟新知
拓宽视野 对于圆中的一条直线,如果具备下列五个
条件中的任意两个,那么一定具备其他三个: (1)过圆心; (2)垂直于弦; (3)平分弦(非直径); (4)平分弦所对的劣弧; (5)平分弦所对的优弧 .
简记为“知二推三” .
知2-讲
感悟新知
知2-练
例2 如图 28-4-4, AB, CD 是⊙ O 的弦, M, N 分别为 AB,CD 的中点,且∠ AMN= ∠ CNM. 求证: AB=CD.
感悟新知
知2-练
解题秘方:根据弦的中点作符合垂径定理推论的 基本图形,再结合全等三角形的判定 和性质进行证明 .
感悟新知
证明:如图 28-4-4,连接 OM, ON, OA, OC. 知2-练
∵ O 为圆心,且 M, N 分别为 AB, CD 的中点, ∴ AB=2AM, CD=2CN, OM ⊥ AB, ON ⊥ CD. ∴∠ OMA= ∠ ONC=90° . ∵∠ AMN= ∠ CNM, ∴∠ OMN= ∠ ONM. ∴ OM=ON. 又∵ OA=OC,
CD 是直径, CD ⊥ AB,
⌒AE=B⌒E, ൠ⇒ቐA⌒D = B⌒D ,
AC = BC .
感悟新知
知1-练
例1 [母题 教材 P164 例 ]如图 28-4-2,⊙ O 的直径 CD 垂 直弦 AB于点 E,且 OE=2 cm, DE=7 cm,则 AB 的 长为( )

垂径定理专题复习 Microsoft Word 文档

垂径定理专题复习 Microsoft Word 文档

专题复习:垂径定理及其应用班级 姓名一、双基导学:1、 垂径定理: 的直径平分弦且平分弦所对的 。

垂径定理推论的规律:对于一个圆和一条直线来说,如果具备下列五个条件中的任何两个,那么也具有其它三个:①垂直于弦,②过圆心,③平分弦,④平分弦所对的优弧,⑤平分弦所对的劣弧。

(当以②、③为题设时,“弦”不能是直径。

) 2、运用垂径定理的注意事项:①牢记基本图形及变式图形(如右图)②半径r 、弦长a 和弦心距d 三者的关系是: 当不能用勾股定理直接计算时,要用勾股定理列方程求解。

③当弦是特殊的直径时,有的推论不成立。

④常用辅助线: 、 。

二、垂径定理的应用1、利用弦所对的弧等,进行角的计算与证明例1 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°。

求∠DCF 的度数。

变式题:如图,AB 是⊙O 的直径,P 是 的中点,PD ⊥AB 于D ,交BC 于E 。

求证:PE= BE=EF2、利用平分弦,解有关线段问题例2 如图1,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM •⊥CD ,•分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.图1变式题1:在图2和3中,AB 为⊙O 的直径,CD 为弦,过A 、B 分别作AN ⊥CD 、BM ⊥CD ,• 分别交CD 于N 、M ,CN 与DM 相等吗?请选择一种情况加以证明。

图2 图3d12a rDC OEBAB A CD ONM MNODCBA变式题2:如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1。

求22CD AB +的值。

3、利用垂径定理,构造直角三角形,利用勾股定理解题例3 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.变式题:有一座圆弧形拱桥,桥下水面AB 宽24m ,拱顶高出水面8m.。

九上 圆 垂径定理 知识点+例题+练习 5种题型 (分类全面)

九上 圆 垂径定理 知识点+例题+练习 5种题型 (分类全面)

1.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )A .4B .6C .7D .82.在半径为12 cm 的圆中,垂直平分半径的弦的长为( )cmA 、33B 、27C 、123D 、633.已知AB 是⊙O 的弦,OC ⊥AB ,C 为垂足,若OA=2, OC=1,则AB 的长为( )A 、5B 、25C 、3D 、234.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则CD = 厘米O图 4ED C BA5.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.6.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD=l ,则弦AB 的长是7.如图,直径是50cm 圆柱形油槽装入油后,油深CD 为15cm ,求油面宽度AB题型二:求半径(直径)1.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm2.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是___________米OD A BCDOB C A3.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB 于点D。

已知:AB=24cm,CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.ACD B题型三:求弦心距1.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.52.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm413.在直径为20cm的圆中,弦AB的长为16cm,则它的弦心距为 cm 4.在半径为13cm的圆中有一条长为24cm的弦,那么这条弦的弦心距等于5.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于 cm 题型四:求拱高1.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m3.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);0.1(2)当水位上升到水面宽为0.8米时,求水面上升的高度. 0.1或0.7OA B题型五:求两平行线间距离1、⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离是多少1或7垂径定理在实际中的应用例1、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4,求这个圆形截面的半径.A B例2.某地有一座圆弧形拱桥,桥下水面宽度为7.2 m,拱顶高出水面2.4 m,现有一艘宽3m、船舱顶部高出水面 2 m 的货船要经过这里,此货船能顺利通过这座拱桥吗?写出你的结论,并说明理由。

专题24.3 垂径定理-重难点题型2022年九年级数学上册(人教版)

专题24.3 垂径定理-重难点题型2022年九年级数学上册(人教版)

垂径定理【知识点1 垂径定理及其推论】(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1 垂径定理(连半径)】【例1】如图,以c为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.4B.6C.8D.10【变式】如图,⊙O的直径AB与弦CD相交于E,已知AE=1cm,BE=5cm,∠DEB=30°,求:(1)CD的弦心距OF的长;(2)弦CD的长.【题型2 垂径定理(作垂线)】【例2】如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=8,∠APC=45°,则CD的长为()A.√34B.6√2C.2√34D.12【变式2-1】如图,在圆⊙O内有折线OABC,其中OA=4,BC=10,∠A=∠B=60°,则AB的长为()A.4B.5C.6D.7【题型3 垂径定理(分类讨论)】【例3】已知圆中两条平行的弦之间距离为1,其中一弦长为8,若半径为5,则另一弦长为()A.6B.2√21C.6或2√21D.以上说法都不对【变式】已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为()A.36cm或64cm B.60cm或80cm C.80cm D.60cm【题型4 垂径定理(动点问题)】【例4】如图,已知⊙O的半径为4,M是⊙O内一点,且OM=2,则过点M的所有弦中,弦长是整数的共有()A.1条B.2条C.3条D.4条【变式】如图,⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,不在OP取值范围内的是()A.4B.5C.12D.13【题型5 垂径定理(翻折问题)】【例5】如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A.4√3cm B.2√3cm C.√3cm D.√2cm【变式】(丹东模拟)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【知识点2 垂径定理的应用】(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【题型6 垂径定理的实际应用】【例6】如图所示,某地欲搭建一座圆弧型拱桥,跨度AB=32米,拱高CD=8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距离桥的一端4米处欲立一桥墩EF支撑,求桥墩的高度.【变式】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.。

33垂径定理—知识讲解(基础)(含答案解析)

33垂径定理—知识讲解(基础)(含答案解析)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知, 所以在Rt △AOD 中,(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

【答案】.2.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D ,若AC=8cm ,DE=2cm ,求OD 的长.【答案与解析】解:∵E 为弧AC 的中点,∴OE ⊥AC , ∴AD=AC=4cm ,∵OD=OE ﹣DE=(OE ﹣2)cm ,OA=OE ,∴在Rt △OAD 中,OA 2=OD 2+AD 2即OA 2=(OE ﹣2)2+42, 又知0A=OE ,解得:OE=5,∴OD=OE ﹣DE=3cm . 【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形. 举一反三:【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且,13cm 2AD AB ==5AO ===1cm 30DAC ︒∠=AD=13. 求弦BC 的长.【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m ,拱的半径为13m ,则拱高为( )A .5mB .8mC .7mD .【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B ;【解析】如图2,表示桥拱,弦AB 的长表示桥的跨度,C 为的中点,CD ⊥AB 于D ,CD 表示拱高,O 为的圆心,根据垂径定理的推论可知,C 、D 、O 三点共线,且OC 平分AB .在Rt △AOD 中,OA =13,AD =12,则OD 2=OA 2-AD 2=132-122=25.∴ OD =5,∴ CD =OC -OD =13-5=8,即拱高为8m .【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.(2015•蓬溪县校级模拟)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且AB=26m ,OE ⊥CD 于点E .水位正常时测得OE :CD=5:24 (1)求CD 的长;(2)现汛期来临,水面要以每小时4m 的速度上升,则经过多长时间桥洞会刚刚被灌满?AB AB AB【答案与解析】解:(1)∵直径AB=26m,∴OD=,∵OE⊥CD,∴,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴,即经过2小时桥洞会刚刚被灌满.【点评】此题主要考查了垂径定理的应用以及勾股定理等知识,求阴影部分面积经常运用求出空白面积来解决.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.。

2024版《垂径定理》优秀ppt课件

2024版《垂径定理》优秀ppt课件

《垂径定理》优秀ppt课件目录•垂径定理基本概念与性质•垂径定理证明方法•垂径定理在几何问题中应用•垂径定理在代数问题中应用•垂径定理拓展与延伸•总结回顾与课堂互动环节垂径定理基本概念与性质垂径定义及性质垂径定义从圆上一点向直径作垂线,垂足将直径分成的两条线段相等,且垂线段等于半径与直径之差的平方根。

垂径性质垂径所在的直线是圆的切线,且垂径平分过切点的半径。

垂线与直径关系垂线与直径垂直垂线垂直于直径,且垂足在直径上。

垂线与直径平分垂线平分直径,即垂足将直径分为两段相等的线段。

03垂径长度与直径关系垂径长度等于直径的一半减去半径,即垂径长度与直径成线性关系。

01垂径长度公式垂径长度= 半径-直径/2。

02垂径长度与半径关系垂径长度等于半径与直径之差的平方根,即垂径长度与半径成比例关系。

垂径长度计算垂径定理证明方法通过圆的性质,如弦的中垂线过圆心等,结合已知条件进行推导。

利用圆的性质利用相似三角形利用勾股定理构造与垂径相关的相似三角形,通过相似比和已知条件进行证明。

在直角三角形中,利用勾股定理和已知条件进行推导和证明。

030201建立坐标系以圆心为原点建立平面直角坐标系,将圆的方程表示为$x^2+y^2=r^2$。

垂径表示设垂径的两个端点分别为$(x_1, y_1)$和$(x_2, y_2)$,则垂径的方程可表示为$y-y_1=frac{y_2-y_1}{x_2-x_1}(x-x_1)$。

求解交点联立垂径方程和圆的方程,求解交点坐标,进而证明垂径定理。

1 2 3设圆心为$O$,垂径的一个端点为$A$,另一个端点为$B$,则向量$vec{OA}$和$vec{OB}$可分别表示为垂径的两个向量。

向量表示利用向量的点积运算和模长运算,结合已知条件进行推导和证明。

向量运算通过向量运算,可得垂径定理的向量形式为$(vec{OA}+vec{OB})cdot vec{AB}=0$。

垂径定理的向量形式垂径定理在几何问题中应用求解三角形问题利用垂径定理求解直角三角形01通过垂径将直角三角形划分为两个较小的直角三角形,便于求解边长和角度。

垂径定理典型例题课件

垂径定理典型例题课件
通过给定的条件和垂径定理的定义,直接证明垂径定理。
垂径定理的逆定理证明
先假设垂径定理不成立,然后通过反证法推导出矛盾,从而 证明垂径定理。
辅助线证明方法
添加辅助线
在图形中添加适当的辅助线,将垂径定理的证明转化为其他已知定理或公式的 应用。
利用辅助线性质
利用辅助线的性质和已知条件,推导出垂径定理的结论。
代数证明方法
坐标法证明
通过建立平面直角坐标系,将几何问题转化为代数问题,利用代数方法证明垂径 定理。
向量法证明
利用向量的性质和运算规则,推导出垂径定理的结论。
03 垂径定理的典型例题解析
基础例题解析
简单明了 基础应用
基础例题通常涉及简单的几何图形,如圆、三角形等, 主要考察垂径定理的基本应用,难度较低。
这类题目要求学生对垂径定理有基本的理解,能够根据 题目条件,正确应用垂径定理求解问题。
中等难度例题解析
01
综合应用
02
这类题目涉及的几何图形较为复杂,可能包含多个圆、三角形等,需 要学生综合运用垂径定理和其他几何知识进行解答。
03
多知识点融会
04
这类题目不仅考察学生对垂径定理的理解,还要求他们能够灵活运用 其他几何知识点,如全等三角形、类似三角形等。
定理的重要性与应用领域
重要性
垂径定理是几何学中的基础定理之一 ,它在证明其他几何定理、解决几何 问题以及构造几何图形等方面具有广 泛的应用。
应用领域
垂径定理在数学、工程、建筑等领域 都有应用,特别是在解析几何、圆的 性质和定理证明等方面有重要的应用 价值。
02 垂径定理的证明方法
基础证明方法
垂径定理的直接证明
05
定理的变式

垂径定理ppt课件

垂径定理ppt课件
连接OA,如图所示,则OA=OD=250,
1
AC=BC= AB=150,
2
∴OC= 2 − 2 = 2502 − 1502 =200,
∴CD=OD-OC=250-200=50,即这些钢索中最长的一根为50 m,
故选B.
数学
返回目录
2.如图,☉O的弦AB垂直于CD,点E为垂足,连接OE,若
2
∵AC垂直平分OD,垂足为E,
1
∴∠AEO=90°,OE= OD,
2
1
∴OE= OA,设OE=x,则OA=OB=2x,
2
在Rt△AEO中,AE2+EO2=AO2,
即:32+x2=(2x)2,解得x= 3.
∴BE=OE+OB=x+2x=3x=3 3.
返回目录
谢谢观看
This is the last of the postings.
Thank you for watching.
北师大版 九年级数学下册
4.《九章算术》是我国古代数学成就的杰出
代表作,其中《方田》章给出计算弧田
(即弓形)面积所用的公式为:弧田面积
1
= (弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中
2
“弦”指圆弧所对弦长AB,“矢”指弓形高,在如图所示的弧田中,
半径为5,“矢”为2,则弧田面积为
10
.
数学
返回目录
5.如图,已知OC是☉O的半径,点P在☉O的直径BA的延长线上,
弦的一半和圆心到弦的垂线段构成的直角三角形),利用直角
三角形的相关知识进行解题.
数学
返回目录
知识点二 垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的 弧 .

《垂径定理》PPT教学课件

《垂径定理》PPT教学课件
D.圆是轴对称图形,每条直径都是它的对称轴
2.⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是( C )
A.∠AOD=∠BOD
B.AD=BD
C.OD=DC D.
AC BC
3.半径为5的⊙O内有一点P,且OP=4,则过点P的最
长弦的长是10,最短弦的长是
6 .
4.已知⊙O中,弦AB=8 cm,圆心到AB的距离为3 cm,
28.4 垂径定理
学习目标
1.理解垂径定理的证明过程,掌握垂径定理及其
推论.(重点)
2.会用垂径定理进行简单的证明和计算.(难点)
新课导入
操作:在纸上画一个圆,并把这个圆剪下来,再沿着圆的一
条直径所在直线对折,重复做几次,你发现了什么?由此你
能得到什么结论?
问题 :圆是轴对称图形吗?如果是,它的对称轴是什么?
课堂小结
定 理




推论
辅助线
垂直于弦的直径平分弦,
并且平分弦所对的弧
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
推论2:平分弧的直径垂直平分弧所对的弦.
两 类 辅 助 线 :
连半径,作弦心距
构造Rt△,利用勾股定理计算或建立方程
·O
A
E
D
B
想一想:下列图形是否具备垂径定理的条件?如果不是,请说明
为什么?
C
C
A
O
C
B
O
A
A
E
D

B
不是,因为
没有垂直
O
O
E

B
A
E
D
B
不是,因为CD

垂径定理专题精讲

垂径定理专题精讲

(打印3份)专题培训---垂径定理(10.5)【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.举一反三:【变式1】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)(2)如图2所示,当⊙O 的圆心O 不在两平行弦AB 、CD 之间(即弦AB 、CD 在圆心O 的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O 中,平行弦AB 、CD 间的距离是14cm 或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O 中,直径MN ⊥AB ,垂足为C ,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3. 要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm 的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h =8mm(如图所示),求此小孔的直径d .【思路点拨】此小孔的直径d 就是⊙O 中的弦AB .根据垂径定理构造直角三角形来解决.【答案与解析】过O 作MN ⊥AB ,交⊙O 于M 、N ,垂足为C , 则1105mm 2OA =⨯=,OC =MC -OM =8-5=3mm . 在Rt △ACO 中,AC 22534mm -=,∴ AB =2AC =2×4=8mm .答:此小孔的直径d 为8mm .【点评】应用垂径定理解题,一般转化为有关半径、弦、弦心距之间的关系与勾股定理的运算问题.垂径定理专题试题精选一.选择题1.(2015•遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm2.(2015•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DE B.AE=OE C.=D.△OCE≌△ODE 3.(2015•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°4.(2015•泰安)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O 的半径为4,则AC的长等于()A.4B.6C.2D.85.(2015•台湾)如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6B.12C.15 D.306.(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4 C.4D.87.(2015•宜州市二模)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3 B.C.4 D.8.(2015•西藏)如图,BC是⊙O的弦,OA⊥BC,垂足为A,若⊙O的半径为13,BC=24,则线段OA的长为()A.5 B.6 C.7 D.89.(2015•武汉模拟)如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm10.(2015•湖州模拟)如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5 B.7 C.9 D.1111.(2015•大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cmC.cm D.cm12.(2012•婺城区校级模拟)已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有()A.5条B.6条C.8条D.10条13.(2012•枣阳市校级模拟)如图,AB为⊙O的直径,C是上半圆上的一点,弦CD⊥AB,∠OCD的平分线交⊙O于P,则当弦CD(不是直径)的位置变化时,点P()A.到CD的距离不变B.位置不变C.等分D.随C点的移动而移动14.(2012•洪湖市模拟)A是半径为5的⊙O内的一点,且OA=3,则过点A且长小于10的整数弦的条数是()A.1条B.2条C.3条D.4条15.(2012•天台县校级模拟)如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON 上的点.若⊙O的半径为l,则AP+BP的最小值为()A.2 B.C.D.16.(2012•合山市校级模拟)如图,大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=6cm,CD=12cm,则图中阴影部分的面积是()A.B.C.D.17.(2011•师宗县校级模拟)如图:将半径为2厘米的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.B.C.3 D.18.(2011•鄂州校级模拟)如图,有半径为和2的两个同心圆,矩形ABCD的边AB、CD分别为两圆的弦,当矩形的面积为最大时,它的周长等于()A. B. C.D.二.填空题19.(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.20.(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.21.(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=.22.(2015•黄石)如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.23.(2015•永春县校级自主招生)如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.24.(2015•浠水县校级模拟)如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.25.(2015•蚌埠模拟)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.26.(2013•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题1、高速公路的隧道和桥梁最多.如图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,求此圆的半径。

垂径定理的课件讲义.doc

垂径定理的课件讲义.doc

2、内容提要:圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。

垂径定理⎩⎨⎧平分弦所对的两条弧。

)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径推论:平行的两弦之间所夹的两弧相等。

相关概念:弦心距:圆心到弦的距离(垂线段OE)。

应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt△OAE)。

3、垂径定理常见的五种基本图形4、垂径定理的两种变形图基本题型一、求半径例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=((A)5 (B)7 (C)375(D)377图1练习1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求圆的半径.练习2、如图,在⊙O 中,AB 是弦,C 为的中点,若32=BC ,O 到AB 的距离为1.求⊙O 的半径.练习3、如图,一个圆弧形桥拱,其跨度AB 为10米,拱高CD 为1米.求桥拱的半径.二、求弦长例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB mm .练习2、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是 cm.图3BA8mm图2三、求弦心距例 3.如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.练习3.如图4,O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .四、求拱高例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB,高度CD 为_____m .五、求角度例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC=60º,则∠B = .六、探究线段的最小值例6.如图7,⊙O 的半径OA =10cm ,弦AB =16cm ,P为AB 上一动点,则点P 到圆心O 的最短距离为 cm .七、其他题型例7、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.BAO图5B图6图7例8、在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.例9、如图所示,P 为弦AB 上一点,CP ⊥OP 交⊙O 于点C ,AB =8,AP:PB =1:3,求PC 的长。

垂径定理ppt课件

垂径定理ppt课件
28.4 垂径定理 *
28.4 垂径定理 *
● 考点清单解读
● 重难题型突破
■考点一
垂径定理


内容



读 垂直于弦的直径
平分这条弦,并
且平分这条弦所
对的两条弧
符号语言
图形
28.4 垂径定理 *
归纳总结


(1)定理中的“垂径”可以是直径、半径或过圆心的直

单 线(线段),其本质是“过圆心”;(2)该定理中的弦为
[答案] 解:在题图上连接 OA,∵⊙O 的直径 CD=20


清 ,0M∶OC=3∶5,∴OC=10,OM=6.∴OA=OC=10.∵AB⊥CD,

− =8,∴AB=2AM=16.
∴AM=



28.4 垂径定理 *






■考点二
垂径定理的推论
定义
内容

平分弦(不是直径)的

m;
28.4 垂径定理 *
(2)如答案图,过点 O 作 OH⊥FE,交 FE 的延长线


题 于点 H,由题意知 EF⊥AB,∴∠CEH=∠ECO=∠OHE=90°,
型 ∴ 四边形 OHEC 是矩形,∴OH=CE=BC-4=12 m ,OF = r =

破 20 m,在 Rt△OHF 中,HF= − =16m,∵HE=OC

C


A.5 cm
B.7 cm
C.8 cm
D.10 cm
28.4 垂径定理 *
解题通法 解决此类问题的关键是从实际问题中抽象出

27.1.2 第2课时 垂径定理(课件)九年级数学下册(华东师大版)

27.1.2 第2课时 垂径定理(课件)九年级数学下册(华东师大版)
于弦的半径或过圆心垂直于弦的直线. 其实质是:过
圆心且垂直于弦的线段、直线均可.
2.“两条弧”是指弦所对的劣弧和优弧或半圆,不要
漏掉了优弧 .
辨析 下列图形是否具备垂径定理的条件?如果不是,请
说明为什么?
C
C
A
O
A
E
D

C
B
O
B
不是,因为
没有垂直
O E
O
A
E

B
A
B
D
不是,因为
CD 没有过圆心
归纳总结
所对的弧.
C
思考:“不是直径”这个条件能去掉吗?
如果不能,请举出反例.
A
O
·

圆的两条直径是互相平分的
.
B
D
例1 如图27.1-12,弦CD垂直于⊙O的直径AB,垂足为点H,
且CD=2 ,BD= ,则AB的长为(
A. 2
B. 3
C. 4
)
D. 5
分析: 构造垂径定理的基本图形
解题. 把半径、圆心到弦的垂线段、
解:如图27.1-16,连结AB,BC,分别作
AB,BC的垂直平分线,两条垂直平分线
的交点O即为所求圆的圆心.
垂径定理的实际应用
试一试:根据所学新知,你能利用垂径定理求出引入
中赵州桥主桥拱半径的问题吗?
解:如图,过桥拱所在圆的圆心 O 作 AB 的垂线,交 AB
于点 C,交弦 AB 于点 D,则 CD = 7.23 m.
结论吗?
推导过程:
① CD 是直径
③ AE = BE
② CD⊥AB,垂足为 E
④ AC BC,AD BD

(完整版)圆的垂径定理及推论知识点与练习

(完整版)圆的垂径定理及推论知识点与练习

圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。

若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒AC =⌒ AD ;⌒ BC =⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

若CE=DE ,AB是直径,则⌒ AC =⌒ AD ;⌒ BC =⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC =⌒ AD ;⌒ BC =⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

若⌒ AC =⌒AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC =⌒ BD④圆的两条平行弦所夹的弧相等。

若CD ∥FG ,CD 、FG 为弦,则⌒ FC =⌒ GD特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为2cm ,求AB 的长。

解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB = 31×360º=120º ∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =21OA=1,∴AB=2AC=222OC AO =23 故AB 的长为23 练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为() A 、4cm B 、5cm C 、6cm D 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC =⌒BD(题5) (题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题有 条相等的弧。

圆-垂径定理(知识解读+真题演练+课后巩固)(原卷版)

圆-垂径定理(知识解读+真题演练+课后巩固)(原卷版)

第02讲圆-垂径定理1.掌握垂径定理及其推论;2.利用垂径定理及其推论进行简单的计算和证明.知识点1垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分知识点2垂径定理的应用经常为未知数,结合方程于勾股定理解答【题型1 运用垂径定理直接求线段的长度】【典例1】(2023•南海区校级模拟)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE长为6,则⊙O半径是()A.5B.6C.8D.10【变式1-1】(2023春•开福区校级月考)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1B.2C.3D.4【变式1-2】(澄城县期末)如图,⊙O中,OD⊥弦AB于点C,交⊙O于点D,OB=13,AB=24,则OC的长为()A.4B.5C.6D.7【变式1-3】(2023•宿州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E.若OE=CE=2,则BE的长为()A.B.C.1D.2【题型2 垂径定理在格点中的运用】【典例2】(2023•平遥县二模)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式2-1】(2022秋•兴义市期中)如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为()A.(﹣5,﹣6)B.(﹣4,﹣5)C.(﹣6,﹣4)D.(﹣4,﹣6)【变式2-2】(2022秋•西城区校级期中)如图,在平面直角坐标系中,一条圆弧经过A(2,2),B(4,0),O三点,那么这条圆弧所在圆的圆心为图中的()A.点D B.点E C.点F D.点G【变式2-3】(2022秋•南开区校级期末)如图所示,在平面直角坐标系中,已知一圆弧过正方形网格的格点A,B,C,已知A点的坐标为(﹣3,5),B 点的坐标为(1,5),C点的坐标为(4,2),则该圆弧所在圆的圆心坐标为.【题型3 垂径定理与方程的综合应用】【典例3】(2023•寻乌县一模)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EB.若AB=4,CD=1,则EB的长为()A.2B.3C.4D.5【变式3-1】(2021秋•瑶海区期末)如图,在⊙O中,OE⊥弦AB于点E,EO 的延长线交弦AB所对的优弧于点F,若AB=FE=8,则⊙O的半径为()A.5B.6C.4D.2【变式3-2】(2022秋•宜春期末)已知:如图,⊙O的直径AC与弦BD(不是直径)交于点E,若EC=1,DE=EB=2,求AB的长.【题型4 同心圆与垂井定理综合】【典例4】(2022秋•梁山县期末)如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.【变式4-1】(2022秋•嘉兴期中)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.【变式4-2】(2022秋•浦江县校级月考)如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,若AB=10cm,CD=6cm.(1)求AC的长;(2)若大圆半径为13cm,求小圆的半径.【题型5 垂径定理的实际应用】【典例5】(2022秋•赣县区期末)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.【变式5-1】(2022秋•信都区校级期末)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O被水面截得的弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.米C.3米D.米【变式5-2】(2023•武义县一模)如图,一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,EM=9,则⊙O的半径为()A.4B.5C.6D.7【变式5-3】(2023•桐乡市校级开学)一面墙上有一个矩形门洞,其中宽为1.5米,高为2米,现要将其改造成圆弧型门洞(如图),则改造后圆弧型门洞的最大高度是()A.2.25米B.2.2米C.2.15米D.2.1米【典例6】(2023•迎泽区校级一模)如图,有一座拱桥是圆弧形,它的跨度AB =60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【变式6-1】(2021秋•恩施市校级期末)如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过这座圆弧形拱桥并说明理由.【变式6-2】(2022秋•鼓楼区期中)如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB宽度为6米,拱高CD(弧的中点到水面的距离)为1米.(1)求主桥拱所在圆的半径;(2)若水面下降1米,求此时水面的宽度.【变式6-3】(2022秋•南宁期中)如图是某蔬菜基地搭建的一座蔬菜棚的截面,其为圆弧型,跨度AB(弧所对的弦)的长为3.2米,拱高(弧的中点到弦的距离)为0.8米.(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端(点B)0.4米处竖立支撑杆EF,求支撑杆EF的高度.1.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米2.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm 3.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB =16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分4.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D 为OC的中点,若OA=7,则BC的长为.5.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.6.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为cm.1.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.62.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是()A.5寸B.8寸C.10寸D.12寸3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.24.如图,一根排水管的截面是一个半径为5的圆,管内水面宽AB=8,则水深CD为()A.3B.2C.D.5.如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是()A.cm B.cm C.2cm D.3cm6.如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB为8cm,则槽的深度CD为cm.7.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用.例如古典园林中的门洞.如图,某地园林中的一个圆弧形门洞的高为2.5m,地面入口宽为1m,则该门洞的半径为m.8.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸,则直径AB的长为寸.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图,若水面宽AB=48cm,则水的最大深度为cm.10.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA =10m,高度CD为m.11.为测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为.12.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为.13.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m.某天下雨后,水管水面上升后的水面宽度为3.2m,则排水管水面上升了m.14.证明:垂直于弦的直径平分弦以及弦所对的两条弧.已知:如图,AB是⊙O的直径,CD是⊙O的弦,.求证:.证明:15.如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD.(2)若CD=8,EF=2,求⊙O的半径.16.已知:如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点.(1)求圆心O到AP的距离;(2)求弦EF的长.17.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.若A 点的坐标为(0,4),C点的坐标为(6,2),(1)根据题意,画出平面直角坐标系;(2)在图中标出圆心M的位置,写出圆心M点的坐标.18.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.19.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理
一、知识回顾
1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。

2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。

3、圆既具有对称性,也具有对称性,它有对称轴。

4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。

5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。

6、顶点在,并且相交的角叫做圆周角。

在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。

7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。

8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。

圆的内接四边形。

二、典例解析
例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。

请帮忙求出滴水湖的半径。

D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。

变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。

(1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。

变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥?
例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。

求证:弧AC=弧AE 。

H D
N M F E C B
A
变式1 如图,BC 是O e 的直径,D 是O e 上一点,使AD=AC ,O e 的半径为4,B=30∠︒ ,
求ACD ∆的面积。

变式2 如图,半径OA ⊥OB ,弦AC ⊥BD 于E ,试说明AD ∥BC 。

变式3 如图,ABC ∆的三个顶点都在O e 上,O e 外一点E 与B 的连线交O e 于点D ,连接CD 。

(1)求证:EDA=ACB ∠∠;(2)若ADE=ADC ∠∠,求证:ABC ∆是等腰三角形。

A。

相关文档
最新文档