六年级(小学奥数)举一反三6-10答案

合集下载

小学奥数六年级举一反三6-10答案改良

小学奥数六年级举一反三6-10答案改良

第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1。

如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、 练1 1、=82 、设戊是100厘米高,可推出甲是101厘米高。

3、乙仓最多,丙仓最少,设甲、乙、丙三个仓库原来各有100吨,可推出这时乙有115吨,丙有90吨。

例题2。

足球门票15元一张,降价后观众增加一倍,收入增加15 ,问一张门票降价多少元?【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15 )=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+15)÷2=6(元)答:每张票降价6元。

说明:如果设原来有a 名观众,则每张票降价: 15-15a ×(1+15 )÷2a =6(元)练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分? 2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。

举一反三奥数六年级答案

举一反三奥数六年级答案

举一反三奥数六年级答案奥数是每个小学生都需要学习的科目,它不仅可以提升孩子的数学能力,而且还可以锻炼孩子的逻辑思维和创造力。

在学习奥数的过程中,举一反三是非常重要的一个技巧。

以下是奥数六年级举一反三的答案及其相关内容:一、题目:如果一只蚂蚁从一个点出发,沿着一条线走到另一个点,那么这条线的长度是多少?答案:这条线的长度就是这只蚂蚁走过的路程。

举一反三:假设一只蚂蚁从一个点出发,沿着一个三角形的边缘走一圈,然后又回到起点,那么这只蚂蚁走过的总路程是多少?答案:这只蚂蚁走过的总路程是三条边的长度之和。

二、题目:小明有8个苹果,他想把这些苹果平分给他和他的两个朋友,每人分到几个苹果?答案:小明和他的两个朋友每人分到2个苹果,还剩2个苹果。

举一反三:小明有n个苹果,他想把这些苹果平分给他和他的k个朋友,每人分到几个苹果?如果有苹果剩余,会剩下几个苹果?答案:小明和他的k个朋友每人分到n/k个苹果,还剩下n%k个苹果。

三、题目:有一张纸片厚度为0.1毫米,折叠100次后它的厚度是多少?答案:折叠100次后,这张纸的厚度约为10亿米,相当于地球和月球的距离。

举一反三:有一张纸片厚度为t毫米,折叠n次后它的厚度是多少?答案:折叠n次后,这张纸的厚度约为2^n×t毫米。

四、题目:有一个四位数,其中万位、千位、百位、个位上的数字分别是1、2、3、4,将这个四位数逆序排列后得到一个新的数是多少?答案:逆序排列后得到的新数是4321。

举一反三:有一个六位数,其中万位、千位、百位、十位、个位上的数字分别是1、2、3、4、5、6,将这个六位数逆序排列后得到一个新的数是多少?答案:逆序排列后得到的新数是654321。

五、题目:9个球,其中8个重量相等,1个重量略重,用天平至少称几次可以找到那个略重的球?答案:用天平两次可以找到那个略重的球。

举一反三:m个球,其中m-1个重量相等,1个重量略重,用天平至少称几次可以找到那个略重的球?答案:用天平log₂(m)次可以找到那个略重的球。

小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版

小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

小学奥数(六年级)举一反三

小学奥数(六年级)举一反三

目录目录 (1)专题1 简便运算 (2)专题2 比的应用 (5)专题3 行程问题 (8)专题4 工程问题 (11)专题5 面积计算 (14)专题6 周长、表面积和体积 (17)专题7 “牛吃草”问题 (20)专题8 浓度应用题 (23)专题9 流水行船题 (25)专题10 行程问题2 (28)专题11 工程问题2 (30)专题12 方程问题 (5)附件:小学数学基础知识整理 (33)专题1 简便运算专题简析根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的分数小数四则混合运算化繁为简、化难为易。

计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配率—提取公因式来简算,这种思考方法在四则运算中用处很大。

简便运算中,常用的方法有:找朋友,凑整法,提取公因式,分数裂项,最高的境界是抵消。

王牌例题1计算:4.75-9.63+(8.25-1.37)举一反三11. 6.73-2817+(3.27-1917) 2. 759-(3.8+159)-115王牌例题2计算:99999×11111举一反三21. 9999999999×11111111112. 66666×33333王牌例题3计算:36×1.09+1.2×67.3举一反三31. 45×2.08+1.5×37.6 2. 52×11.1+2.56×778 王牌例题4计算:112⨯+123⨯+134⨯+145⨯+…+1910⨯(提示:112⨯=1-12)举一反三41.123⨯+134⨯+145⨯+…+199100⨯2.113⨯+135⨯+157⨯+179⨯+…+19799⨯王牌例题5计算:81.5×15.8+81.5×51.8+67.6×18.5举一反三51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.3王牌例题6计算:1234+2341+3412+4123举一反三61. 23456+34562+45623+56234+62345 王牌例题7计算:199319941 199319921994⨯-+⨯举一反三71. 548361362 362548186⨯+⨯-✈智力冲浪1. 45678+56784+67845+78456+845672. 72×2.09-1.8×73.63.113⨯+135⨯+157⨯+179⨯+…+1197199⨯4. 201220142013 201320141⨯+⨯-5. 124.68+324.68+524.68+724.68+924.68专题2 方程问题专题简析解答这类问题时,一定要耐心、细心,千万不要粗心。

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.7.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.8.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.9.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.10.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.11.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.12.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.15.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.7.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.8.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.9.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.10.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.11.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.12.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.15.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.。

小学奥数六年级举一反三完整版

小学奥数六年级举一反三完整版

小学奥数六年级举一反三Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-×b,求(25*12)*(10*5)。

例题2。

设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2.设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3.设M、N是两个数,规定M*N=+,求10*20-。

例题3。

如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。

小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版

小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

小学六年级奥数举一反三

小学六年级奥数举一反三

小学六年级奥数举一反三一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义’从而解答某些算式的一种运算。

解答定义新运算’关键是要正确地理解新定义的算式含义’然后严格按照新定义的计算程序’将数值代入’转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式’它使用的是一些特殊的运算符号’如;某、△、⊙等’这是与四则运算中的“+、-、某、÷”不同。

新定义的算式中有括号的’要先算括号里面的。

但它在没有转化前’是不适合于各种运算定律的。

二、精讲精练[例题1]假设a某b=(a+b)+(a-b)’求13某5和13某[5某4]。

[思路导航]这题新运算被定义为;a某b等于a和b两数之和加上两数之差。

这里“某”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此’在13某[5某4]中’就要先算小括号里的[5某4]。

练习1;1’将新运算“某”定义为;a某b=(a+b)某(a-b)’。

求27某9。

2’设a某b=a2+2b’那么求10某6和5某[2某8]。

3’设a某b=3a-b某1/2’求[25某12]某[10某5]。

[例题2]设p、q是两个数’规定;p△q=4某q-(p+q)÷2。

求3△(4△6)。

[思路导航]根据定义先算4△6。

在这里“△”是新的运算符号。

练习2;1.设p、q是两个数’规定p△q=4某q-[p+q]÷2’求5△[6△4]。

2.设p、q是两个数’规定p△q=p2+[p-q]某2。

求30△[5△3]。

3.设M、N是两个数’规定M某N=M/N+N/M’求10某20-1/4。

[例题3]如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’2/263某3=3+33+333’4某2=4+44’那么7某4=________;210某2=________。

[思路导航]经过观察’可以发现本题的新运算“某”被定义为。

因此练习3;1.如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’3某3=3+33+333’……那么4某4=________。

六年级举一反三b版奥数题及答案

六年级举一反三b版奥数题及答案

六年级举一反三b版奥数题及答案六年级奥数题目通常涉及一些基础的数学概念和技巧,比如分数、比例、几何、数列等。

以下是一些典型的六年级奥数题目及答案:1. 题目:一个长方体的长、宽、高分别为20厘米、15厘米和10厘米。

如果将这个长方体的长缩短5厘米,宽增加5厘米,高度不变,那么新长方体的体积是原来的多少倍?答案:首先计算原长方体的体积:20cm × 15cm × 10cm = 3000立方厘米。

然后计算新长方体的长、宽、高分别为15cm、20cm和10cm,体积为:15cm × 20cm × 10cm = 3000立方厘米。

新长方体的体积与原长方体的体积相同,所以是1倍。

2. 题目:一个数列的前三项是2、5、10,从第四项开始,每一项都是其前三项的和。

求这个数列的第10项。

答案:根据题意,数列为2、5、10、17、29、50、87、152、265、457。

第10项是457。

3. 题目:一个班级有40名学生,其中3/5的学生喜欢数学,2/3的学生喜欢英语。

如果喜欢数学和英语的学生人数之和是31人,那么既不喜欢数学也不喜欢英语的学生有多少人?答案:喜欢数学的学生有40 × 3/5 = 24人,喜欢英语的学生有40 × 2/3 = 26.67人,取整数为26人。

喜欢数学和英语的学生有24 + 26 - 31 = 19人。

因此,既不喜欢数学也不喜欢英语的学生有40 - 19 = 21人。

4. 题目:一个水池有A、B两个进水管,单独打开A管注满水池需要3小时,单独打开B管需要5小时。

如果A、B两管同时打开,需要多少时间才能注满水池?答案: A管每小时注水1/3池,B管每小时注水1/5池。

两管同时打开,每小时注水量为1/3 + 1/5 = 8/15池。

所以,注满水池需要的时间是1 ÷ (8/15) = 15/8 = 1.875小时,即1小时52.5分钟。

六年级奥数(举一反三版)

六年级奥数(举一反三版)

- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b ,那么求10*6和5*(2*8)。

3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这里“△”是新的运算符号。

练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

小学奥数举一反三

小学奥数举一反三

小学奥数举一反三
小学奥数举一反三是指通过一个问题找出更多的类似问题
来训练学生的思维能力和应用能力。

下面是一个例子:
问题:有一张立方体的正面面积是6平方米,问这个立方
体的体积是多少?
解答:由于立方体的六个面都是正方形,所以每个面的面
积都相同。

由题意可知正面面积是6平方米,那么每个面
的面积是6/6=1平方米。

那么这个立方体的体积就是
1*1*1=1立方米。

举一反三的问题1:如果一个立方体正面的面积是8平方米,这个立方体的体积是多少?
解答:根据原问题的解题思路,可以得知每个面的面积是
8/6=4/3平方米,那么这个立方体的体积就是
(4/3)*(4/3)*(4/3)=(64/27)立方米。

举一反三的问题2:如果一个立方体正面的面积是10平方米,这个立方体的体积是多少?
解答:同样地,每个面的面积是10/6=5/3平方米,那么
这个立方体的体积就是(5/3)*(5/3)*(5/3)=(125/27)立方米。

通过一道题目可以引出多个类似的问题,通过解答这些问
题可以拓展学生的思维和应用能力。

小学六年级奥数举一反三单选题100道及答案解析

小学六年级奥数举一反三单选题100道及答案解析

小学六年级奥数举一反三单选题100道及答案解析1. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。

已知甲车每小时比乙车快20 千米,则A、B 两地相距()千米。

A. 560B. 720C. 960D. 1120答案:C解析:相遇后甲3 小时行的路程等于相遇前乙4 小时行的路程,甲乙时间比是3:4,速度比是4:3。

甲比乙快一份,一份是20 千米/小时,甲速度是80 千米/小时,全程80×(4 + 3)= 560 千米。

2. 一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A. 1:3B. 3:4C. 9:8D. 8:9答案:D解析:圆柱体积= 底面积×高,圆锥体积= 1/3×底面积×高。

设圆柱底面半径2r,圆锥底面半径3r,圆柱高h1,圆锥高h2,根据体积比列出方程:(π×(2r)²×h1) : (1/3×π×(3r)²×h2) = 3 : 2,解得h1 : h2 = 8 : 9。

3. 一件商品,先提价20%,再降价20%,现在的价格与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价20%后价格为100×(1 + 20%) = 120 元,再降价20%,价格为120×(1 - 20%) = 96 元,所以价格降低了。

4. 把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方厘米。

A. 56.52B. 169.56C. 226.08D. 无法确定答案:A解析:圆锥底面直径和高都是 6 厘米,体积= 1/3×π×(6÷2)²×6 ≈56.52 立方厘米。

5. 有含糖15%的糖水20 千克,要使糖水的浓度为20%,需加糖()千克。

小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版第10讲假设法解题[一]一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件’然后再和已知条件配合推算。

有些题目用假设法思考’能找到巧妙的解答思路。

运用假设法时’可以假设数量增加或减少’从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样’再根据乘法分配律求出这个分率对应的和’最后依据它与实际条件的矛盾求解。

二、精讲精练[例题1]甲、乙两数之和是185’已知甲数的1/4与乙数的1/5的和是42’求两数各是多少?[思路导航]假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍’则变成了“甲数与乙数的4/5的和为168”’再用185减去168就是乙数的1/5。

解;乙;[185-42×4]÷[1-1/5×4]=85答;甲数是100’乙数是85。

练习1;1.甲、乙两人共有钱150元’甲的1/2与乙的1/10的钱数和是35元’求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7’乙队人数的1/3’共抽调78人’甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥’已知四月份完成总数的1/3多50吨’五月份完成总数的2/5少70吨’还有420吨没完成’第二季度原计划生产多少吨?[例题2]彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9’则比黑白电视机多5台。

问;两种电视机原来各有多少台?[思路导航]从图中可以看出;假设黑白电视机增加5台’就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后’相当于彩色电视机的[1-1/9]= 8/9。

[250+5]÷[1+1-1/9]=135[台]250-125=115[台]答;彩色电视机原有135台’黑白电视机原有115台。

练习2;1.姐妹俩养兔120只’如果姐姐卖掉1/7’还比妹妹多10只’姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个’篮球借出1/3后’比足球少1个’原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只’如果将鸡卖掉1/20’还比鸭多17只’小明家原来养的鸡和鸭各有多少只?[例题3]师傅与徒弟两人共加工零件105个’已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个’师、徒各加工零件多少个?[思路导航]假设师、徒两人都完成了4/7’一个能完成[105×4/7]=60个’和实际相差[60-49]=11个’这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

六年级奥数全(举一反三)

六年级奥数全(举一反三)

第一章 数与计算第一单元 同余问题1. 知识前提。

(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。

(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。

n 个相同因数a 相乘,即n aa aa •个,记做n a 。

其中a 叫做底,n 叫做指数,na 读做a 的n 次方。

(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。

即m n m n a a a +•=。

② 幂的乘方,底数不变,指数相乘。

即 ()mn nm aa =。

③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。

即 ()nnnab a b =•。

2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a =h (mod m )。

我们把m 称为模。

如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。

3. 规律、方法应用。

(1) 反身性规律:a 和a 对于m 同余。

(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。

(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。

(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。

(5) 同余的乘方规律:如果a 和b 对于m 同余,那么na 和nb 也对于m 同余。

(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++和123n b b b b +++也对于m 同余。

小学奥数举一反三(六年级)A版

小学奥数举一反三(六年级)A版

小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

六年级下数学-奥数 举一反三 苏教版( 488 张)

六年级下数学-奥数 举一反三 苏教版( 488 张)
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算 符号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
定义新运算是指运用某种特殊符号来表示特定的意义,从而 解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序,将数值代入,转化为常规 的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是 一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中 的“+、-、×、÷”不同的。
那么81=1/2,3*2=1/33, 4*3=1/444,那么(6*3)÷ (2*6)=________。多少分?
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5, ⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?
【思路导航】这题的新运算被定义为:@ = (a-1)×a×
所需时间:176÷[30+(30—16)]=4(小时)
=(6×7×8)/(5×6×7)-1
= 1 又 3/5-1
= 3/5
【 练 习 4 】 1 . 规 定 : ②=1×2×3 , ③ = 2×3×4 , ④ = 3×4×5 , ⑤ = 4×5×6 , …… 如 果 1/⑧ - 1/⑨ = 1/⑨×A , 那么A=________。
【例题5】设a⊙b=4a-2b+1/2ab,求z⊙(4⊙1)=34中的 未知数x。
【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1 =16,再根据x⊙16=4x-2×16+1/2×x×16 = 12x-32, 然后解方程4⊙1=4×4-2×1+1/2×4×1=16

六年级奥数举一反三专项逻辑思维训练(十) 人教版

六年级奥数举一反三专项逻辑思维训练(十) 人教版

六年级奥数举一反三专项逻辑思维训练(十)1、某夫妻要在假期带小孩外出旅游.当地有甲、乙两家旅行社,旅游定价都一样,但对家庭旅游都有优惠.甲旅行社表示小孩可打六折;乙旅行社表示全家可打八五折.经核算,乙旅行社要便宜100元.那么成人旅游定价是多少?A.2000元B.1800元C.1500元D.1000元2、甲去北京出差,去时坐飞机,返回时坐高铁,若飞机的速度比高铁快3倍,且往返平均速度为480千米/小时,问甲乘坐的飞机速度为多少千米/小时?A.720B.768C.960D.12003 、篮球比赛中,每支球队上场球员为5名.某支篮球队共有12名球员,其中后卫5名(全明星球员1名),前锋5名(全明星球员1名),中锋2名.主教练准备排出双后卫阵型,且要保证全明星球员都要上场,问总共有多少种安排方式?A.60B.70C.140D.4804 、由于汛期暴雨某路段发生塌陷,要进行抢修,需在规定日期内完成,如果由甲工程队修,恰好按期完成;如果由乙工程队修,则要超过规定日期3天.如果两个工程队合作了2天,余下的部分由乙工程队单独做,正好在规定日期内完成.则规定日期的天数是:A.4B.5C.6D.75、某科学兴趣小组在进行一项科学实验,从装满100克浓度为80%的盐水中倒出40克盐水后,再倒入清水将杯倒满,搅拌后再倒出40克盐水,然后再倒入清水将杯倒满,这样反复三次后,杯中盐水的浓度是:A.11.52%B.17.28%C.28.8%6、第一实验小学的少先队员在“希望工程”的募捐活动中,为偏远山区失学儿童捐献了一批图书,计划把这批书的又6本送给青山希望小学;把余下的一部分送给刘村希望小学,送给刘村希望小学的书比送给青山希望小学的3倍还多136本;又把第二次余下的75%又80本送给石桥希望小学;最后剩下的300本,由少先队员代表直接交给了林场希望小学.第一实验小学的少先队员们一共捐书的本数是:A.2000B.2400C.2600D.28007、一个由边长25人和15人组成的矩形方阵,最外面两圈人数总和为:A.232B.144C.165D.1968、汽博会开幕在即,甲乙丙三个人得到了两张参观票,于是三个人通过抽签决定这两张票的归属.在所设计的三个签中有两个签上写着“有”,一个签上写着“无”,抽签顺序是甲先、乙次、丙最后抽取.如果已知乙已经抽到了参观票,则甲也抽到参观票的概率是:A.2/3B.1/2C.1/3D.19、某水果超市购进苹果和葡萄共计100千克,总值若干元,定价标准是苹果降价20%,葡萄提价20%,这样苹果和葡萄每千克价格均为9.6元,总值比原来减少140元.计算一下,该超市购进苹果有多少千克?A.65B.70C.75D.8010、某汽车坐垫加工厂生产一种汽车座垫,每套成本是144元,售价是200元.一个经销商订购了120套这种汽车座垫,并提出:如果每套座垫的售价每降低2元,就多订购6套.按经销商的要求,该加工厂获得最大利润需售出的套数是:B.136C.128D.14211、某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个月增加了100件,并且商场第二个月比第一个月多获利2000元.此商品第二个月的销售件数是:A.270B.260C.170D.16012、要计算某高三学生在四次外语模拟考试中得到四个分数的平均分数,算法如下:每次选出其中的三个分数算出它们的平均数,再加上另外一个分数,用这种方法算了四次,分别得到以下四个分数:86,92,100,106.请你算出该学生这四次模拟考试成绩的平均分数是:A.56B.50C.48D.4613、某高校大学生数学建模竞赛协会共有240名会员,今欲调查参加国家级竞赛和省级竞赛的会员的人数,发现每个会员至少参加过一个级别的竞赛.调查结果显示:有的会员参加过国家级竞赛,有的会员两个级别的竞赛都参加过.问参加过省级竞赛的会员人数是:A.160B.120C.100D.14014、张先生今年70岁,他有三个孙子.长孙20岁,次孙13岁,幼孙7岁.问多少年后,三个孙子年龄之和与祖父的年龄相同?A.10B.15C.18D.2015、小张练习写数码,从1,2,3……连续写至1000多才停止.写完一数,共写了3201个数码.请问,小张写的最后一个数是多少?A.1032B.1056C.1072D.107716、小船顺流而下航行36公里到达目的地.已知小船返回时多用了1小时30分钟,小船在静水中速度为10公里/时,问水流速度是多少?A.8公里/时B.6公里/时C.4公里/时D.2公里/时17 、王明抄写一份报告,如果每分钟抄写30个字,则用若干小时可以抄完.当抄完时,将工作效率提高40%,结果比原计划提前半小时完成.问这份报告共有多少字?A.6025B.7200C.7250D.525018 、在一堆桃子旁边住着5只猴子.深夜,第一只猴子起来偷吃了一个,剩下的正好平均分成5份,它藏起自己的一份,然后去睡觉.过了一会儿,第二只猴子起来也偷吃了一个,剩下的也正好平均分成5份,它也藏起自己的一份,然后去睡觉,第三、四、五只猴子也都依次这样做.问那堆桃子最少有多少个?A.4520B.3842C.3121D.210119 、在右图小空格中已填上了1及7两个自然数,如果其他空格也填上相应不同的数,使得任意一个横行、任意一个纵列以及任意一条对角线上的3个数之和都等于111.请问,位于中间的小正方形里应填的数是:A.61B.53C.41D.3720 、假设7个相异正整数的平均数是14,中位数是18,则此7个正整数中最大数最大是多少?A.58B.44C.35D.26。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六周 转化单位“1”(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。

如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的ba ;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =adbc 。

例题1。

乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12 ,两次共截去全长的几分之几?3. 一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。

他醒来时,发现剩下的路程是他睡着前所行路程的14 。

想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?练1 1、 =920 2、 =58 3、 =18 =38例题2。

修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?解一:8000×14 ×45 =1600(米)解二:8000×(14 ×45)=1600(米)答:第二周修了1600米。

练习2用两种方法解答下面各题:1. 一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2. 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78,长颈鹿可活多少年?3. 仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?练2 1、 =7.5(吨) 2、 =35(年) 3、 =8吨例题3。

晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解: 15÷【(1-14 )×25 - 14 】=300(页)答:这本书有300页。

练习31. 有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的35,还剩90吨没有运。

这批货物有多少吨?2. 修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?3. 加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的49 。

已知乙加工的个数比甲少200个,这批零件共有多少个?练3 1、 =150吨 2、 =1600米 3、 =1500个 例题4。

男生人数是女生人数的45 ,女生人数是男生人数的几分之几?解:把女生人数看作单位“1”。

1÷45 =54把男生人数看作单位“1”。

5÷4=54练习41. 停车场里有小汽车的辆数是大汽车的34 ,大汽车的辆数是小汽车的几分之几?2. 如果山羊的只数是绵羊的67 ,那么绵羊的只数是山羊的几分之几?3. 如果花布的单价是白布的135 倍,则白布的单价是花布的几分之几?练4 1、 =113 2、=116 3、 =58例题5。

甲数的13 等于乙数的14,甲数是乙数的几分之几,乙数是甲数的几倍?解: 14 ÷13 =34 13 ÷14 =113答:甲数是乙数的34 ,乙数是甲数的113 。

练习51. 甲数的34 等于乙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?2. 甲数的123 倍等于乙数的56 ,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?3. 甲数是丙数的34 ,乙数是丙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?(想一想:这题与第一题有什么不同?)答案:练5 1、 =815 =178 2、 =12 =23 3、=178 =815第七周 转化单位“1”(二)专题简析:我们必须重视转化训练。

通过转化训练,既可理解数量关系的实质,又可拓展我们的解题思路,提高我们的思维能力。

例题1。

甲数是乙数的23 ,乙数是丙数的34 ,甲、乙、丙的和是216,甲、乙、丙各是多少?解法一:把丙数看所单位“1”那么甲数就是丙数的34 ×23 =12 ,丙:216÷(1+34 +34 ×23 )=96乙:96×34 =72甲:72×23=48解法二:可将“乙数是丙数的34 ”转化成“丙数是乙数的43 ”,把乙数看作单位“1”。

乙:216÷(23 +1+43 )=72甲:72×23 =48丙:72÷34=96解法三:将条件“甲数是乙数的23 ”转化为“乙数是甲数的32 ”,再将条件“乙数是丙数的34”转化为“丙数是乙数的43”,以甲数为单位“1”。

甲:216÷(1+32 +32 ×43 )=48乙:48×32 =72丙:72×43=96答:甲数是48,乙数是72,丙数是96。

练习1下面各题怎样计算简便就怎样计算:1. 甲数是乙数的56 ,乙数是丙数的34,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少? 2. 橘子的千克数是苹果的23 ,香蕉的千克数是橘子的12,香蕉和苹果共有220千克,橘子有多少千克?3. 某中学的初中部三个年级中,初一的学生数是初二学生数的910,初二的学生数是初三学生数的114 倍,这个学校里初三的学生数占初中部学生数的几分之几?练1 1、 丙数=64 乙数=48 甲数=40 2、 =110千克 3、=827例题2。

红、黄、蓝气球共有62只,其中红气球的35 等于黄气球的23 ,蓝气球有24只,红气球和黄气球各有多少只?解法一:将条件“红气球的35 等于黄气球的23 ”转化为“黄气球的只数是红气球的(35 ÷23=)910”。

先求红气球的只数,再求出黄气球的只数。

红气球:(62-24)÷(1+35 ÷23 )=20(只)黄气球:62-24-20=18(只)解法二:将条件“红气球的35 等于黄气球的23 ”转化为“红气球的只数是黄气球的(23 ÷35=)109”。

先求黄气球的只数,再求出红气球的只数。

黄气球:(62-24)÷(1+23 ÷35 )=18(只)红气球:62-24-18=20(只)答:红气球有20只,黄气球有18只。

练习21. 甲数的23 等于乙数的56,甲、乙两数的和是162,甲、乙两数各是多少?2. 今年8月份,甲所得的奖金比乙少200元,甲得的奖金的23 正好是乙得奖金的47,甲、乙两人各得奖金多少元?3. 商店运来香蕉、苹果和梨子共900千克,香蕉重量的14 等于苹果重量的13,梨子的重量是200千克。

香蕉和苹果各多少千克?练2 1、 乙数=72 甲数=90 2、 乙=1400元 甲=1200元3、 香蕉=400千克 苹果=300千克 例题3。

已知甲校学生数是乙校学生数的25 ,甲校的女生数是甲校学生数的310 ,乙校的男生数是乙校学生数的2150 ,那么两校女生总数占两校学生总数的几分之几?解法一:把乙校学生数看作单位“1”。

【25 ×310 +(1-2150 )】÷(1+25 )=12解法二:把甲校学生数看作单位“1”(52 -52 ×2150 +310 )÷(1+52 )=12答:甲、乙两校女生总数占两校学生总数的12 。

练习31. 在一座城市中,中学生数是居民的15 ,大学生是中学生数的14 ,那么占大学生总数的25的理工科大学生是居民数的几分之几?2. 某人在一次选举中,需34 的选票才能当选,计算23的选票后,他得到的选票已达到当选票数的56,他还要得到剩下选票的几分之几才能当选?3. 某校有35 的学生是男生,男生的120 想当医生,全校想当医生的学生的34是男生,那么全校女生的几分之几想当医生? 练3 1、=150 2、 =38 3、 =140例题4。

仓库里的大米和面粉共有2000袋。

大米运走25 ,面粉运作110 后,仓库里剩下大米和面粉正好相等。

原来大米和面粉各有多少袋?解法一:将大米的袋数看作单位“1”(1-25 )÷(1-110 )=232000÷(1+23)=1200(袋)2000-1200=800(袋) 解法二:将面粉的袋数看作单位“1” (1-110 )÷(1-25 )=322000÷(1+32 )=800(袋)2000-800=1200(袋)答:大米原有1200袋,面粉原有800袋。

练习41. 甲、乙两人各准备加工零件若干个,当甲完成自己的23 、乙完成自己的14时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备加工多少个零件? 2. 一批水果四天卖完。

第一天卖出180千克,第二天卖出余下的27,第三、四天共卖出这批水果的一半,这批水果有多少千克?3. 甲、乙两人合打一篇书稿,共有10500字。

如果甲增加他的任务的20%,乙减少他的任务的20%,那么甲打的字数就是乙的2倍,问两人原来的任务各是多少? 练4 1、 乙=56个 甲=126个 2、 =600千克 3、 甲=6000字 乙=4500字例题5。

400名学生参加植树活动,计划每个男生植树20棵,每个女生植树15棵。

除抽出25%的男生搞卫生外,其他的同学都按计划完成了植树任务。

问共植树多少棵? 解: 20×(1-25%)×400 =20×0.75×400 =6000(棵)答:共植树6000棵。

练习51. 有一块菜地和一块麦地,菜地的一半和麦地的13放在一起是13公顷,麦地的一半和菜地的13放在一起是12公顷,那么,菜地有多少公顷?2. 师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。

两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个?3. 有5元和2元的人民币若干张,其金额之比为15:4。

如果5元人民币减少6张,则两种人民币的张数相等。

求原来两种人民币的张数各是多少?答案:练5 1、 =18公顷 2、 徒弟=60个 师傅=108个3、 2元币=12张 5元币=18张第八周 转化单位“1”(三)专题简析:解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。

例题1。

有两筐梨。

乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。

甲、乙两筐梨共重多少千克?解: 5÷(55+3 -97+9)=80(千克)答:甲、乙两筐梨共重80千克。

相关文档
最新文档