牛顿运动定律提高(很全面的高考题型分类)

合集下载

专题03 牛顿运动定律 2006-2011高考物理真题分类汇编 精校版 共17个专题

专题03  牛顿运动定律  2006-2011高考物理真题分类汇编 精校版 共17个专题

A B C DF2F 专题三 牛顿运动定律2011年高考题组1.(2011 全国课标)如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )2.(2011 天津)如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小3.(2011 天津)如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是( )A .甲对绳的拉力与绳对甲的拉力是一对平衡力B .甲对绳的拉力与乙对绳的拉力是作用力与反作用力C .若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D .若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利 4.(2011 北京)“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动.某人做蹦极运动,所受绳子拉力F 的大小随时间t 变化的情况如图所示.将蹦极过程近似为在竖直方向的运动,重力加速度为g .据图可知,此人在蹦极过程中最大加速度约为 A .g B .2g C .3g D .4g5.(2011 上海单科)如图,质量m =2 kg 的物体静止于水平地面的A 处,A 、B 间距L =20 m .用大小为30 N ,沿水平方向的外力拉此物体,经t 0=2 s 拉至B 处.(已知cos37°=0. 8,sin37°=0. 6.取g =10 m/s 2)(1)求物体与地面间的动摩擦因数μ;(2)用大小为30 N ,与水平方向成37°的力斜向上拉此物体,使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t .A B缓冲火箭6. (2011 四川)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则( )A .火箭开始喷气瞬间伞绳对返回舱的拉力变小B .返回舱在喷气过程中减速的住要原因是空气阻力C .返回舱在喷气过程中所受合外力可能做正功D .返回舱在喷气过程中处于失重状态 7.(2011 江苏单科)如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦.现将质量分别为M 、m (M >m )的小物块同时轻放在斜面两侧的绸带上.两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等.在α角取不同值的情况下,下列说法正确的有( )A .两物块所受摩擦力的大小总是相等B .两物块不可能同时相对绸带静止C .M 不可能相对绸带发生滑动D .m 不可能相对斜面向上滑动 8.(2011 福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为m 1和m 2的物体A 和B .若滑轮有一定大小,质量为m且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦.设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) A .21112(2)2()m m m g T m m m +=++ B. 12112(2)4()m m m gT m m m +=++C. 21112(4)2()m m m g T m m m +=++ D. 12112(4)4()m m m gT m m m +=++9.(2011 四川)随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍惜生命.一货车严重超载后的总质量为49 t ,以54 km/h 的速率匀速行驶.发现红灯时司机刹车,货车即做匀减速直线运动,加速度的大小为 2. 5 m/s 2(不超载时则为5 m/s 2).(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?(2)若超载货车刹车时正前方25m 处停着质量为1t 的轿车,两车将发生碰撞,设相互作用0.1s 后获得相同速度,问货车对轿车的平均冲力多大?10. (2011 山东)如图所示,在高出水平地面h =1. 8 m 的光滑平台上放置一质量M =2 kg 、由两种不同材料连接成一体的薄板A ,其右段长度l 1=0. 2 m 且表面光滑,左段表面粗糙.在A 最右端放有可视为质点的物块B ,其质量m =1 kg .B 与A 左段间动摩擦因数μ=0. 4.开始时二者均静止,现对A 施加F =20 N 水平向右的恒力,待B 脱离A (A 尚未露出平台)后,将A 取走.B 离开平台后的落地点与平台右边缘的水平距离x =1. 2 m .(取g =9. 8 m/s 2)求:(1)B 离开平台时的速度v B .(2)B 从开始运动到刚脱离A 时,B 运动的时间t B 和位移x B (3)A 左端的长度l 2M2006—2010年高考题组1.(2010全国Ⅰ)如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2,重力加速度大小为g .则有( )A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,g M Mm a +=2 D .a 1=g ,g MMm a +=2 2.(2010 福建)质量为2 kg 的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0. 2,最大静摩擦力和滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0到t =12 s 这段时间内的位移大小为( )A .18 mB .54 mC .72 mD .198 m 3.(2010 安徽)伽利略曾设计如图所示的一个实验,将摆球拉至M 点放开,摆球会达到同一水平高度上的N 点.如果在E 或F 处钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M 点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小( )A .只与斜面的倾角有关B .只与斜面的长度有关C .只与下滑的高度有关D .只与物体的质量有关左右θ4.(2008全国Ⅰ)如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( )A .向右做加速运动B .向右做减速运动C .向左做加速运动D .向左做减速运动5.(2009 北京)如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,则( )A .将滑块由静止释放,如果μ>tan θ,滑块将下滑B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,拉力大小应是2mg sin θD .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,拉力大小应是mg sin θ 6.(2006 北京)木块A 、B 分别重50 N 和60 N ,它们与水平地面之间的动摩擦因数均为0. 25.夹在A 、B 之间的轻弹簧被压缩了2 crn ,弹簧的劲度系数为400 N/m .系统置于水平地面上静止不动.现用F =1 N 的水平拉力作用在木块B 上,如图所示.力F 作用后( )A .木块A 所受摩擦力大小是12. 5 NB .木块A 所受摩擦力大小是11. 5 NC .木块B 所受摩擦力大小是9 ND .木块B 所受摩擦力大小是7 N7.(2008 全国Ⅱ)如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a 和b .a 球质量为m ,静置于地面;b 球质量为3m , 用手托住,高度为h ,此时轻绳刚好拉紧.从静止开始释放b 后,a 可能达到的最大高度为A .hB .l .5hC .2hD .2.5h 8.(2007 江苏单科)如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )t/st/st/st/s甲乙乙丙A .5mg 3μ B .4mg 3μ C .2mg3μ D .mg 3μ 9.(2008 宁夏)一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是A .若小车向左运动,N 可能为零B .若小车向左运动,T 可能为零C .若小车向右运动,N 不可能为零D .若小车向右运动,T 不可能为零 10.(2008 海南)如图,水平地面上有一楔形物体b ,b 的斜面上有一小物块a ;a 与b之间、b与地面之间均存在摩擦.已知楔形物体b 静止时,a 静止在b 的斜面上.现给a 和b 一个共同的向左的初速度,与a 和b A .a 与b 之间的压力减少,且a 相对b 向下滑动B .a 与b 之间的压力增大,且a 相对b 向上滑动C .a 与b 之间的压力增大,且a 相对b 静止不动D .b 与地面之间的压力不变,且a 相对b 向上滑动 11.(2007 全国Ⅰ)如图所示,在倾角为30°的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用.力F 可按图甲、乙、丙、丁所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,为沿斜面向上为正)已知此物体在t =0时速度为零,若用v 1、v 2、v 3、v 4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是( )A .v 1B .v 2C .v 3D .v 412.(2010 安徽)质量为2 kg 的物体在水平推力F 的作用下沿水平面作直线运动,一段时间后撤去F ,其运动的v -t 图像如图所示.g 取10 m/s 2,求:(1)物体与水平面间的运动摩擦系数μ; (2)水平推力F 的大小;(3)0~10 s 内物体运动位移的大小.A BC D图甲图乙13. (2010 浙江)如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是A.在上升和下降过程中A对B的压力一定为零B.上升过程中A对B的压力大于A物体受到的重力C.下降过程中A对B的压力大于A物体受到的重力D.在上升和下降过程中A对B的压力等于A物体受到的重力14.(2010 上海单科)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度15.(2009 全国Ⅱ)以初速度v0竖直向上抛出一质量为m的小物块.假定物块所受的空气阻力f大小不变.已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为()A.22(1vfgmg+和v B.22(1)vfgmg+和vC.222(1vfgmg+和v D.222(1)vfgmg+和v16.(2008 江苏单科)如图所示,两光滑斜面的倾角分别为30°和45°,质量分别为2 m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有()A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B.质量为m的滑块均沿斜面向上运动C.绳对质量为m滑块的拉力均大于该滑块对绳的拉力D.系统在运动中机械能均守恒17.(2010 山东)如图所示,物体沿斜面由静止滑下,在水平面上滑行一段距离停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.图乙中v、a、f和s分别表示物体速度大小、加速度大小、摩擦力大小和路程.图乙中正确的是(C)vvA B C D图甲图乙-18.(2009 山东)某物体做直线运动的v-t 图象如图甲所示,据此判断图乙(F 表示物体所受合力,x 表示物体的位移)四个选项中正确的是( B )19.(2008 山东)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示.设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下落过程中,下列说法正确的是A .箱内物体对箱子底部始终没有压力B .箱子刚从飞机上投下时,箱内物体受到的支持力最大C .箱子接近地面时,箱内物体受到的支持力比刚投下时大D .若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 20.(2008 天津)一个静止的质点,在0~4 s 时间内受到力F 的作用,力的方向始终在同一直线上,力F 随时间t 的变化如图所示,则质点在( )A .第2 s 末速度改变方向B .第2 s 末位移改变方向C .第4 s 末回到原出发点D .第4 s 末运动速度为零21.(2008 北京)有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图所示.质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =2sin sin M mg M m θθ++,式中g 为重力加速度. 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..的.请你指出该项. A .当θ=0°时,该解给出a =0,这符合常识,说明该解可能是对的 B .当θ=90°时,该解给出a =g ,这符合实验结论,说明该解可能是对的5.θC .当M ≥m 时,该解给出a =g sin θ,这符合预期的结果,说明该解可能是对的D .当m ≥M 时,该解给出a =sin Bθ,这符合预期的结果,说明该解可能是对的 22.(2010 四川)质量为M 的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t 内前进的距离为s .耙地时,拖拉机受到的牵引力恒为F ,受到地面的阻力为自重的k 倍,把所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变.求:(1)拖拉机的加速度大小. (2)拖拉机对连接杆的拉力大小. (3)时间t 内拖拉机对耙做的功.23.(2007 上海)固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10 m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角α.24.(2007 宁夏)倾斜雪道的长为25 m ,顶端高为15 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示.一滑雪运动员在倾斜雪道的顶端以水平速度v 0=8 m/s 飞出.在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起.除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略.设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g =10 m/s 2)25.(2009 宁夏)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图.比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB 处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O .为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小.设冰壶与冰面间的动摩擦因数为μ1=0.008,用毛刷擦冰面后动摩擦因数减少至μ2=0.004.在某次比赛中,运动员使冰壶C 在投掷线中点处以2 m/s 的速度沿虚线滑出.为使冰壶C 能够沿虚线恰好到达圆心O 点,运动员用毛刷擦冰面的长度应为多少?(g 取10 m/s 2)26.(2009 安徽)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神.为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化.一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示.设运动员的质量为65 kg ,吊椅的质量为15 kg ,不计定滑轮与绳子间的摩擦.重力加速度取g =10 m/s 2.当运动员与吊椅一起正以加速度a =1 m/s 2上升时.试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力.27.(2009 海南)一卡车拖挂一相同质量的车厢,在水平直道上以v 0=12 m/s 的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关.某时刻,车厢脱落,并以大小为a =2 m/s 2的加速度减速滑行.在车厢脱落t =3 s 后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍.假设刹车前牵引力不变,求卡车和车厢都停下后两者之间的距离.28.(2009 江苏)航模兴趣小组设计出一架遥控飞行器,其质量m =2 kg,动力系统提供的恒定升力F =28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1 = 8 s 时到达高度H= 64 m.求飞行器所阻力f的大小;(2)第二次试飞,飞行器飞行t2= 6 s 时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h;(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.29.(2008 上海)总质量为80 kg的跳伞运动员从离地500 m的直升机上跳下,经过2 s 拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图,试根据图像求:(g取10 m/s2)(1)t=1 s时运动员的加速度和所受阻力的大小.(2)估算14 s内运动员下落的高度及克服阻力做的功.(3)估算运动员从飞机上跳下到着地的总时间.30. (2005 全国Ⅲ)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B.它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.重力加速度为g.ABθ31.(2007 上海)如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.每隔0.2秒钟通过速度传感专题3—牛顿定律 第 11 页(共11页)甲 乙5αBCA器测量物体的瞬时速度,下表给出了部分测量数据.(重力加速度g =10m/s 2)求:(1)斜面的倾角α;(2)物体与水平面之间的动摩擦因数μ; (3)t =0.6 s 时的瞬时速度v .32.(2009 上海)如图甲所示,质量m =1 kg 的物体沿倾角θ=37︒的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图乙所示.求:(sin37°=0.6,cos37°=0.8,g =10 m /s 2)(1)物体与斜面间的动摩擦因数μ; (2)比例系数k .33.(2006 全国)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.起始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.。

牛顿运动定律高考真题专题汇编带答案解析

牛顿运动定律高考真题专题汇编带答案解析

专题三牛顿运动定律考点1 牛顿运动定律的理解与应用[2019浙江4月选考,12,3分]如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球.A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内.若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁) ()A.A球将向上运动,B、C球将向下运动B.A、B球将向上运动,C球不动C.A球将向下运动,B球将向上运动,C球不动D.A球将向上运动,B球将向下运动,C球不动拓展变式1.[全国卷高考题改编,多选]伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.物体保持静止或匀速直线运动状态的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.[2020江苏,5,3分]中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送抗疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.FB.C.D.3.[2020浙江1月选考,2,3分]如图所示,一对父子掰手腕,父亲让儿子获胜.若父亲对儿子的力记为F1,儿子对父亲的力记为F2,则( )A.F2>F1B.F1和F2大小相等C.F1先于F2产生D.F1后于F2产生4.[2015海南,8,5分,多选]如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断瞬间()A.a1=3gB.a1=0C.Δl1=2Δl2D.Δl1=Δl25.[2020山东,1,3分]一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示.乘客所受支持力的大小用F N表示,速度大小用v表示.重力加速度大小为g.以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg6.[2021辽宁六校第一次联考,多选]如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m的物体A、B(B与弹簧连接,A、B均可视为质点),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A上,使A开始向上做加速度大小为a的匀加速运动,测得A、B的v-t图像如图乙所示,已知重力加速度大小为g,则()A.施加力F前,弹簧的形变量为B.施加力F的瞬间,A、B间的弹力大小为m(g+a)C.A、B在t1时刻分离,此时弹簧弹力等于B的重力D.上升过程中,B速度最大时,A、B间的距离为a-7.[2021安徽黄山高三模拟,多选]如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F的作用.A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示.已知物块A的质量m=3 kg,取g=10 m/s2,最大静摩擦力等于滑动摩擦力,则()A.两物块间的动摩擦因数为0.2B.当0<F<4 N时,A、B保持静止C.当4 N<F<12 N时,A、B发生相对滑动D.当F>12 N时,A的加速度随F的增大而增大考点2 动力学两类基本问题[2019江苏,15,16分]如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a'B;(3)B被敲击后获得的初速度大小v B.拓展变式1.[2020江西丰城模拟]如图所示,质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后速度减为零.求物体与斜面间的动摩擦因数μ和物体沿斜面向上运动的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)2.[2015新课标全国Ⅰ,20,6分,多选]如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图(a) 图(b)A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度3.[2016上海,25,4分]地面上物体在变力F作用下由静止开始竖直向上运动,力F随高度x的变化关系如图所示,物体能上升的最大高度为h,h<H.当物体加速度最大时其高度为,加速度的最大值为.4.[2020安徽安庆检测]如图所示,质量为10 kg的环在F=140 N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F与杆的夹角θ=37°,力F作用一段时间后撤去,环在杆上继续上滑了0.5 s后,速度减为零,g取 10 m/s2,sin 37°=0.6,cos 37°=0.8,杆足够长.求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.5.[2021山西太原模拟]如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A.B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R.现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为()A.1∶3B.1∶2C.1∶D.1∶6.[2020山东,8,3分]如图所示,一轻质光滑定滑轮固定在倾斜木板上,质量分别为m和2m的物块A、B,通过不可伸长的轻绳跨过滑轮连接,A、B间的接触面和轻绳均与木板平行.A与B间、B与木板间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.当木板与水平面的夹角为45°时,物块A、B刚好要滑动,则μ的值为()A.B.C.D.7.[2017全国Ⅲ,25,20分]如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离8.[2020四川南充模拟]如图传送装置,水平传送带ab在电机的带动下以恒定速率v=4 m/s运动,在传送带的右端点a无初速度轻放一个质量m=1 kg的物块A(视为质点),当物块A到达传送带左端点b点时,即刻再在a点无初速度轻放另一质量为2m的物块B(视为质点).两物块到达b点时都恰好与传送带等速,b端点的左方为一个水平放置的长直轨道cd,轨道上静止停放着质量为m的木板C,从b点滑出的物块恰能水平滑上(无能量损失)木板上表面,木板足够长.已知:物块与传送带间的动摩擦因数μ1=0.8,与木板间的动摩擦因数μ2=0.2;木板与轨道间的动摩擦因数μ3=0.1;设最大静摩擦力等于滑动摩擦力,取g=10 m/s2.试求:(1)物块A、B滑上木板C上的时间差Δt;(2)木板C运动的总时间.9.如图所示,传送带的倾角θ=37°,从A到B的长度为L AB=16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带A 端无初速度释放一个质量为m=0.5 kg 的物体,它与传送带之间的动摩擦因数μ=0.5,则物体从A运动到B所需的时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)10.[新情境——动车爬坡][2020四川宜宾模拟,多选]动车是怎样爬坡的?西成高铁从清凉山隧道开始一路上坡,采用25‰的大坡度穿越秦岭,长达45公里,坡道直接落差1 100米,为国内之最.几节自带动力的车厢加几节不带动力的车厢编成一组就是动车组.带动力的车厢叫动车,不带动力的车厢叫拖车.动车爬坡可以简化为如图所示模型,在沿斜面向上的恒力F作用下,A、B两物块一起沿倾角为θ的斜面向上做匀加速直线运动,两物块间用与斜面平行的轻弹簧相连,已知两物块与斜面间的动摩擦因数相同,则下列操作能保证A、B两物块间的距离不变的是()A.只增加斜面的粗糙程度B.只增加物块B的质量C.只增大沿斜面向上的力FD.只增大斜面的倾角θ考点3 实验:探究加速度与力、质量的关系[2017浙江下半年选考,17,5分]在做“探究加速度与力、质量的关系”实验中(1)右图仪器需要用到的是.(2)下列说法正确的是.A.先释放纸带再接通电源B.拉小车的细线应尽可能与长木板平行C.纸带与小车相连端的点迹较疏D.轻推小车,拖着纸带的小车能够匀速下滑说明摩擦力已被平衡(3)如图所示是实验时打出的一条纸带,A、B、C、D、…为每隔4个点取的计数点,据此纸带可知小车在打点计时器打D点时速度大小为m/s(小数点后保留2位).拓展变式1.[开放题][2020山东济南检测]如图所示的实验装置可以验证牛顿第二定律,小车上固定一个盒子,盒子内盛有砂子.砂桶的总质量(包括桶以及桶内砂子质量)记为m,小车的总质量(包括车、盒子及盒内砂子质量)记为M.2.[同2020北京第15题相似]在探究加速度与力的关系的实验中,小明同学设计了如图甲所示(俯视图)的实验方案:将两个小车放在水平木板上,前端分别系一条细线跨过定滑轮与砝码盘相连,后端各系一细线.(1)平衡摩擦力后,在保证两小车质量相同、盘中砝码质量不同的情况下,用一黑板擦把两条细线同时按在桌子上,抬起黑板擦时两小车同时开始运动,按下黑板擦时两小车同时停下来.小车前进的位移分别为x1、x2,由x=at2,知=,测出砝码和砝码盘的总质量m1、m2,若满足,即可得出小车的质量一定时,其加速度与拉力成正比的结论.若小车的总质量符合远大于砝码和砝码盘的总质量的需求,但该实验中测量的误差仍然较大,其主要原因是.(2)小军同学换用图乙所示的方案进行实验:在小车的前方安装一个拉力传感器,在小车后面固定纸带并穿过打点计时器.由于安装了拉力传感器,下列操作要求中不需要的是.(填选项前的字母)A.测出砝码和砝码盘的总质量B.将木板垫起适当角度以平衡摩擦力C.跨过滑轮连接小车的细线与长木板平行D.砝码和砝码盘的总质量远小于小车和传感器的总质量(3)测出小车质量M并保持不变,改变砝码的质量分别测得小车加速度a与拉力传感器示数F,利用测得的数据在坐标纸中画出如图丙中的a-F图线A;若小军又以为斜率在图像上画出如图丙中的图线B,利用图像中给出的信息,可求出拉力传感器的质量为.3.如图所示,某同学利用图示装置做“探究加速度与物体所受合力的关系”的实验.在气垫导轨上安装了两个光电门1、2,滑块上固定一遮光条,滑块通过绕过两个滑轮的细绳与弹簧测力计相连,实验时改变钩码的质量,读出弹簧测力计的不同示数F,不计细绳与滑轮之间的摩擦力和滑轮的质量.(1)根据实验装置图,本实验(填“需要”或“不需要”)将带滑轮的气垫导轨右端垫高,以平衡摩擦力;实验中(填“一定要”或“不必要”)保证钩码的质量远小于滑块和遮光条的总质量;实验中(填“一定要”或“不必要”)用天平测出所挂钩码的质量;滑块(含遮光条)的加速度(填“大于”“等于”或“小于”)钩码的加速度.(2)某同学做实验时,未挂细绳和钩码接通气源,然后推一下滑块(含遮光条)使其从气垫导轨右端向左运动,发现遮光条通过光电门2所用的时间大于通过光电门1所用的时间,该同学疏忽大意,未调节气垫导轨使其恢复水平,就继续进行其他实验步骤(其他实验步骤没有失误),则该同学作出的滑块(含遮光条)的加速度a与弹簧测力计示数F的图像可能是(填图像下方的字母).(3)若该同学作出的a-F图像中图线的斜率为k,则滑块(含遮光条)的质量为.4.图(a)[2018全国Ⅱ,23,9分]某同学用图(a)所示的装置测量木块与木板之间的动摩擦因数.跨过光滑定滑轮的细线两端分别与木块和弹簧秤相连,滑轮和木块间的细线保持水平,在木块上方放置砝码.缓慢向左拉动水平放置的木板,当木块和砝码相对桌面静止且木板仍在继续滑动时,弹簧秤的示数即木块受到的滑动摩擦力的大小.某次实验所得数据在表中给出,其中f4的值可从图(b)中弹簧秤的示数读出.砝码的质量0.05 0.10 0.15 0.20 0.25m/kg滑动摩擦力2.15 2.36 2.55 f42.93f/N图(b)图(c)回答下列问题:(1)f4= N;(2)在图(c)的坐标纸上补齐未画出的数据点并绘出f-m图线;(3)f与m、木块质量M、木板与木块之间的动摩擦因数μ及重力加速度大小g之间的关系式为f= ,f-m图线(直线)的斜率的表达式为k= ;(4)取g=9.80 m/s2,由绘出的f-m图线求得μ= .(保留2位有效数字)5.[2018江苏,11,10分]某同学利用如图所示的实验装置来测量重力加速度g.细绳跨过固定在铁架台上的轻质滑轮,两端各悬挂一只质量为M的重锤.实验操作如下:①用米尺量出重锤1底端距地面的高度H;②在重锤1上加上质量为m的小钩码;③左手将重锤2压在地面上,保持系统静止.释放重锤2,同时右手开启秒表,在重锤1落地时停止计时,记录下落时间;④重复测量3次下落时间,取其平均值作为测量值t.请回答下列问题:(1)步骤④可以减小对下落时间t测量的(选填“偶然”或“系统”)误差.(2)实验要求小钩码的质量m要比重锤的质量M小很多,主要是为了.A.使H测得更准确B.使重锤1下落的时间长一些C.使系统的总质量近似等于2MD.使细绳的拉力与小钩码的重力近似相等(3)滑轮的摩擦阻力会引起实验误差.现提供一些橡皮泥用于减小该误差,可以怎么做?(4)使用橡皮泥改进实验后,重新进行实验测量,并测出所用橡皮泥的质量为m0.用实验中的测量量和已知量表示g,得g= .答案专题三牛顿运动定律考点1 牛顿运动定律的理解与应用D剪断绳子之前,A球受力分析如图1所示,B球受力分析如图2所示,C球受力分析如图3所示.剪断绳子瞬间,水杯和水都处于完全失重状态,水的浮力消失,杯子的瞬时加速度为重力加速度.又由于弹簧的形状来不及发生改变,弹簧的弹力大小不变,相对地面而言,A球的加速度a A=<g,方向竖直向下,其相对杯子的加速度方向竖直向上.相对地面而言,B球的加速度a B=>g,方向竖直向下,其相对杯子的加速度方向竖直向下.绳子剪断瞬间,C球所受的浮力和拉力均消失,其瞬时加速度为重力加速度,故相对杯子静止,综上所述,D正确.x图1 图2 图31.ACD物体保持静止或匀速直线运动状态的性质叫惯性,所以A、C正确.如果没有力,物体将保持静止或匀速直线运动状态,所以B错误.运动物体如果不受力,将保持匀速直线运动状态,所以D正确.2.C设列车做匀加速直线运动的加速度为a,可将后面的38节车厢作为一个整体进行分析,设每节车厢的质量均为m,每节车厢所受的摩擦力和空气阻力的合力大小均为f,则有F-38f=38ma,再将最后面的2节车厢作为一个整体进行分析,设倒数第3节车厢对倒数第2节车厢的牵引力为F',则有F'-2f=2ma,联立解得F'=F,C项正确,A、B、D项均错误.3.B F1和F2是作用力和反作用力,遵循牛顿第三定律,这对力同时产生、同时消失、大小相等、方向相反,B正确,A、C、D均错误.4.AC设物块的质量为m,剪断细线的瞬间,细线上的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F1;剪断细线前对bc和弹簧S2组成的整体分析可知F1=2mg,故a受到的合力F合=mg+F1=mg+2mg=3mg,故加速度a1==3g,A正确,B错误.设弹簧S2的拉力为F2,则F2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误.5.D根据位移—时间图像的斜率表示速度可知,0~t1时间内,图像斜率增大,速度v增大,加速度方向向下,由牛顿运动定律可知乘客处于失重状态,所受的支持力F N<mg,选项A错误;t1~t2时间内,图像斜率不变,速度v不变,加速度为零,乘客所受的支持力F N=mg,选项B错误;t2~t3时间内,图像斜率减小,速度v减小,加速度方向向上,由牛顿运动定律可知乘客处于超重状态,所受的支持力F N>mg,选项C错误,D正确.6.AD A与B分离的瞬间,A与B的加速度相同,速度也相同,A与B间的弹力恰好为零.分离后A与B的加速度不同,速度不同.t=0时刻,即施加力F的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F前的相同,但A与B间的弹力发生突变.t1时刻,A与B恰好分离,此时A与B的速度相等、加速度相等,A与B间的弹力为零.t2时刻,B的v-t图线的切线与t轴平行,切线斜率为零,即加速度为零.施加力F前,A、B整体受力平衡,则弹簧弹力大小F0=kx0=2mg,解得弹簧的形变量x0=,选项A正确.施加力F的瞬间,对B,根据牛顿第二定律有F0-mg-F AB=ma,解得A、B间的弹力大小F AB=m(g-a),选项B错误.A、B在t1时刻之后分离,此时A、B具有共同的速度与加速度,且F AB=0,对B有F1-mg=ma,解得此时弹簧弹力大小F1=m(g+a),选项C错误.t2时刻B的加速度为零,速度最大,则kx'=mg,解得此时弹簧的形变量x'=,B上升的高度h'=x0-x'=,A上升的高度h=a,此时A、B间的距离Δh=a-,选项D正确.7.AB根据题图乙可知,发生相对滑动时,A、B间的滑动摩擦力为6 N,所以A、B之间的动摩擦因数μ==0.2,选项A正确;当0<F<4 N时,根据题图乙可知,f2还未达到B与地面间的最大静摩擦力,此时A、B保持静止,选项B正确;当4 N<F<12 N时,根据题图乙可知,此时A、B间的摩擦力还未达到最大静摩擦力,所以A、B没有发生相对滑动,选项C错误;当F>12 N时,根据题图乙可知,此时A、B发生相对滑动,对A有a==2 m/s2,加速度不变,选项D错误.考点2 动力学两类基本问题(1)(2)3μg μg (3)2解析:(1)由牛顿运动定律知,A的加速度大小a A=μg由运动学公式有2a A L=解得v A=.(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿运动定律有F=ma B,得a B=3μg对齐后,A、B所受合外力大小F'=2μmg由牛顿运动定律有F'=2ma'B,得a'B=μg.(3)经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A则v=a A t,v=v B-a B tx A=a A t2,x B=v B t-a B t2且x B-x A=L解得v B=2.1.0.2516.25 m解析:物体受力分析如图所示,设未撤去F前,物体加速运动的加速度为a1,末速度为v,将重力mg和F沿斜面方向和垂直于斜面方向正交分解,由牛顿运动定律得F N=F sin θ+mg cos θF cos θ-f-mg sin θ=ma1又f=μF N加速过程由运动学规律可知v=a1t1撤去F后,物体减速运动的加速度大小为a2,则a2=g sin θ+μg cos θ由匀变速运动规律有v=a2t2由运动学规律知x=a1+a2联立各式解得μ=0.25,x=16.25 m.2.ACD由题图(b)可求出0~t1和t1~2t1时间内物块的加速度分别为a1=、a2=.设斜面的倾角为θ,由牛顿第二定律知,物块上滑时有-(mg sin θ+μmg cos θ)=ma1,下滑时有μmg cos θ-mg sin θ=ma2,联立可求得物块与斜面间的动摩擦因数μ及斜面的倾角θ,A、C正确;从以上两个方程可知,物块质量被约去,即不可求,B错误;物块沿斜面向上滑行的最大高度H=sin θ,可求出,D正确.3.0或h解析:由题图可知,力F随着高度x的增加而均匀减小,即F随高度x的变化关系为F=F0-kx,其中k=,则当物体到达h高度处时,向上的拉力F1=F0-h;由牛顿第二定律知,开始时加速度方向竖直向上,随x的增加加速度逐渐减小,然后反方向增大.物体从地面上升到h高度处的过程中,根据动能定理可得W F+W G=0,即h-mgh=0,求得F0=,则物体在刚开始运动时的加速度大小满足F0-mg=ma1,求得a1=;当物体运动到h高度处时,加速度大小满足mg-F1=ma2,而F1=-,求得a2=,因此加速度最大时其高度是0或h.4.(1)1 s (2) m/s解析:(1)撤去拉力F后,由牛顿第二定律有mg sin θ+μmg cos θ=ma2又0=v1-a2t2联立解得v1=5 m/s撤去拉力F前(注意杆对环的弹力的方向),有F cos θ-mg sin θ-μ(F sin θ-mg cos θ)=ma1而v1=a1t1联立解得t1=1 s.(2)环上滑至速度为零后反向做匀加速直线运动,由牛顿第二定律得mg sin θ-μmg cos θ=ma3,又s=(t1+t2),而v2=2a3s联立解得v= m/s.5.D如题图所示,设圆中任意一条弦为OM,圆的半径为R',则弦OM长s=2R'cos θ,小球下滑的加速度a=g cos θ,根据s=at2得t=2,与角θ无关,因此沿不同弦下滑的时间相等.故小球沿AB下滑所用的时间等于小球在高度为2R 的位置做自由落体运动所用的时间,即2R=g,小球沿AC下滑所用的时间等于小球在高度为4R的位置做自由落体运动所用的时间,即4R=g,联立有=,选项D正确.6.C根据题述, 物块A、B刚要滑动,可知A、B之间的摩擦力f AB=μmg cos 45°,B与木板之间的摩擦力f=μ·3mg cos 45°.隔离A进行受力分析,由平衡条件可得轻绳中拉力F= f AB+ mg sin 45°.对AB整体,由平衡条件得2F=3mg sin 45°-f,联立解得μ=,选项C正确.7.(1)1 m/s(2)1.9 m解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,地面对木板的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g ②f3=μ2(m+m A+m B)g ③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨.(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-a B设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的系统,由牛顿第二定律有f1+f3=(m B+m)a2由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2对A有v2=-v1+a A t2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-a2在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-a A(t1+t2)2A和B相遇时,A与木板的速度恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B联立以上各式,并代入数据得s0=1.9 m.(也可用如图的速度—时间图线求解)8.(1)0.5 s (2)2.75 s解析:(1)物块在传送带上的加速时间即为滑上木板的时间差,设物块A、B在传送带上的加速度为a0,则有μ1mg=ma0解得a0=8 m/s2根据v=a0Δt可得Δt==0.5 s.(2)过程一物块A滑上木板C与木板有相对运动,则有μ2mg=ma A,解得a A=2 m/s2,方向水平向右水平方向对木板C有μ2mg=μ3·2mg,木板C保持静止过程二经过Δt=0.5 s后,物块B滑上木板C,此时物块A的速度为v A=v-a AΔt=3 m/s物块B和木板C有相对运动,则有μ2·2mg=2ma B代入数据解得a B=2 m/s2,方向向右对木板C有μ2·2mg+μ2mg-μ1(2m+2m)g=ma C代入数据解得a C=2 m/s2,方向水平向左木板C由静止开始向左匀加速运动,物块A与木板C共速时有v A-a A t1=a C t1=v AC代入数据解得t1=0.75 s,v AC=1.5 m/s此时v B=v-a B t1=2.5 m/s过程三物块B相对木板C继续向左运动,仍做a B=2 m/s2的匀减速运动,木板C和物块A保持相对静止,将木板C和物块A看作整体有μ2·2mg-μ3(2m+2m)g=2ma AC解得a AC=0故木板C和物块A向左做匀速直线运动,直到A、B、C共速,速度为v B-a B t2=v AC,解得t2=0.5 s过程四三物体保持相对静止,一起做匀减速运动,直到减速到零,木板C停止运动,则有μ3(2m+2m)g=4ma ABC代入数据解得a ABC=1 m/s2t3==1.5 s故木板C运动的总时间为t=t1+t2+t3=2.75 s.图甲9.2 s解析:开始阶段,传送带对物体的滑动摩擦力沿传送带向下,物体由静止开始加速下滑,受力分析如图甲所示由牛顿第二定律得mg sin θ+μmg cos θ=ma1解得a1=g sin θ+μg cos θ=10 m/s2物体加速至速度与传送带速度相等时需要的时间t1==1 s物体运动的位移s1=a1 =5 m<16 m即物体加速到10 m/s时仍未到达B点图乙当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带对物体的滑动摩擦力沿传送带向上,如图乙所示由牛顿第二定律得mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2设此阶段物体滑动到B所需时间为t2,则L AB-s1=v0t2+a2,解得t2=1 s故所需时间t=t1+t2=2 s.10.AD A、B两物块间的距离不变,则弹簧弹力不变,对A、B及弹簧整体应用牛顿第二定律可得F-(m A+m B)g sin θ-μ(m A+m B)·g cos θ=(m A+m B)a,所以两物块做匀加速直线运动的加速度a=-g sin θ-μg cos θ,对物块B应用牛顿第二定律可得T-m B g sin θ-μm B g cos θ=m B a,所以弹簧弹力T=m B(g sin θ+μg cos θ)+m B a=.只改变斜面粗糙。

【牛顿运动定律】高考必考题(详解版)

【牛顿运动定律】高考必考题(详解版)

1
上地张力先增大后减小
上地张力先增大后减小
地合力大小方向不变,且与
始终变大.2
D.

由,可知摩擦力为
,
代入数据为:
联立可得:,故C正确.
故选C.
相互作用
共点力平衡
多个力地动态平衡
由图可知,小车在桌面上是(填"从右向左"或"从左向右")运动地;
(1)该小组同学根据图地数据判断出小车做匀变速运动,小车运动到图(b)中点位置时地
速度大小为,加速度大小为
.(结果均保留位有效数字)
(2)3
4
实验步骤如下:
如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对
5
6。

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共6小题)1.(2022·全国·高考真题)如图,一不可伸长轻绳两端各连接一质量为m的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L。

一大小为F的水平恒力作用在轻绳的中点,方向与两球连线垂直。

当两球运动至二者相距35L时,它们加速度的大小均为()A.58FmB.25FmC.38FmD.310Fm2.(2019·全国·高考真题)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力3.(2019·全国·高考真题)如图所示,在倾角为30 的足够长的光滑的斜面上有一质量为m的物体,它受到沿斜面方向的力F的作用.力F可按图(a)、(b)(c)、(d)所示的四种方式随时间变化(图中纵坐标是F与mg的比值,力沿斜面向上为正).已知此物体在t=0时速度为零,若用v1、v2、v3、v4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是()A.v B.v C.v D.v4.(2018·全国·高考真题)如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定的偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球高度A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定5.(2018·全国·高考真题)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态,现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动,以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图像可能正确的是()A.B.C.D.6.(2018·全国·高考真题)如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是()A .B .C .D .二、多选题(本大题共8小题)7.(2021·全国·高考真题)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动,物体通过的路程等于0s 时,速度的大小为0v ,此时撤去F ,物体继续滑行02s 的路程后停止运动,重力加速度大小为g ,则( )A .在此过程中F 所做的功为2012mv B .在此过中F 的冲量大小等于032mvC .物体与桌面间的动摩擦因数等于2004v s gD .F 的大小等于物体所受滑动摩擦力大小的2倍8.(2021·全国·高考真题)水平地面上有一质量为1m 的长木板,木板的左端上有一质量为2m 的物块,如图(a )所示。

高考物理热点快速突破必考部分专题牛顿运动定律

高考物理热点快速突破必考部分专题牛顿运动定律

G专题04 牛顿运动定律【高考命题热点】主要考查有关“牛一”、整体法隔离法的选择题、验证“牛二”的实验题和涉及“牛二”的综合型大题。

【知识清单】1. 牛顿第一定律(惯性定律):物体不受力或所受合外力为零时物体将保持静止或匀速直线运动状态,直到有外力迫使它改变这种运动状态为止。

惯性:物体保持原来运动状态的特性。

惯性只跟质量有关,质量越大,惯性越大。

力不是维持物体运动的原因,而是改变物体运动状态的原因。

2. 牛顿第二定律:mFamaF合合或==(a由合外力决定,方向与合外力一致)3. 牛顿第三定律:作用力和反作用力是等大、反向,在同一直线上分别作用在两个物体的两个力。

4. 超重和失重超重:GFN>(压力或支持力)a竖直向上;即向上加速或向下减速失重:GFN<(压力或支持力)a竖直向下即同理向下加速或向上减速5. 整体法和隔离法条件:系统各物体运动状态一致,即有共同加速度,各物体相对静止。

思路:先整体后隔离,隔离受力少和简单物体。

例:(多选)如图在光滑地面上,水平外力F拉动小车和木块一起做无相对滑动的匀加速直线运动。

小车质量为M,木块质量为m,力大小是F,加速度大小是a,木块和小车之间动摩擦因数为μ,则在这个过程中,木块收到的摩擦力大小为是(BCD)A.maμ B.ma C.mMmF+D.MaF-热点突破提升练四1.牛顿第一定律和牛顿第二定律共同确定了力与运动的关系,下列相关描述正确的是( ) A .力是维持物体运动状态的原因 B .力是使物体产生加速度的原因C .速度变化越快的物体惯性越大,匀速运动或静止时没有惯性D .质量越小,惯性越大,外力作用的效果越明显2.一个人站在升降机的地板上,在升降机加速上升的过程中,以下说法正确的是( ) A .人对升降机的压力小于升降机对人的支持力 B .人对升降机的压力与升降机对人的支持力大小相等 C .升降机对人的支持力等于人的重力D .人的重力和升降机对人的支持力是一对作用力和反作用力3.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。

牛顿定律高中全题型归纳(全)

牛顿定律高中全题型归纳(全)

牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理新力学知识点之牛顿运动定律分类汇编

高考物理新力学知识点之牛顿运动定律分类汇编

高考物理新力学知识点之牛顿运动定律分类汇编一、选择题1.质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数μ=0.2,最大静摩擦力与滑动摩擦力大小视为相等。

从t =0时刻开始,物体受到方向不变,大小呈周期性变化的水平拉力F 的作用,F ~t 图像如图所示,则物体在t =0至t =12s 这段时间的位移大小为( )A .18mB .54mC .81mD .360m2.如图A 、B 、C 为三个完全相同的物体。

当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( )A .f 1=f 2=0B .f 1=0,f 2=FC .13F f =,f 2=23FD .f 1=F ,f 2=0 3.下列单位中,不能..表示磁感应强度单位符号的是( ) A .T B .N A m ⋅ C .2kg A s ⋅ D .2N s C m ⋅⋅ 4.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( )A .3s t =时,部件属于失重状态B .4s t =至 4.5s t =时,部件的速度在减小C .5s t =至11s t =时,部件的机械能守恒D .13s t =时,部件所受拉力小于重力5.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )A .升降机停止前在向下运动B .10t -时间内小球处于失重状态,12t t -时间内小球处于超重状态C .13t t -时间内小球向下运动,动能先增大后减小D .34t t -时间内弹簧弹性势能变化量小于小球动能变化量6.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑。

2024年高考物理一轮复习(新教材新高考):牛顿运动定律(讲义)(解析版)

2024年高考物理一轮复习(新教材新高考):牛顿运动定律(讲义)(解析版)

第12讲牛顿运动定律目录复习目标网络构建考点一牛顿第一定律【夯基·必备基础知识梳理】知识点1牛顿第一定律知识点2惯性与质量【提升·必考题型归纳】考向1伽利略理想斜面实验考向2对牛顿第一定律的理解考向3惯性与质量考点二牛顿第二定律【夯基·必备基础知识梳理】知识点1牛顿第二定律内容知识点2牛顿第二定律的瞬时加速度问题【提升·必考题型归纳】考向1对牛顿第二定律的理解考向2牛顿第二定律的瞬时加速度问题考点三牛顿第三定律【夯基·必备基础知识梳理】知识点1牛顿第三定律内容知识点2作用力和反作用力与一对平衡力的区别【提升·必考题型归纳】考向1牛顿第三定律应用考向2作用力和反作用力与一对平衡力的区别真题感悟1、掌握并会利用牛顿三大定律处理物理问题。

2、会利用牛顿第二定律解决瞬时加速度问题。

考点要求考题统计考情分析(1)牛顿第一定律惯性(2)牛顿第二定律(3)牛顿第三定律2023年6月浙江卷第2题2023年全国乙卷第1题2022年海南卷第1题高考对牛顿三定律基本规律的考查,多以选择题的形式出现,同时与实际生活的实例结论紧密,题目相对较为简单。

考点一牛顿第一定律知识点1牛顿第一定律1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

(1)揭示了物体的惯性:不受力的作用时,一切物体总保持匀速直线运动状态或静止状态。

2.牛顿第一、第二定律的关系(1)牛顿第一定律是以理解实验为基础,经过科学抽象、归纳推理总结出来的,牛顿第二定律是实验定律。

(2)牛顿第一定律不是牛顿第二定律的特例,它揭示了物体运动的原因和力的作用对运动的影响;牛顿第二定律则定量指出了力和运动的联系。

(2)揭示了力的作用对运动的影响:力是改变物体运动状态的原因。

知识点2惯性与质量对惯性的理解:(1)保持“原状”:物体在不受力或所受合外力为零时,惯性表现为使物体保持原来的运动状态(静止或匀速直线运动)。

牛顿定律高中全题型归纳(全)

牛顿定律高中全题型归纳(全)

题型3:动力学的两类基本问题1.已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

2.已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示: 第一类 第二类在匀变速直线运动的公式中有五个物理量,其中有四个矢量v 0、v 1、a 、s ,一个标量t 。

在动力学公式中有三个物理量,其中有两个矢量F 、a ,一个标量m。

运动学和动力学中公共的物理量是加速度a 。

在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a ,a 是联结运动学公式和牛顿第二定律的桥梁。

例1.如图所示,物体从斜坡上的A 点由静止开始滑到斜坡底部B 处,又沿水平地面滑行到C 处停下,已知斜坡倾角为θ,A 点高为h 求B 、C 间的距离。

例 2.风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。

(如图)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动。

这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin37°=0.6,cos37°=0.8)【例3】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m 高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g =10 m/s 2)例 4.、在跳马运动中,运动员完成空中翻转的动作,能否稳住是一个得分的关键,为此,运动员在脚接触地面后都有一个下蹲的过程,为的是减小地面对人的冲击力.某运动员质量为m ,从最高处下落过程中在空中翻转的时间为t ,接触地面时所能承受的最大作用力为F (视为恒力),双脚触地时重心离脚的高度为h ,能下蹲的最大距离为s ,若运动员跳起后,在空中完成动作的同时,又使脚不受伤,则起跳后重心离地的高度H 的范围为多大?练习:1.以24.5m/s 的速度沿水平面行驶的汽车上固定一个光滑的斜面,如图所示,汽车刹车后,经2.5s 停下来,欲使在刹车过程中物体A 与斜面保持相对静止,则此斜面的倾角应为 ,车的行驶方向应向。

高中物理-专题3.24 与力的分解相关的牛顿运动定律问题(提高篇)(解析版)

高中物理-专题3.24 与力的分解相关的牛顿运动定律问题(提高篇)(解析版)

2021年高考物理100考点最新模拟题千题精练第三部分 牛顿运动定律专题3.24与力的分解相关的牛顿运动定律问题(提高篇)计算题1.(14分)(2020河北保定一模)一固定的倾角为37°的斜面,斜面长9m ,如图所示。

斜面上一物体在大小为11N 沿斜面向上的拉力F 作用下,沿斜面向上加速运动,加速度大小为1m/s 2;如果将沿斜面向上的拉力改为1N ,物体加速向下运动,加速度大小仍为1m/s 2。

取重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8,求:(l)物体质量m 及物体与斜面间的动摩擦因数μ;(2)若将物体从斜面顶端由静止释放,物体运动到斜面 底端的时间t 。

【命题意图】 本题以平行斜面的拉力拉物体沿斜面向上加速运动为情景,考查牛顿运动定律、匀变速直线运动规律及其相关知识点,考查的核心素养是“运动和力”的观点。

【解题思路】(1)当F 1=11N 时,物体加速向上运动ma f mg F =--o 1sin37(2分)当F 2=1N 时,物体加速向下运动ma f -F mg =-2o sin37(2分)在斜面上运动,垂直斜面方向o N 37c os mg F =(1分)且N F f μ=(1分)解得0.5=μ,m =1kg (2分)(2)由静止释放物体,物体加速下滑,加速度为a 11o sin37ma f mg =-(2分)l t a =2121(2分) 解得t =3s (2分)2.(2019天津部分学校期末联考)一小滑块以10m/s 的初速度沿倾角为θ=37°的固定斜面上滑。

已知滑块与斜面间的动摩擦因数为0.5,设斜面足够长。

(g=10m/s 2,sin37°=0.6,cos37°=0,8)求:(1)物体上滑的最大位移;(2)物体回到出发点时的速度。

【名师解析】.(10分):(1)根据牛顿第二定律得mg sin θ+μmg cos θ=ma 1解得a 1=g sin θ+μg cos θ 代入数据得a 1=10m/s 2 根据速度位移公式v 02=2as解得s =202v a代入数据得s =5.0m (2)根据牛顿第二定律,下滑的加速度为mg sin θ-μmg cos θ=ma 2 解得a 2=g sin θ-μg cos θ 代入数据得a 2=2m/s 2根据速度位移公式222v a s =解得22v a s =代入数据得v 2 5 m /s =3..(12分)(2019河南天一大联考6)一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定粗糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t 。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。

水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。

传送带BC 间距0.8L m =,以01/v m s =顺时针运转。

两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。

用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。

已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。

求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.3.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.4.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+ 解得:023sin L t g θ=3.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:133397/22max c v v m s == 同理得:313/2min v m s = 所以03313/397/22m s v m s ≤≤4.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==>则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at =解得 1t s = 【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s【解析】【分析】【详解】(1)由牛顿第二定律 F﹣mg﹣f=ma代入数据解得a=6m/s2上升高度代入数据解得 h=75m.(2)下落过程中 mg﹣f=ma1代入数据解得落地时速度 v2=2a1H,代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F﹣mg+f=ma2代入数据解得设恢复升力时的速度为v m,则有由 v m=a1t1代入数据解得.4.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示.不计空气阻力,坡长为l=26 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2)滑雪者到达B处的速度;(3)滑雪者在水平雪地上运动的最大距离.【答案】1s99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间.【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a1==4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s(2)由静止到动摩擦因素发生变化的位移:x1=a1t2=2m动摩擦因数变化后,由牛顿第二定律得加速度:a2==5m/s2由v B2-v2=2a2(L-x1)解得滑雪者到达B处时的速度:v B=16m/s(3)设滑雪者速度由v B=16m/s减速到v1=4m/s期间运动的位移为x3,则由动能定理有:;解得x3=96m速度由v1=4m/s减速到零期间运动的位移为x4,则由动能定理有:;解得 x4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x3+x4=96+ 3.2=99.2m5.如图所示,传送带水平部分x ab=0.2m,斜面部分x bc=5.5m,bc与水平方向夹角α=37°,一个小物体A与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v=3m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,经b点时速率不变.(取g=10m/s2,sin37°=0.6)求:(1)物块从a运动到b的时间;(2)物块从b运动到c的时间.【答案】(1)0.4s;(2)1.25s.【解析】【分析】根据牛顿第二定律求出在ab段做匀加速直线运动的加速度,结合运动学公式求出a到b的运动时间.到达b点的速度小于传送带的速度,根据牛顿第二定律求出在bc段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b到c的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+= 2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v v s a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=6.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.7.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径; (2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间. 【答案】(1)0.1m (2)1m/s ;(3)4.25s 【解析】 【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间. 【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2= 代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得2v mg m R=,代入数据得R =0.1m (2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度,故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s 煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s8.如图所示,在足够大的光滑水平桌面上,有一个质量为10-2kg 的小球,静止在该水平桌面内建立的直角坐标系xOy 的坐标原点O .现突然沿x 轴正方向对小球施加大小为2×10-2N 的外力F 0,使小球从静止开始运动,在第1s 末所加外力F 0大小不变,方向突然变为沿y 轴正方向,在第2s 后,所加外力又变为另一个不同的恒力F .求:(1)在第1末,小球的速率; (2)在第2s 末,小球的位移;(3)要使小球在第3s 末的速度变为零所加的恒力F(保留两位有效数字) 【答案】(1)2m/s (210m (3)2.8×10-2N 【解析】 【分析】 【详解】(1)根据牛顿第二定律F 0=ma 在第1s 末,根据速度时间关系v 1=at 解得:v 1=2m/s ;(2)在第1s 末,根据位移时间关系x 1=212at 在第2s 内,小球从x 轴正方向开始做类平抛运动: 在x 方向:x 2=v 1t 在y 方向:2212y at =位移:22122()x x y ++联立解得10m ,设位移与X 轴正方向的夹角为θ,sinθ=1010(3)在第2s 末,沿x 轴正方向速度仍为v 1=2m/s在y 方向分速度为v 2=at=2m/s ,此时速度与x 轴正方向的夹角为45° 所加恒力一定与速度方向相反,小球沿x 轴方向加速度1x v a t= 沿y 轴方向加速度2y v a t= 小球的加速度22x y a a a =+根据牛顿第二定律F=ma 联立解得F=2.8×10-2N 【点睛】(1)根据牛顿第二定律和速度时间关系联立求解;(2)第2s 内,小球从x 轴正方向开始做类平抛运动,分别求出x 方向和y 方向的位移,根据勾股定理求解小球的位移;(3)分别根据x 方向和y 方向求出小球的加速度,根据勾股定理求解小球总的加速度,根据牛顿第二定律求小球受到的力.9.如图,足够长的斜面倾角θ=37°.一个物体以v 0=12m/s 的初速度从斜面A 点处沿斜面向上运动.物体与斜面间的动摩擦因数为μ=0.25.已知重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)物体沿斜面上滑时的加速度大小a 1; (2)物体沿斜面上滑的最大距离x ;(3)物体沿斜面到达最高点后返回下滑时的加速度大小a 2; (4)物体从A 点出发到再次回到A 点运动的总时间t . 【答案】(1)物体沿斜面上滑时的加速度大小a 1为8m/s 2; (2)物体沿斜面上滑的最大距离x 为9m ;(3)物体沿斜面到达最高点后返回下滑时的加速度大小a 2为4m/s 2; (4)物体从A 点出发到再次回到A 点运动的总时间3.62s . 【解析】试题分析:(1)沿斜面向上运动,由牛顿第二定律得1sin cos mg mg ma θμθ+=a 1=8m/s 2(2)物体沿斜面上滑由2012=v a x ,得x=9m(3)物体沿斜面返回下滑时2sin cos mg mg ma θμθ-=,则a 2=4m/s 2(4)物体从A 点出发到再次回到A 点运动的总时间t . 沿斜面向上运动011v a t =,沿斜面向下运动22212x a t = 则t=t 1+t 2=3(21)+s≈3.62s 考点:考查了牛顿第二定律与运动学公式的应用10.如图所示,航空母舰上的水平起飞跑道长度L=160m .一架质量为m=2.0×104kg 的飞机从跑道的始端开始,在大小恒为F=1.2×105N 的动力作用下,飞机做匀加速直线运动,在运动过程中飞机受到的平均阻力大小为F f =2×104N .飞机可视为质点,取g=10m/s 2.求:(1)飞机在水平跑道运动的加速度大小;(2)若航空母舰静止不动,飞机加速到跑道末端时速度大小;(3)若航空母舰沿飞机起飞的方向以10m/s 匀速运动,飞机从始端启动到跑道末端离开.这段时间内航空母舰对地位移大小.【答案】(1)25.0/a m s =(2)40/v m s =(3)280x m = 【解析】 【分析】 【详解】(1)飞机在水平跑道上运动时,水平方向受到推力与阻力作用,设加速度大小为a , 由牛顿第二定律可得F 合=F ﹣F f =ma代入数据得a 1=5.0 m/s 2(2)由运动学公式可知v 2=2aL代入数据得飞机到达倾斜跑道末端时的速度大小v =40 m/s(3)对于飞机21012x v t at =+对于航空母舰有x 2=v 0t由几何关系:x 1﹣x 2=L即有212at L 代入数据解得t =8s .飞机离开航空母舰时,航空母舰的对地位移大小x 2=v 0t =80m .【点评】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁.。

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用【考点一 牛顿第二定律的瞬时性问题】1.两种模型物体的加速度与其所受合力具有因果关系,物体的加速度总是随其所受合力的变化而变化,具体可简化为以下两种模型:2.求解瞬时性问题的一般思路求解瞬时性问题时应注意的一点物体的加速度能够随其所受合力的突变而突变,但物体速度的变化需要一个过程的积累,不会发生突变。

【考点二 动力学的两类基本问题】动力学的两类基本问题的解题步骤解决动力学两类基本问题的关键(1)两个分析:物体的受力情况分析和运动过程分析。

(2)两个桥梁:加速度是联系物体运动和受力的桥梁;衔接点的速度是联系相邻两个过程的桥梁。

【考点三 动力学中的图像问题】1.常见的动力学图像v­t图像、a­t图像、F­t图像、F­a图像等。

2.图像问题的类型(1)已知物体受的力随时间变化的图像,分析物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图像,分析物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

3.解题策略(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确图像的物理意义。

(2)注意图像中的特殊点、斜率、面积所表示的物理意义:图线与横、纵坐标轴的交点,图线的转折点,两图线的交点,图线的斜率,图线与坐标轴或图线与图线所围面积等所表示的物理意义。

(3)明确能从图像中获得的信息:把图像与具体的题意、情境结合起来,应用物理规律列出与图像对应的函数表达式,进而明确“图像与公式”“图像与过程”间的关系,以便对有关物理问题作出准确判断。

【考点四 超重和失重的理解】1.超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。

(2)物体超重或失重多少由物体的质量m和竖直加速度a共同决定,其大小等于ma。

(3)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。

(4)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。

高考物理(热点+题型全突破)专题3.1 牛顿运动定律(含解

高考物理(热点+题型全突破)专题3.1 牛顿运动定律(含解

专题3.1 牛顿运动定律“牛顿运动定律“是高中物理的核心内容之一,是动力学的基石,也是整个经典力学的理论基础,是历年高考的必考内容。

《考试说明》中对本章的知识能力要求几乎达到了最高地步,因此在历年的高考中,每年都要考查到本章知识,有时还会多题考查。

出题的形式多样,有选择题、填空题和计算题。

一、本章内容、考试范围及要求牛顿运动定律的应用二、常见题型展示1. 牛顿第一、第二与第三定律的理解与应用2. 超重与失重的理解与应用3. 牛顿第二定律的瞬时、临界与极值问题4. 动力学中的两大类基本问题5. 动力学中的图像问题6. 动力学中的三类模型:连接体模型—叠加体模型—传送带模型7. 整体法与隔离法在连接体与叠加体模型中的应用8. 实验:探究加速度与力、质量之间的关系本章考试题型归纳与分析:考试核心考点与题型:(1)选择题:连接体或者叠加体组系统的受力分析、动力学中的图像问题(2)解答题:单独考察多物体系统的运动或者动力学中的三类模型(3)实验题:考察匀变速直线运动与牛顿定律的综合题三、近几年高考在本章中的考查特点1. 轻弹簧模型与瞬时性问题(2015·海南单科,8,5分) (多选)如图,物块a、b和c的质量相同,a和b,b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2【答案】AC2. 超重、失重与加速度方向判断(1)(2016全国新课标Ⅰ卷)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【答案】BC【解析】因为原来质点做匀速直线运动,合外力为0,现在施加一恒力,质点所受的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变,速度的变化率不变。

高考物理 专题3.3 牛顿运动定律的综合应用热点题型和提分秘籍

高考物理 专题3.3 牛顿运动定律的综合应用热点题型和提分秘籍

专题3.3 牛顿运动定律的综合应用1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决实际问题.热点题型一对超重、失重的理解例1、 (多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图所示,以竖直向上为a的正方向,则人对地板的压力 ( )A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小答案:AD【提分秘籍】(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。

(2)物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体具有向上的加速度还是向下的加速度,这也是判断物体超重或失重的根本所在。

(3)当物体处于完全失重状态时,重力只有使物体产生a=g的加速度效果,不再有其他效果。

此时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、液体不再产生压强和浮力等。

【举一反三】如图甲所示,在电梯箱内轻绳AO、BO、CO连接吊着质量为m的物体,轻绳AO、BO、CO 对轻质结点O的拉力分别为F1、F2、F3。

现电梯箱竖直向下运动,其速度v随时间t的变化规律如图乙所示,重力加速度为g,则( )A.在0~t1时间内,F1与F2的合力等于F3B.在0~t1时间内,F1与F2的合力大于mgC.在t1~t2时间内,F1与F2的合力小于F3D.在t1~t2时间内,F1与F2的合力大于mg答案:AD热点题型二动力学中整体法与隔离法的应用例2、一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图3­3­4(a)所示。

t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。

已知碰撞后1 s时间内小物块的v­t图线如图(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律提高【两类动力学基本问题】1、如图(a)所示,O为水平直线MN上的一点,质量为m的质点在O点的左方时只受到水平恒力F1作用,运动到O点的右方时,同时还受到水平恒力F2的作用,设质点由图示位置静止开始运动,其v-t图像如图(b)所示,由图可知下列说法不正确的是()A.质点在O点的左方加速度大小为v1/(t4-t3)B.质点在O点右方运动的时间为t3–t1C.F2的大小2mv1/(t3-t1)D.质点在t=0到t=t4这段时间内的最大位移为v1t1/2,且质点最终能回到开始出发的点2、一斜块M静止于粗糙水平面上,再在其斜面上放一滑块m,若给m一向下的初速度v0,则m正好保持匀速下滑。

现在m下滑的过程中再加上一个作用力,则以下说法正确的是(AC )A.在m上加一竖直向下的力F A,则m将保持匀速运动,M对地仍无摩擦力的作用B.在m上加一沿斜面向下的力F B,则m将加速运动,M对地有水平向左的静摩擦力的作用C.在m上加一水平向右力F C,则m将做减速运动,在m停止前M对地仍无摩擦力的作用D.在m上加一沿斜面向上的力F D,则m将做减速运动,在m停止前M对地会有水平向右的静摩擦力作用3、如图所示,水平光滑绝缘杆从物体A中心的孔穿过,A质量为M,用绝缘细线将另一质量为m的小球B 与A连接,M>m,整个装置所在空间存在水平向右的匀强电场E。

现仅使B带正电且电荷量大小为Q,发现A、B一起以加速度a向右运动,细线与竖直方向成α角。

若仅使A带负电且电荷量大小为Q’,则A、B一起以加速度a′向左运动时,细线与竖直方向也成α角,则:( D )A.a′=a,Q′=Q B.a′>a,Q′=Q C.a′<a,Q′<Q D.a′>a,Q′>Q【超重、失重问题】1、如图所示是某同学站在力板传感器上做下蹲一起立的动作时记录的压力F随时间t变化的图线。

由图线可知该同学( AC )A.体重约为650NB.做了两次下蹲-起立的动作C.做了一次下蹲-起立的动作,且下蹲后约2s起立D.下蹲过程中先处于超重状态后处于失重状态2、举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2)点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.答案:160kg【瞬时问题】1、如图所示,质量分别为m 1、m 2的A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( ) A、都等于2g B、0和()g m m m 2212+ C、()g m m m 2212+和0 D、2g 和0 2、如图所示,吊篮A 、物体B 、物体C 的质量相等,弹簧质量不计,B 和C 分别固定在弹簧两端,放在吊篮的水平底板上静止不动.将悬挂吊篮的轻绳剪断的瞬间( )A .吊篮A 的加速度大小为gB .物体B 的加速度大小为gC .物体c 的加速度为3/2gD .A 、B 、C 的加速度大小都等于g 3、如图所示,弹簧一端固定在天花板上,另一端连一质量m=2kg 的秤盘,盘内放一个质量M =1kg的物体,秤盘在竖直向下的拉力F 作用下保持静止,F=30N ,当突然撤去外力F 的瞬时,物体对秤盘的压力为(g=10m/s 2)A .10N B. 15N C. 20N D.40N【等时圆模型问题】1、如图4,位于竖直平面内的固定光滑圆轨道与水平面相切于M 点,与竖直墙相切于点A ,竖直墙上另一点B 与M 的连线和水平面的夹角为600,C 是圆环轨道的圆心,D 是圆环上与M 靠得很近的一点(DM 远小于CM )。

已知在同一时刻:a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道运动到M 点;c 球由C 点自由下落到M 点;d 球从D 点静止出发沿圆环运动到M 点。

则:( C )A 、a 球最先到达M 点B 、b 球最先到达M 点C 、c 球最先到达M 点D 、d 球最先到达M 点2、如图5所示,在竖直面内有一圆,圆内OD 为水平,圆周上有三根互成030的光滑杆O A 、O B 、O C ,每根杆上套着一个小球(图中未画出)。

现让一个小球分别沿三根杆顶端无初速下滑到O ,所用的时间分别为A 、B 、C ,则( B )A 、ABC t t t == B 、A B C t t t << C 、A B C t t t >>D 、无法确定 A B C D M 图43、在竖直平面内,固定一个半径为R 的大圆环,其圆心为O ,在圆内与圆心O同一水平面上的P 点搭一光滑斜轨道PM 到大环上,如图13所示,OP =d <R 。

欲使物体从P 点释放后,沿轨道滑到大环的时间最短,求M 点位置(用OM 与水平面的夹角α的三角函数表达)。

【连接体问题】1、如图所示,50个大小相同、质量均为m 的小物块,在平行于斜面向上的恒力F 作用下一起沿斜面向上运动。

已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g ,则第3个小物块对第2个小物块的作用力大小为 A .B .C .D .因为动摩擦因数未知,所以不能确定2、三个物体A 、B 、C 均静止,轻绳两端分别与A 、C 两物体相连且抻直,m A =3kg ,m B =2kg ,m C =1kg ,物体A 、B 、C 间的动摩擦因数均为μ=0.1,地面光滑,轻绳与滑轮间的摩擦可忽略不计.若要用力将B 物体从AC 之间拉出来,则作用在B 物体上水平向左的拉力为(最大静摩擦力等于滑动摩擦力,取g=10m/s 2)( D )A .F>3NB .F>6NC .F>8ND .F>9NO A B C 030 030 030 图5 DO P M d α θ图133、(与机械能守恒定律结合)如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上。

现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。

已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计。

开始时整个系统处于静止状态;释放A 后,A 沿科面下滑至速度最大时,C 恰好离开地面。

下列说法正确的是( AC )A .外面倾角=30°B .A 获得的最大速度为gC .C 刚离开地面时,B 的加速度为零D .从释放A 到C 刚离开地面的过程中,A 、B 两小球组成的系统机械能守恒4、一人在井下站在吊台上,用如图1所示的定滑轮装置拉绳把吊台和自己提升上来。

图中跨过滑轮的两段绳都认为是竖直的且不计摩擦。

吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s 2,求这时人对吊台的压力。

(g=9.8m/s 2)(200N )5、如图所示,水平面上有一固定着轻质定滑轮O 的木块A ,它的上表面与水平面平行,它的右侧是一个倾角θ=370的斜面。

放置在A 上的物体B 和物体C 通过一轻质细绳相连,细绳的一部分与水平面平行,另一部分与斜面平行。

现对A 施加一水平向右的恒力F .使A 、B 、C 恰好保持相对静止。

已知A 、B 、C 的质量均为m ,重力加速度为g ,不计一切摩擦,求恒力F 的大小。

(sin37°=0.6,cos37°=0.8)【弹簧问题、临界极值问题】1、如图所示,甲、乙两物体分别固定在一根弹簧的两端,并放在光滑水平的桌面上,两物体的质量分别为m 1和m 2 ,弹簧的质量不能忽略.甲受到方向水平向左的拉力F l 作用,乙受到水平向右的拉力F 2作用.下列说法正确的是( )A .只要F l <F 2, 甲对弹簧的拉力就一定小于乙对弹簧的拉力B .只要m l <m 2,甲对弹簧的拉力就一定小于乙对弹簧的拉力C .必须F l <F 2且m l <m 2 ,甲对弹簧的拉力才一定小于乙对弹簧的拉力D .不论F l 、F 2及m l <m 2的大小关系如何,甲对弹簧的拉力都等子乙对弹簧的拉力图12、如图所示,在倾角为θ的光滑的斜面上,轻质弹簧一端与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m的物体B靠在平板的右侧。

开始时用手按住物体B,现放手A和B沿斜面向上运动的距离为L时,同时达到最大速度v,重力加速度为g,则以下说法正确的是A. A和B达到最大速度V时,弹簧是自然长度B A和B达到最大速度v时A和B恰要分离C. 从释放到A和B达到最大速度V的过程中,弹簧对A所做的功等于D. 从释放到和B达到最大速度V的过程中3受到的合力对/I所做的功等于3、如图甲所示,平行于斜面的轻弹簧,劲度系数为k,一端固定在倾角为θ的斜面底端,另一端与Q物块连接,P、Q质量均为m,斜面光滑且固定在水平面上,初始时物块均静止.现用平行于斜面向上的力F拉物块P,使P做加速度为a的匀加速运动,两个物块在开始一段时间内的v—t图象如图乙所示(重力加速度为g),则()A.施加拉力前,Q给P的力大小为mgsinθB.施加拉力前,弹簧的形变量为2mgsinθ/kC.到t1时刻,弹簧释放的弹性势能为mv12/2,D.t2时刻,弹簧恢复到原长,物块Q的速度达到最大4、一弹簧一端固定在倾角为37°的光滑斜面的底端,另一端拴住质量为m1=4 kg的物块P,Q为一重物,已知Q的质量为m2=8 kg,弹簧的质量不计,劲度系数k=600 N/m,系统处于静止,如图8所示.现给Q施加一个方向沿斜面向上的力F,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s时间内,F为变力,0.2 s 以后,F为恒力,求:力F的最大值与最小值.(sin 37°=0.6,g=10 m/s2)(最大值72 N,最小值36 N)图8【动力学图像】1、如图甲所示,在粗糙的水平面上,物块A 在水平向右的外力F 的作用下做直线运动,其v-t 图象如图乙中实线所示.下列判断正确的是( )考例一:A 、在0 ~1s 内,外力F 不断变化B 、在1~3 s 内,外力F 的大小恒定C 、在3~4s 内,外力F 不断减小D 、在3~4s 内,外力F 不断增大考例二:A .在0~1s 内和3~4s 内,外力F 的冲量大小相等B .在0~1s 内和3~4s 内,外力F 的冲量大小不相等C .在0~1s 内,外力F 做功为2021mv D.在3~4s 内,合外力做功为零2、一木板在光滑水平面上向右滑动,木板上表水平且粗糙。

相关文档
最新文档