量子力学(第四章)

合集下载

第四章 群论和量子力学

第四章  群论和量子力学

第一节 波函数作为不可约表示的基
另外,我们可以看出px和py轨道成对构成了E 表示的基。应该注意,在C3v群的特征标表中坐 标x和y被指明按照E表示变换。因而,函数 sinθcosφ和sinθsinφ按照与x和y同样的方式变换, 根据这一理由,具有本征函数sinθcosφ的p轨道 称为px,具有本征函数sinθsinφ的称为py。此外, 也说明了x和y坐标也表明了px和py轨道的变换性 质。
r31 r32 r33
j1
附录 二
两个矩阵的直积:
两个矩阵的直积和两个矩阵的乘积是不一样 的。如一个(2×2)的方阵与一个(3×3)的方阵其矩 阵的乘积是没有意义的,但其直积却是个(6×6) 的方阵。
附录 二
a11b11 a11b12 a11b13 a12b11 a12b12 a12b13
a11 a21
Hˆ ψi1 Eiψi1 Hˆ ψi2 Eiψi2
Hˆ ψik Eiψik
以操作R作用于波动方程,得:
HˆRˆψil Ei Rˆψil l 1,2,,k
第一节 波函数作为不可约表示的基
但此处Rψil一般可以是ψij的任意线性组合,
即:
k
Rˆ ψil rjlψij j1
对于另一个操作S,类似地有:
jl
j1 l1
第二节 直积
因而若想知道一个表示的特征标(R),这个表 示是其他两个特征标为χ1(R)和χ2(R)的表示的 直积,则对于群的每个操作R,特征标由下式给 出:
χR χ1Rχ2R
下面以C4v群为例来说明:
C4v

A1
1
A2
1
B1
1
B2
1
E
2
A1A2

量子力学课件:4.1 态的表象

量子力学课件:4.1 态的表象

量子力学 表象
基本矢量
不同表象波函数

u1(x), u2(x),..., un(x), ...
a1(t), a2(t),..., an(t), ...
量子状态Ψ(x,t)
态矢量
坐标系 不同坐标系的一组分量 i, j, k, Ax, Ay, Az 矢量 A
所以我们可以把状态Ψ看成是一个矢量——态矢量。 选取一个特定力学量 Q 表象,相当于选取特定的坐标系,
同样
x 在自身表象即坐标表象中对应
有确定值 x’本征函数是
δ(x'-x)。
这可由本征 值方程看出:
所以,在动量表象中, 具有确定动量p’的粒 子的波函数是以动量
p为变量的δ- 函数。
换言之,动量本征函 数在自身表象中是一 个δ函数。
x ( x x) x ( x x)
所以
x ( x) ( x x)
u1(x), u2(x), ..., un(x), ... 是 Q 表象 的基本矢量简称基矢。
波函数
a1 (t )
a2(t)
an(t)
是态矢量Ψ在Q表象中沿各基矢方 向上的“分量”。Q表象的基矢有 无限多个,所以态矢量所在的空 间是一个无限维的抽象的函数空 间,称为Hilbert空间。
设 算符Q的本征值为: Q1, Q2, ..., Qn, ...,
相应本征函数为:u1(x), u2(x), ..., un(x), ...。
将Ψ(x,t) 按 Q 的 本征函数展开:
(x, t) an(t)un( x)
n
若Ψ, un都是归一化的,
则 an(t) 也是归一化的。
证:
1 *( x, t)( x.t)dx
动量表象 C(p,t)=δ(p'-p)exp[-iE't/] C(p)=δ(p'-p)

量子力学第四章表象

量子力学第四章表象

第四章 表象理论4.1 态的表象变换和态的矩阵表示1.态的表象变换将F 表象中的态函数对力学量算符ˆQ 在F 表象中的本征函数组展开,则展开系数就是在Q 表象中的态函数。

这就是将F 表象中的态函数变换到Q 表象中的态函数的方法。

为了便于求出展开系数,通常要求ˆQ的本征函数组为幺正基组。

以从r 表象变换到Q 表象为例。

r 表象中的态函数为(,)r t ϕ [或()r ϕ]。

设ˆQ的本征值为分立谱Q n ,对应的本征函数为()n r φ 。

当各Q n 都无简并时,(,)r t ϕ 对()n r φ的展开式为:(,)()()n n nr t a t r ϕφ=∑(4.1-1) 若Q n 表示几个对易力学量算符本征值的集合,则上式中的n 应表示几个对应的量子数的集合。

当Q n 存在简并时,展开式为:(,)()()iiin n n r t a t r ϕφ=∑(4.1-2)其中i 为描写简并的角标。

下面只讨论无简并的情况。

在(4.1-1)式中,a n (t)是Q n 与t 的函数,a n (t)相当于a(Q n ,t)的简写。

当Q n 在整个展开系数中变动。

由于Q n 为分立谱,所以函数关系a n (t)-Q n 不是连续的。

a n (t)就是(,)r t ϕ 变换到Q表象中的态函数。

例如,将r表象中的某态函数(,,)r ϕθϕ对2ˆL 与ˆzL 的共同本征函数组(,)lm Y θφ展开: 0(,,)()(,)llm lm l m lr C r Y ϕθφθϕ∞==-=∑∑ (4.1-3)上式相当于(4.1-1)式中的n 表示两个量子数lm 的集合。

上式中的()lm C r 就是在2L 与z L 共同表象中的态函数。

2.本征态的排序本征态的排序可以化为对应的本征值的排序。

若本征值无简并,则参与排序的本征值没有相同者;若本征值有简并,则参与排序的本征值有相同者,其相同本征值的个数应与该本征值的简并度相同。

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

量子力学答案(第二版)苏汝铿第四章课后答案4.5-4#3 @

2 1 2 1 2 1
∴对角化的矩阵为 L x S Lx S
L x 2
1 2 1 2 1 2
0 1 2 1 2

1 1 2 0 1 0 2 1 1 0 1 0 2 1 0 1 0 1 2 2
取 a1
1 ,归一化的 2
1 2 1 ˆ 对应于 L x 的本征值 2 1 2
ˆ 表象的变换矩阵为 ˆ 2 和L ˆ 的共同表象变到 L 由以上结果可知,从 L x Z
1 2 S 0 1 2 1 2 1 2 1 2
ˆA ˆS ˆ 1 ) ( S ˆB ˆ 1 ) ( S ˆ 1 ) ( S ˆA ˆS ˆ 1 ) ˆS ˆS (S ˆB


利用⑴式于⑵,则可以写成
[ A
aa
ˆB ˆ 1 ) ( S ˆB ˆ 1 ) A ] 0 ˆS ˆS (S
a1 ∴ 2a1 a1
a1 由归一化条件 1 (a , 2a , a ) 2a1 4 a1 a1
* 1 * 1 * 1 2
1 2 1 ˆ 的本征值 1 对应于 L 取 a1 ,归一化的 x 2 2 1 2
a1 0 1 0 a 1 当 2 时,有 1 0 1 a 2 a 2 2 a 0 1 0 a 3 3
1 a1 2 a 1 1 (a1 a 3 ) a 2 2 1 a3 a2 2

第四章 量子力学密度矩阵

第四章 量子力学密度矩阵
61
ˆ (r ) 是只与系统自由度有关的力学量算符。 矢 Ψ (r , q ) 来描写。我们只关心系统的自由度。设 F
系统的状态能否由一个只与 r 有关的态矢来完全描述呢?显然仅当系统自由度和环境自由度 没有关联时才有可能。 1、复合系统的基矢(非耦合表象) 研究一个复合系统 A + B
A ;感兴趣的子系统, { m B :大环境(系统), { n
第四章
§4.1 密度算符(矩阵) 一、纯态和混合态 1、纯态 能用一个态矢描述的态称为纯态。
密度矩阵方法
任意个态矢的线性叠加是一个态矢,故仍为纯态。 2、混合态 体系的状态不能用一个态矢描述,而需要用一组态矢及其相应的概率来描述,称为 参与态: Ψ j ←→ p j (处在 Ψ j 态的概率) 3、区别 纯态:概率幅的相干叠加,两态之间发生干涉 混合态:概率的不相干叠加。
3、密度算符的性质
ˆ 满足本征值方程 如果算符力学量 F
ˆψ = F ψ F k k k
当本征值无简并时,则 {ψ k }构成正交归一完备系;当本征值简并时,本征矢未必正交, 但可以要求它是归一和完备的。
ˆ 是厄米算符: ρ ˆ+ = ρ ˆ (1) ρ ˆ 的本征值是非负的。 (2) ρ ˆ (3)对于密度算符 ρ ˆ =1 Tr ρ
Bloch 球心则是一个不含任何信息的完全随机的混态——垃圾态。
§4.2 密度算符的动力学演化方程 一、密度算符一般动力学方程
ˆ 和一般的算符不同,它不是一个固定的算符,而是依赖于系统所处的状态, 态密度算符 ρ
随时间演化。由薛定谔方程不难得到态密度算符的运动方程 1、薛定谔绘景
ˆ (t ) 1 ˆ dρ ˆ (t ) ] = H (t ), ρ dt i

中科院量子力学超详细笔记 第四章 中心场束缚态问题

中科院量子力学超详细笔记 第四章 中心场束缚态问题
⎡ ⎣ Lx , Ly ⎤ ⎦ = ihLz , ⎡ ⎣ Ly , Lz ⎤ ⎦ = ihLx , [ Lz , Lx ] = ihLy ⎡ ⎣ Li , L j ⎤ ⎦ = ihε i j k Lk
(4.8) (4.9)
其中 ε i j k 是 Levi-Civita 张量。也可以将(4.8)式写成紧凑的记号, 因为 L
2 L2 = −h 2 ∇ ( θ ,ψ )
⎞⎤ ⎟⎥ + V (r ) ⎟ ⎥ ⎠⎦
(4.6) (4.7)
这里, L2 为轨道角动量平方算符 由于它只对角变数作用,它和 H 是对易的,即
[H , L ] = 0
2
这说明, 在任何形式的中心场 V (r ) 中运动的粒子, 其轨道角动量平方 L2 都是一个守恒量。 由直接计算可得
(
)
15 Sinθ Cosθ e iϕ , 8π 15 Sinθ Cosθ e −iϕ , 8π
Y2− 2 (θ , ϕ ) =
15 Sin 2θ e −i 2ϕ 32π
(其物理解释见下节) 。 这里 l 称为轨道角动量量子数,m 称为磁量子数 对一个给定的 l ,相应的 m 可以取 (2l + 1) 个不同的值,对应于 (2l + 1) 个 不同的正交归一态。
(| m |≤ l )
(4.13)
相应的本征值为 α = l (l + 1) h 2 , β = mh 。其中缔合 Legendre 多项式采用 Ferrer 定义,
Pl m ( x ) =
l +m 1 1 2 2 d ( − x ) ( x 2 − 1) l , ( | m| ≤ l ) 1 l l +m dx 2 ⋅ l! m
v v V⎡ ⎣ r1 ( t ) , r2 ( t ) , t ⎤ ⎦

量子力学第四章-表象理论(3部分)

量子力学第四章-表象理论(3部分)

波函数也可以选用其它变量的函数, 波函数也可以选用其它变量的函数, 力学量则相应的表示为作用于这种函数上的算符。 力学量则相应的表示为作用于这种函数上的算符。
表象:量子力学中态和力学量的具体表示方式称为表象。 表象:量子力学中态和力学量的具体表示方式称为表象。以前采用 的是坐标表象,下面我们要介绍其他表象。 的是坐标表象,下面我们要介绍其他表象。

ψ p * ( x )ψ p ′ ( x ) e
− iE p′ t / h
dx
所以,在动量表象中, 所以,在动量表象中, 具有确定动量p 的粒 具有确定动量p’的粒 子的波函数是以动量 函数。 p为变量的δ- 函数。 换言之, 换言之,动量本征函 数在自身表象中是一 函数。 个δ函数。
=e
− iE p′ t / h
坐标表象 动量本 征函数 不含时 动量本 征函数 本征 方程
1/2 (x,t)=[ /(2 xp[i(p' E't)/h i(p'x Ψp'(x,t)=[1/(2πh)] exp[i(p'x-E't)/h] 1/2
动量表象 C(p,t)=δ(p'-p)exp[-iE't/ C(p,t)=δ(p'-p)exp[-iE't/h] xp[
(1)具有分立本征值的情况 ) (2)含有连续本征值情况 )
(1)具有分立本征值的情况 )
算符Q的本征值为 的本征值为: 设 算符 的本征值为: Q1, Q2, ..., Qn, ..., ,
都是归一化的, 若Ψ, un都是归一化的, 则 an(t) 也是归一化的。
相应本征函数为: 相应本征函数为:u1(x), u2(x), ..., un(x), ...。 。

量子力学曾谨言习题解答第四章

量子力学曾谨言习题解答第四章
(12)
这个叠加式中,D和 都有两个指标,第一个是量子数 ,第二个是量子数 ,从(12)可以看出在 的状态中, 取各种可能测值的几率如下表:
的本征值
2
0
-
-2
相应的几率
+
+
+
诸D的计算有两种方法,第一法是直接法,此法是从方程组(7)中解出,我们需要的 ,而用 的本征函数 , , 的项表示它,这方法是初等的,结果
再将文字A,B对易得
(5)证明
(证明)本题的证法与题四的第一法完全相同,只是条件A,B与[A,B]对易一点不能使用,即
从原来的对易式经过总数n-1次运算后,得
取A=q,B=p,注意[q,p]=hi代入前一式后,有
(6)证明 是厄密算符
证明)本题的算符可以先行简化,然后判定其性质
是厄密算符,因此原来算符也是厄密的。

因此:
现在利用前二式来证明题给一式的x分量的关系成立,该式左方:
86-87
利用(1)和(2)得
同理可得
综合3式得
[4]设算符A,B与它们的对易式[A,B]都对易。证明
(甲法)递推法,对第一公式左方,先将原来两项设法分裂成四项,分解出一个因式,再次分裂成六项,依次类推,可得待证式右方,步骤如下:
按题目假设
另一方法是根据厄密算符的定义:
用于积分最后一式:
前式=
说明题给的算符满足厄密算符定义。
(7)证 (A等是实数)是厄密算符
(证明)此算符F( )不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则
运用这个关系于下面的计算:
满足厄密算符的定义。
(8)证明 ( 实数)是厄密算符。
(证明)方法同前题,假定已经证明 , 都是厄密算符,即:

量子力学——第四章作业参考答案

量子力学——第四章作业参考答案

( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
可见, ( r × l − l × r ) = r × l − l × r , r × l − l × r 为厄米算符。
+
3.3
证明:一维情况下,由 x 和 p 的对易关系 [ x, p ] = i , 可得 从而
(6) (7)
xp = i + px , px = xp − i

m −1 n m n +1 [ p, F ] = ∑ Cmn ( px m p n − x m p n+1 ) = ∑ Cmn ⎡ ⎣( xp − i ) x p − x p ⎤ ⎦ m,n =0 ∞ m,n =0
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
(b) pr =
1⎛r r ⎞ 1 ⎡r r ⎛ r ⎞⎤ ⎜ i p + p i ⎟ = ⎢ i p + i p − i ⎜ ∇i ⎟ ⎥ 2⎝ r r ⎠ 2 ⎣r r ⎝ r ⎠⎦

第4章-2.全同粒子体 西南大学量子力学PPT(考试必备)

第4章-2.全同粒子体   西南大学量子力学PPT(考试必备)

§4.2
全同粒子体系的波函数
[本节要求]:深刻理解泡利原理,掌握如何
构造玻色子、费米子波函数
[本节内容]:讨论在忽略粒子之间相互作
用的情况下,如何去构造具有交换对称的波函数. 在计及相互作用时, 可以用它们作为基矢来展 开. 先讨论两个全同粒子体系, 然后推广到多 粒子体系.
一. 两个全同粒子体系的波函数:


N个粒子在N个单粒子态上的不同排列数有N! 个, 或者说有N! 个置换,所以上式共有N!项
奇置换:从标准排列式出发, 若经过奇数次对换才达到
排列P,记为 P 1 偶置换:从标准排列式出发, 若经过偶数次对换才达到 排列P,记为 P 1
注意到: 1.在N!个置换中, 偶置换与奇置换各占一半; 2.并且注意到对换两个粒子波函数的次序,体
1 2
体系能量为 E k1 k2 的本征态为
1 2
k q1 k q2
体系能量为 k1 k 2
k q2 k q1
C1 k1 q1 k2 q2 C 2 k1 q2 k2 q1
1 2
这说明体系的能级是简并的, 这种与全同粒子 交换对称性相联系的简并, 称为交换简并.

反对称 对称 反对称 对称

对称 反对称 反对称 对称
费米子 玻色子
反对称 对称
例1:对两电子体系, 总波函数为

A

1 2

11 1 s1z 1 s2 z
2 2
A r1 , r2 s s1 z , s2 z

k1 r1 k 2 r2
两者相差一相因子
ˆ P ij

量子力学第四章三维空间中的量子力学-USTC

量子力学第四章三维空间中的量子力学-USTC

BΨq
`
r2
1 sin2

ȷ B2 Ψ
5 / 126
注意到在球坐标系里,
~Lˆ2

´ℏ2
„1
sin
Bpsin
Bq
`
1 sin2

ȷ B2
上式等价地写为:
~ˆp2

´
ℏ2 r2
Brpr2Brq
`
~Lˆ2
r2

ˆ ´ℏ2 Br2
`
2˙ r Br `
~Lˆ2
r2

´
ℏ2 r
Br2r
`
~Lˆ2
r2
因此,中心力场中粒子的能量本征值方程可表为:
« ´ℏ22rFra bibliotekBr2r
`
~Lˆ2 2r2
`
ff Vprq
Epr; ; q “ E
Epr; ; q
方程左端第二项称为离心势能(centrifugal potential),第一项可 称为径向动能算符.
6 / 126
在中心力场情形下既然可以将能量本征函数取为 tHˆ ; ~Lˆ2; Lˆ3u 的
4 / 126
考虑到中心力场中 ~Lˆ2 也是守恒量,而且与 ~Lˆ 的各个分量算符都
对易,因此体系的力学量完全集合可以选取为
!Hˆ ;
~Lˆ2;
) Lˆ3
即能量本征态同时也取为 ~Lˆ2 与 Lˆ3 的共同本征函数.
为了实现这一设想,现将中心力场情形下粒子的哈密顿算符用球 坐标表出。注意到对任一波函数 Ψ,我们有:
„1 r
d2 dr2
r
`
2
ℏ2
pE
´
Vprqq

量子力学导论第4章答案参考资料

量子力学导论第4章答案参考资料

第四章力学量用算符表达与表象变换1 14.1 )设A 与B 为厄米算符,则—AB BA 和 AB 一 BA 也是厄米算符。

由此证明,任何一个算符2 2i分解为F =F . • iFF 与F_均为厄米算符,且证:i)1AB BA1 -AB BA 为厄米算符。

1 1 1二—B A - A B 二 丄 BA - AB 二丄 AB - BA -2i 2i 2i二1(AB - BA )也为厄米算符。

iii )令 F 二 AB ,则 F 二 AB = B A ;= BA ,由i ) ,ii )得F . = F , F_ = F_,即卩F 和F_皆为厄米算符。

则由(1)式,不难解得F iF4.2)设F (x, p )是x, p 的整函数,证明整函数是指F(X, p)可以展开成F(X,p) = v C mn X m p n 。

m,n =0证: (1)先证 p,x m L -mi x m 4, X, p n]二 ni pn/。

p,xm ] =x m4 lp,x 「p, x m4 xi x m4 x m ^ ip,xk p,x m Q x 2 --2i x m4 x m : b, x 殳2 b,x m ; x 3=-3i x m4 ■ 'p,x m ^x 3 二… =-m -1i 乂心■ b,x m —z x m _ --m -1 i x m4 -i x m J 二 mi x m4同理,F 均可1 ^2i F -F1F =2 F F ,1 11 B A A B BA AB AB BAii)扌 AB 一 BA 且定义F T F「F(1)'p,F:xX, p n .1 - p n二X, p Z- X, p n J Ip=i*p n' + p n~ IX, p】p + X, p n~ 】p2= 2i%n」+ k, p n,】p 2=n卷p n」现在,Ip,F ]= |P, hC mn X”=送C mn b,X m Ip"Q QC mn -mi x mJ p nm,n兰:F 7而-i ——C mn -mi x mJ p n。

量子力学4态和力学量的表象

量子力学4态和力学量的表象

(x,t) 2dx 1
C( p,t) 2dp 1
C( p,t) 2 dp 是 (x, t)所描写的态中测量粒子动量在 p dp
范围的几率.C( p, t)与 (x, t) 描述的是同样的态,C( p, t)
为在动量表象中的波函数。
2、推广到一般情况
在任意力学量 Q 的表象中,态的表示:(x,t)
的表象不同波函数形式也不同, 但它们描写同一态。
经典力学 矢量
( Ax , Ay , Az )
普通三维空间
特定坐标系 i , j,k
比较:
量子力学
态矢量
a1 (t) a2 (t)
an (t)
希尔伯特(Hilbert)空间
特定 Q 表象
本征函数 u1 (x), u2 (x), ,un (x),
A1 A2
R(
)
A1 A2
R(
)
cos sin
sin cos
R( ) 有什么性质?
det R 1
R~R RR~ 1 (真正交矩阵)
R R RR 1 幺正矩阵
同一矢量在不同坐标系中的表示通过一个幺正矩阵联系起来。
二. 态的表象与表象变换
表象: 态和力学量的具体表示方式。
量子力学中,量子态可看成Hilbert空间一矢量。
a
1
(t
)
a2 (t)
an (t)
a
1
(t)a1 (t)
a2
(t)a2
(t)
对于即有分立谱又有连续谱的情况:
(x,t) an (t)un (x) aq (t)uq (x)dx n
an (t) (un (x), (x,t))
aq (t) (uq (x), (x,t))

量子力学课件4章-三维空间中的量子力学

量子力学课件4章-三维空间中的量子力学

由此决定了函数 v 。 v cj j. j0
至此,得到波函数的径向部分为:
ur rRr,
u l1ev ,
v cj j. j0
问题:径向部分是否满足波函数的“单值性、连续性和有限性”要求?

(1)单值; 条
(2)连续。
件 满

(3)有限性条件
1. ρ→ 0 时, R(r) 有限。
sin
d d
l(l
1) sin
2
1
d2 d 2
0.
得到两个方程:
1
sin
d
d
sin
d
d
l(l
1) sin
2
m2;
1
d 2 d 2
m2.
d 2 m2 () eim . d 2
当 变化 2 时,回到空间同一点,要求 ( 2 ) ().
exp[im( 2 )] exp(im)
第四章
三维空间中的量子力学
§4.1 §4.2 §4.3 §4.4
球坐标系中的薛定谔方程 氢原子 角动量 自旋
§4.1 球坐标系中的薛定谔方程
三维空间中,薛定谔方程 i H ; t
哈密顿算符

1 2
mv 2
V
1 2m
(
p
2 x
p
2 y
p
2 z
)
V
px
i
, x
py
i
, y
pz
i
, z
p . i
i
R r 2 sin
sin
Y
R r 2 sin 2
2Y 2
两边同除以 RY 和乘以 2mr2 / 2

量子力学第 4 章

量子力学第 4 章

Fmn
δmn

n
Fmn an = bm
(m = 1,2 ⋅⋅⋅)
此联立方程组可写成矩阵方程的形式,
⎛ F11 F12 ····⎞ ⎛a1⎞ ⎛b1⎞ ⎜ ⎟ ⎜a ⎟ = ⎜b ⎟ F F ···· 2 ⎜ 21 22 ⎟ ⎜ 2⎟ ⎜ ⎟ ⎜ ···············⎟ ⎜ · ⎟ · ⎜ ⎟ · ⎝ ⎠ ⎝· ·⎠ ⎝· ⎠
r ˆ r 在p ˆ 表象中,波函数的自变量是 p 。
2 ↔ | c ( p , t ) | 是 r 的取值概率 是 p 的取值概率。
思考:动量表象的波函数与动量本征函数是一回事吗? (从物理意义和所满足的方程来看它们的区别) 9
在一般情况下 在 Ô 表象中波函数的自变量是 Ô 的取值 λn (or λ),
2. 力学量的本征函数在自身表象中的表示 力学量 Ô 的本征函数ϕ 在 Ô 表象的表达形式是什么 样的? * Ô 本征值分立 cn = ∫ ϕn ϕm dτ = δ mn ,
or
* cλ = ∫ ϕλ ϕλ′ dτ = δ (λ − λ ′),
Ô 本征值连续
当 Ô 表象是分立表象时就有
⎛1 ⎞ ⎜0 ⎟ cϕ1 = ⎜0 ⎟ ⎜· ⎟ · ⎜· ⎟ · ⎝· ·⎠ ⎛0⎞ ⎜1 ⎟ cϕ2 = ⎜0 ⎟ ⎜· ⎟ · ⎜· ⎟ · · ⎝ ·⎠ ⎛ 0⎞ ⎜ 0⎟ n · ϕn ⎜ ···· c = · ⎟ ⎜ 1⎟ ⎜ 0⎟ ⎝· ·⎠
()
()
电子任意的自旋状态,可以表为这两种基本的自旋 状态的线性迭加(本征函数具有完备性),即
0 = a . χ =a 1 + b b 0 1
() () ()
ˆz 表象中,自旋波函数的一般形式。 这就是在 s

高等量子力学 第四章 表象理论

高等量子力学 第四章 表象理论

K表象:取几个有物理意义的厄米算符构成对易完备组K,用 表象:取几个有物理意义的厄米算符构成对易完备组 , 表象 它们的共同本征矢量作为基矢: 它们的共同本征矢量作为基矢:
K i = ki i
完备性关系: 完备性关系:
∑i
i
i =1
一、矢量的矩阵表示
ψ = ∑ i i ψ = ∑ i ψi,
i i
容易看出,表象变换虽然改变矢量与算符的矩阵表示, 容易看出,表象变换虽然改变矢量与算符的矩阵表示,但不 的数值。 改变二矢量内积 ψ ϕ 以及 ψ A ϕ 的数值。
§4-3 若干矩阵运算
1、矩阵的迹 : trA = 、
∑A
i
ii
(4.20) (4.21)
迹的重要性质是 tr ( AB ) = tr ( BA) 2、矩阵的行列式 、 det A = ∑ ε abc⋯n Aa1 Ab 2 AC 3 ⋯ AnN
bb' nn' a' 1 b' 2
∑ ( ∑ε A A ⋯ A )B = ∑ (ε det A)B B ⋯B = ε ∑∑ ε ′ ′ ′ ′ B ′ ⋯ ′ ⋯ B ′ = det A B
a'b'c'⋯n' abc⋯n aa' a'b'c'⋯n' a'b'c'⋯n' a' 1 b' 2 n' N
B ⋯Bn' N
det( AB) = det A ⋅ det B
证明: 证明: det(AB) =
∑ε
abc⋯n
abc⋯n ⋯
abc⋯n
( AB) a1 ( AB) b 2 ⋯ ( AB) nN

量子力学(第四章)

量子力学(第四章)

5
③同一个态可以在不同的表象中表示,表象不 同一个态可以在不同的表象中表示, 波函数的形式也不同,但它们完全等价。 同,波函数的形式也不同,但它们完全等价。 坐标表象:ψ ( x, t ) 坐标表象: 动量表象: Φ ( p, t ) 动量表象:
RETURN
6
§ 4.2
算符的矩阵表示
一、算符在一般表象中的表示 二、算符在自身表象中的表示 三.算符表示矩阵的性质
H mn ˆ ψ dx = E ψ *ψ dx = (n + 1 )hω δ = ∫ψ m H n n∫ m n mn 2
*
1 2 0 ( H mn ) = 0 M
0 3 2 0 M
0 0 L 0 0 L hω 5 0 L 2 M M M
∫u
* m
un dτ = δ mn
3
可知量) 任何一个态ψ (可知量)可按该基矢展开
ψ = ∑ anun
* 展开系数 an (t ) = ∫ψ un dτ 上的投影, 其中 a n 是矢量ψ 在基 un 上的投影,这一 组数 (a1, a2 ,L, an ,L)就是矢量 ψ 在Q表象中的表 示,记为一矩阵形式
† Fmn = Fnm* = Fmn
F† = F
结论:表示厄米算符的矩阵是厄米矩阵。 结论:表示厄米算符的矩阵是厄米矩阵。
12
[例题] 求一维谐振子的坐标 ,动量 及哈密顿 例题] 求一维谐振子的坐标x,动量p及哈密顿 在能量表象中的矩阵表示。 量H在能量表象中的矩阵表示。 在能量表象中的矩阵表示 [解 ] 利用厄米多项式的递推关系 xmn = ∫ψ m* xψ n dx
n
a1 (t ) a 2 (t ) ψ = M a n (t ) M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---
b. 量子体系的各守恒量并不一定都可以同时 取确定值。例如中心力场中的粒子,Lˆ 的 三分量都守恒( Lˆi , Hˆ 0, i x, y, z),但由 于 Lˆx, Lˆy , Lˆz不对易,一般说来它们并不能同 时取确定值(角动量 l 0 的态除外)。
---
c. 定态和守恒量的区别 定态是体系的一种特殊的状态,即能量本征 态,而守恒量则是体系的一种特殊的力学量, 它与体系的Hamilton量对易。在定态下,一 切力学量(不显含t ,不管是否守恒量)的平 均值及测量值几率分布都不随时间改变,这 正是称之为定态的理由。而守恒量则是在一 切状态下(不管是否定态)的平均值和测量值 几率分布都不随时间改变,这正是称之为量 子体系守恒量的理由。
---
2. 能级简并与守恒量的关系
守恒量的应用极为广泛,在处理能量本 征值问题,量子态随时间变化,量子跃 迁以及散射等问题中都很重要。这里要 害是涉及能量简并,它们包括:(a)能 级是否简并?(b)在能级简并的情况下, 如何标记各简并态。
---
定理:设体系两个彼此不对易的守恒量F 和G ,
即F, H 0,G, H ,0 但 F,G ,0 则体系能
第四章 力学量随时 间的演化与对称性
本章所讲的主要内容
力学量随时间的演化(4.1) 波包的运动,Ehrenfest定理(4.2)
Schrodinger图像与Heisenberg图像(4.3)
守恒量与对称性的关系(4.4)
全同粒子体系与波函数的交换对称性(4.5)
-
---
§4.1 力学量随时间的演化
c.c.
(t
t
)
,
k
k
,
(t
)
c.c.
H ih
(t
),
k
k
,
Байду номын сангаас
(t)
c.c.
1 ih
(t
),
H
k
k
,
(t
)
c.c.
Ek ih
(t
),
---
k
2
c.c.
0
(7)
在量子力学中,如不显含力学量 Aˆ 与体系的 Hamilton量对易,则称为体系的一个守恒 量。按上述分析,量子体系的守恒量,无论 在什么态下,平均值和几率分布都不随时间 改变。
级一般是简并的。
证:由于F, H 0, F与 H可以有共同本征函

H E , F F
考虑到 G, H 0,故有
HG GH GE EG

G
也是H
的本征态,对应于本征值 ---
E

但 G 与 是否同一个量子态?考虑到
F,G 0,一般说来,
FG GF GF FG
即 G 不是 F的本征态。但 是 F的本征态, 因此 G与 不是同一个量子态。但它们又都 是 H的本征值为 E 的本征态,因此能级是简 并的。
---
推论:如果体系有一个守恒量 F ,而体系的 某条能级不简并(即对应于某能量本征值E 只有一个量子态 E),则 E 必为 F 的本征态。 因为
HF E FH E FE E EF E
即 F E也是 H的本征值为 E 的本征态。但按假 定,能级E 无简并,所以 F E与 E只能是同 一个量子态,因此它们最多可以相差一个常数 因子,记为F,即 F E F E,所以 E也是 F 的本征态(F即本征值)。
---
量子力学守恒量的几个重要特征
a. 与经典力学守恒量不同,量子体系的守恒量 并不一定取确定值,即体系的状态并不一定 就是某个守恒量的本征态。一个体系在某时 刻 t 是否处于某守恒量 Aˆ 的本征态,要根据 初条件决定。若在 t 0 时 Aˆ有确定值,则在 以后任何时刻 Aˆ 也有确定值。即若体系在初 始时刻处于 Aˆ 的某一本征态,则在以后任何 时刻均处在同一本征态。
Aˆ, Hˆ 0

dA 0
(4)
dt
即力学量 Aˆ 在任何态 (t)之下的平均值都不 随时间改变。还可以进一步证明,在任意态
(t)下 Aˆ 的几率分布也不随时间改变。
---
由于 Aˆ, Hˆ 0,我们可以选择包括 Aˆ和 Hˆ在 内的一组力学量完全集,其共同本征态记为
k( k 是一组完备的量子数的标记),即
---
同样若在t 0时 Aˆ 无确定值, (rv, 0)并非 Aˆ 的 本征态,则在以后由Schrödinger方程给出的 态 (rv,t) 中,测量Aˆ 也不会有确定值,亦即 相应的态也不是 Aˆ 的本征态,但 Aˆ 的平均值 及测值几率的分布不变。由于守恒量具有上 述性质,它的量子数称为好量子数。
Hˆk Ekk , Aˆk Akk
(5)
于是,体系的任何一态 (t)均可用 k 展开
(t) ak (t) k , ak (t) k , (t) (6)
k
---
在 (t)态下,在 t时刻测量 Aˆ得 Ak的几率为 ak (t) 2,而
d dt
ak (t) 2
dak* dt
ak
rv
pv,V
(rv)
(8)
ih
1 m
p2
rvV
---
对于定态,d rv pv 0,所以
dt 1 p2 rvV m

2T rvV
(9)
式中T p2 2m 是粒子动能,上式即位力定理。
---
位力定理特例
设V(x, y, z)是x, y, z 的n次齐次函数(即
,

t
1 , HˆAˆ ih
1 , Aˆ Hˆ
ih
,

t
1 ih
, Aˆ, Hˆ
,

t
1 ih
Aˆ ,

Aˆ t
(2)
---
如Aˆ 不显含时间 (以后如t 不特别声明,都是指这
种力学量),即
Aˆ 0 t

d dt
A
1 ih
Aˆ, Hˆ
(3)
因此,如
---
位力(Virial)定理 当体系处于定态下,关于平均值随时间
的变化,有一个有用的定理,即位力定理。 设粒子处于势场V (rv)中,Hamilton量为
H p2 V (rv) 2m
考虑 rv pv的平均值随时间的变化。我们有
ih d rv pv rv pv, H
dt
1 2m
rv
pv,
p2
1. 守恒量
与经典力学不同,量子力学中, 处于量子态下的体系,在每一时刻, 并非所有力学量都具有确定值,而只 具有确定的几率分布和平均值。
---
力学量 Aˆ 的平均值为
A(t) (t), Aˆ (t)
(1)
所以
d dt
A(t)
t
,

,

t
,

t

ih
,

,


ih
相关文档
最新文档