大学物理实验演示稿(1)
大学物理演示实验报告
实验一锥体上滚【实验目的】:1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。
2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。
【实验仪器】:锥体上滚演示仪图1,锥体上滚演示仪【实验原理】:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理。
【实验步骤】:1.将双锥体置于导轨的高端,双锥体并不下滚;2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;3.重复第2步操作,仔细观察双锥体上滚的情况。
【注意事项】:1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。
2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。
实验二陀螺进动【实验目的】:演示旋转刚体(车轮)在外力矩作用下的进动。
【实验仪器】:陀螺进动仪图2陀螺进动仪【实验原理】:陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。
下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。
【实验步骤】:用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。
这就是进动现象。
【注意事项】:注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。
实验三弹性碰撞仪【实验目的】:1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。
2. 演示弹性碰撞时能量的最大传递。
3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。
【实验仪器】:弹性碰撞仪图3,弹性碰撞仪【实验原理】:由动量守恒和能量守恒原理可知:在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。
当两个等质量刚性球弹性正碰时,它们将交换速度。
大学物理演示实验
大学物理演示实验报告院系名称:勘察与测绘学院专业班级:资源1242姓名:王延平学号:1201431226斯特林热机演示实验试验目的:初步了解热机的工作原理以及热机正向和逆向循环工作的用途。
实验原理:斯特林热机(Stirling Engine),是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的封闭往复式发动机。
它由苏格兰牧师斯特林提出。
斯特林热机采用封闭气体进行循环,工作气体可以是空气、氮气、氦气等。
如图1所示,在热机封闭的气缸内充有一定容积的工作气体。
汽缸一端为热腔,另一端为冷腔。
置换器活塞推动工作气体在两个端之间来回运动,气体在低温冷腔中被压缩,然后流到高温热腔中迅速加热,膨胀做功。
如此循环不休,将热能转化为机械能,对外做功。
理论上,斯特林热机的热效率很高,其效率接近理论最大效率(称为卡诺循环效率)。
但二者又有所不同,前者由两个等温过程和两个等容过程构成,如图2所示。
而后者由两个等温过程和两个绝热过程构成。
斯特林热机属于可逆热机,既可用于制热,又可用于制冷;既可将热能→机械能,又可将机械能→热能。
如果用于制冷,则图2中的四个热力学循环将沿逆时针方向进行。
图2 斯特林热机的四个循环过程图1 斯特林热机下面结合循环图(图2)和活塞运动图(图3),来详细分析一下斯特林热机的四个循环过程。
一个装有两个对置活塞的气缸,在两个活塞之间设置一个回热器。
可以把回热器设想成一块交替放热和吸热的热力海绵。
回热器和活塞之间形成了两个空间。
一个称为膨胀腔,使它保持高温Tmax;另一个称为压缩腔,使它保持低温Tmin。
因此,在回热器两端有一个温度梯度Tmax-Tmin。
假设回热器在纵向没有热传导,与卡诺循环情况一样,假设活塞在运动中无摩擦,工作气体在气缸中无泄露损失。
循环开始时,设压缩腔活塞处于外止点,膨胀腔活塞处于内止点并紧靠回热器端面。
这样,全部工作气体都处于冷的压缩腔内。
因为此时的容积为最大值,所以工作气体的压力和温度都处于最小值,用图2和图3中的点1表示。
(行业报告)大学物理演示实验报告(报告范文模板)
1.通过观察与思量双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。
2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。
锥体上滚演示仪图1,锥体上滚演示仪能量最低原理指出:物体或者系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理。
1 .将双锥体置于导轨的高端,双锥体并不下滚;2 .将双锥体置于导轨的低端,松手后双锥体向高端滚去;3.重复第2 步操作,子细观察双锥体上滚的情况。
1 .挪移锥体时要轻拿轻放,切勿将锥体掉落在地上。
2 .锥体启动时位置要正,防止它滚动时摔下来造成变形或者损坏。
演示旋转刚体(车轮)在外力矩作用下的进动。
陀螺进动仪图2 陀螺进动仪陀螺转动起来具有角动量(作用,根据角动量原理, 其方向也垂直纸面向里。
下一时刻的角动量向斜后方,陀螺将不会倒下,用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。
这就是进动现象。
注意保护陀螺,快要住手转动时用手接住,以免掉到地上摔坏。
1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。
2. 演示弹性碰撞时能量的最大传递。
3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。
:弹性碰撞仪图3,弹性碰撞仪由动量守恒和能量守恒原理可知:在理想情况下,彻底弹性碰撞的物理过程满足动量守恒和能量守恒。
当两个等质量刚性球弹性正碰时,它们将交换速度。
多个小球碰撞时可以进行类似的分析。
事实上,由于小球间的碰撞并非理想的弹性碰撞,还是有能量损失的,故最后小球还是要静止下来。
1 .调整固定摆球的螺丝,尽量使摆球的中心处于同向来线上;2.拉起最左边的一个摆球,释放,让其撞击其它的摆球,可以观察到最右侧的一个球即将摆起,其振幅几乎等于左边小球的摆幅;3 .同时拉起左侧的两个、三个或者四个摆球,释放,让其撞击剩余的摆球,可观察到另一侧相同数目的摆球即将摆起,其摆幅几乎等于被拉起摆球的摆幅。
大学物理课题演示实验报告5篇
大学物理课题演示实验报告5篇大学物理课题演示实验报告 (1)一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
大学物理演示实验报告完整版
大学物理演示实验报告完整版一、实验目的大学物理演示实验是物理教学的重要组成部分,通过直观的现象和实际操作,帮助我们更好地理解物理原理和规律。
本次演示实验的目的主要包括以下几个方面:1、观察和理解各种物理现象,如力学、热学、电磁学、光学等领域的典型现象。
2、培养我们的观察能力、思考能力和动手能力。
3、激发我们对物理学科的兴趣,提高学习的积极性和主动性。
二、实验仪器在本次演示实验中,我们使用了以下多种仪器和设备:1、牛顿摆:由多个质量相同的金属球通过细线悬挂组成,用于演示动量守恒和能量守恒。
2、静电发生器:能够产生高压静电,展示静电现象,如静电吸引、静电放电等。
3、光学三棱镜:用于分解白光,观察光的色散现象。
4、特斯拉线圈:产生高频高压交流电,产生绚丽的电弧。
5、傅科摆:证明地球自转的装置。
三、实验内容及现象1、牛顿摆实验将牛顿摆的一侧小球拉起一定高度,然后释放。
观察到被拉起的小球撞击另一侧的小球,另一侧只有一个小球被弹起,且弹起的高度几乎与释放时的高度相同。
这一现象表明在理想情况下,动量守恒和能量守恒。
2、静电发生器实验打开静电发生器,当金属球上积累足够的电荷时,我们发现靠近金属球的轻小物体(如纸屑)被吸引。
用手指靠近金属球时,能感受到轻微的电击,同时还能看到静电放电产生的火花。
3、光学三棱镜实验让一束白光通过三棱镜,在屏幕上可以看到白光被分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光带。
这清楚地展示了光的色散现象,说明白光是由不同颜色的光混合而成的。
4、特斯拉线圈实验接通特斯拉线圈的电源,线圈顶部产生强烈的电弧,呈现出美丽的放电现象。
同时,还能听到“滋滋”的放电声。
5、傅科摆实验启动傅科摆,随着时间的推移,可以观察到摆的摆动平面在缓慢地转动,这直观地证明了地球的自转。
四、实验原理1、牛顿摆根据动量守恒定律,当一个小球撞击另一个小球时,它们之间的总动量保持不变。
同时,由于忽略了空气阻力和摩擦等因素,能量也守恒,所以被弹起的小球能达到与释放时相近的高度。
大学物理演示实验报告文档2篇
大学物理演示实验报告文档2篇College physics demonstration experiment report docu ment编订:JinTai College大学物理演示实验报告文档2篇小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。
本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:大学物理演示实验报告文档2、篇章2:大学物理演示实验报告文档篇章1:大学物理演示实验报告文档院系名称:纺织与材料学院专业班级:轻化工程11级03班鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。
经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。
鱼洗的原理应该是同时应用了波的叠加和共振。
摩擦的双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。
这与实验中观察到的现象相同。
按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。
通过摩擦输入的能量才会激起水花。
令人不解的是,事实上鱼洗是否能产生水花与双手的摩擦频率并没有关系。
在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。
通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。
(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。
)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。
(正如在锣面上敲一下。
)为什么湿润的双手更容易引起鱼洗的振动呢?从实践的角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。
大二物理演示实验报告物理力学演示实验报告
大二物理演示实验报告物理力学演示实验报告导读:想知道物理力学演示实验报告范文?只要看看WTT帮你整理的就可以了。
《物理力学演示实验报告一》今天上午我们很高兴的到理学院参观了大学物理演示实验室,我们参观并亲自操作了一些实验,在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙,给我印象深刻地有以下几个实验,在演示实验室,老师首先给我们演示的是锥体上滚实验,其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态,本今天上午我们很高兴的到理学院参观了大学物理演示实验室,尽管天气很冷,但是我们的热情很高,毕竟这对我们来说是一个全新的领域,是我们之前从未接触过的东西。
在老师的带领下,我们参观并亲自操作了一些实验。
在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙。
给我印象深刻地有以下几个实验。
一.锥体上滚在演示实验室,老师首先给我们演示的是锥体上滚实验。
其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理,其核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。
通过这个实验,我们知道了有时候现象和本质完全相反。
二.电磁炮接着我们又做了电磁炮的实验。
电磁炮是利用电磁力代替火药爆炸力来加速弹丸的电磁发射系统,它主要有电源、高速开关、加速装置和炮弹组成。
根据通电线圈磁场的相互作用原理,加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在线圈中产生感应电流,感应电流的磁场与加速线圈电流的磁场相互作用,使弹丸加速运动并发射出去。
《大学物理(一)》实验报告(速度、加速度的测定和牛顿运动定律的验证)
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:速度、加速度的测定和牛顿运动定律的验证实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:学号:184**********年级专业层次:学习中心:山东济南明仁学习中心提交时间:2019 年月日一、实验目的1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5.掌握验证物理规律的基本实验方法。
二、实验原理1.速度的测量一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度(1)实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
大学物理演示实验报告
大学物理演示实验报告大学物理演示实验报告--雅格布天梯实验目的:通过演示来了解弧光放电的原理实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。
雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。
其下端的空气最先被击穿而放电。
由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击大学物理演示实验报告--雅格布天梯大学物理演示实验七年级上册地理试卷报告--雅格布天梯实验目的:通过演示来了解弧光放电的原理实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。
雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。
其下端的空气最先被击穿而放电。
由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击。
电弧比羽毛还轻。
羽毛是实体,有质量,密度比空气大。
而电弧是等离子体,本质黄牛课件网就是空气,我们看到的电弧是空气中的原子核外电子从激发态跃迁回基态时,多余的能量以光子的形式放出。
所以,电弧所在区域内的密度其实就是空气密度,所以会被热空气带动上升。
希腊神话中有这样一个故事:雅各布做梦沿着登天的梯子取得了“圣火”。
后人便把这梦想中的梯子,称之为雅各布天梯雅各布天梯则展示了电弧产生和消失的过程。
二根呈羊角形的管状电极,一极接高压电,另一个接地。
当电压升高到5万伏时,管状电极底部产生电弧,电弧逐级激荡而起,如一簇簇圣火似地高中物理试卷分析向上爬升,犹如古希腊神话故事中的雅各布天梯。
该展品由变压器、羊角电极等部分组成。
由变压器提供数十万伏的高压,在羊角电极间击穿空气,形成弓形电弧,产生磁场,使电弧向上运动,其运动过程类似于爬梯。
当电弧被拉长到600mm左右,所施加的电压再不能维持产生电弧所需的条件,电弧就消失,此时羊角电极底部又会产生新的电弧,形成周而复始的电弧爬梯现象。
大学物理实验报告范例 (1)
怀 化 学 院
大 学 物 理 实 验 实验报告
系别 物信系 年级 2009 专业 电信 班级 09电信1班 姓名 张 三 学号 09104010*** 组别 1 实验日期 2009-10-20
长度和质量的测量游标尺分度值:
x n
n
x n =-
n
k x n k
n
k
,
读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。
三:物理天平
天平测质量依据的是杠杆平衡原理
分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m
=∆,它表示
天平两盘中负载相差一个单位质量时,指针偏转的分格数。
如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝
由不确定度传递公式得:
∴)(10)13.001.4(3
4mm V ⨯±=,%1001.413
.0%100)(⨯=⨯=
V
U V U V r =%
数据记录:
表1 米尺测量××的面积数据
米尺量程: 50cm 分度值: 1mm 仪器误差:
表2 游标卡尺测量圆环的体积数据记录表
分度值: 仪器误差: 零点读数:x 0: 0 mm
表3 用螺旋测微器测量小球直径记录表
分度值: 0.01mm 仪器误差:0.004mm 零点误差:d 0: +0.012
mm
表4 复称法测圆柱体质量
最大称衡质量: 1000g。
大学物理实验(一)
大学物理实验(一)电表改装与校准实验目的1.学会用替代法测量表头内阻的方法;2.学会将1mA表头改成较大量程的电流表和电压表的方法;3.学会校准电流表和电压表的方法。
仪器与器材HLD-ARC-11型电表改装与校准实验仪 1台实验原理电表在电测量中有着广泛的应用,因此了解电表和使用电表就显得十分重要。
电流计(表头)由于构造的原因,一般只能测量较小的电流,如果要用它来测量电压或较大的电流,就必须进行改装。
万用表的原理就是对微安表头进行改装而来,在电路的测量和故障检测中得到了广泛的应用。
常见的磁电式电流计主要由放在永久磁场中的由细漆包线绕制而成的可以转动的线圈、用来产生机械反力矩的游丝、指示用的指针和永久磁铁所组成。
当电流通过线圈时,载流线圈在磁场中就受到一磁力矩M m,使线圈转动,从而带动指针偏转。
线圈偏转角度的大小与所通过电流的大小成正比,所以可由指针的偏转直接指示出电流值。
1.测表头内阻电流计允许通过的最大电流称为电流计的量程,用I g表示,电流计的线圈有一定内阻,用R g表示,I g与R g是两个表示电流计特性的重要参数。
测量内阻R g常用方法有:(1)半电流法(也称中值法)。
测量原理图见图(a)。
当被测电流计(表头)接在电路中时,使电流计(表头)满偏,再用十进位电阻箱与电流计(表头)并联作为分流电阻,改变电阻值即改变分流程度,当电流计(表头)指针指示到中间值,且总电流强度仍保持不变,显然这时分流电阻值就等于电流计(表头)的内阻。
(2)替代法。
测量原理图见图(b)。
当被测电流计(表头)接在电路中时,使电路中的电流达到某个确定值;用十进位电阻箱替代它,改变其阻值,当电路中的电压不变,且电路中的电流亦保持不变,则电阻箱的示值即为被测电流计内阻。
替代法是一种运用很广的测量方法,具有较高的测量准确度。
2.改装为大量程电流表根据电阻并联规律可知,如果在表头两端并联上一个阻值适当的电阻R 1,如图(c)所示,可使表头不能承受的那部分电流从R 1上分流通过。
大学物理演示实验报告标准范本
报告编号:LX-FS-A38557 大学物理演示实验报告标准范本The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior.编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑大学物理演示实验报告标准范本使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
大学物理演示实验报告一:实验目的:通过演示来了解弧光放电的原理实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。
雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。
其下端的空气最先被击穿而放电。
由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。
结果弧光区逐渐上移,犹如爬梯子一般的壮观。
当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。
简单操作:打开电源,观察弧光产生。
并观察现象。
(注意弧光的产生、移动、消失)。
实验现象:两根电极之间的高电压使极间最狭窄处的电场极度强。
巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。
热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。
大学物理演示实验报告大全
竭诚为您提供优质文档/双击可除大学物理演示实验报告篇一:大学物理演示实验报告大学物理演示实验报告院系名称:电气工程学院专业班级:测控1001姓名:王杰学号:20XX48770114人造火焰一、实验原理仪器下部是由半透明的材料制成的炭火造型,由于不同厚度的炭火造型各位置透光不同,在其下部的灯光照明下,较薄的地方显得火红,较厚的地方显得暗淡。
火苗的形成:为了使火苗从炭火堆中窜出,在炭火模型的后面放置一面反射镜,上面刻有火苗状的透光镜,炭火模型与其镜中的像形成对称结构,中间形成一条透光缝,在缝的下部形成一根横轴,轴的四周镶满不同反射方向的小反光片,光源的光照射到反光片上,光源的光照到反光片上,随着轴的转动,光被随机的反射出来,让我们看到了火苗的存在。
二、演示方法1、接通电源,观察视窗内似有熊熊烈火燃烧。
2、打开加热开关,还会有热风吹出,就像一座逼真的火炉。
电磁炮一、电磁炮的结构原理电磁炮是利用电磁力代替火药爆炸力来加速弹丸的电磁发射系统,它主要有电源、高速开关、加速装置和炮弹组成。
根据通电线圈磁场的相互作用原理,加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在线圈中产生感应电流,感应电流的磁场与加速线圈电流的磁场相互作用,使弹丸加速运动并发射出去。
二、使用方法将炮弹放入炮管中距尾部25cm左右,摁下启动按钮即可发射炮弹。
三、注意事项1、不要长时间频繁通电,防止线圈发热过度,影响使用寿命。
不用时请将总电源插头拔掉,切断电源。
2、由于三相交流电有相序之分,若所接相序与本仪器所要求相序不同,则炮弹会弹出相反的方向。
所以,发射时请勿站在炮筒尾部,此时将相序调换即可。
一、避雷针工作原理带电导体的外表面是等势面,曲率半径小的地方电荷密度大。
由于导体尖端的曲率半径极小,因而电荷密度极大,而导体表面外侧邻域内的电场与导体的电荷密度成正比,所以尖端邻域内有极强的电场,当电场强到使空气击穿时,就产生了尖端放电,导体上的电荷就不会再更多的积累,而是导体上的电荷会不断的流失,若在建筑物上安装这种尖端装置,则在雷雨季节就不会在建筑物上积累过多的电荷而遭雷击,装在建筑物顶上防止雷击的导体就是避雷针。
北京交通大学物理演示实验
AA1 端处于高宽端,BB1 端处于低窄端,若支撑点遇锥面相切位置如图 2 所 示, 则当锥体滚动时, 质心在水平面内运动, 锥体处于平衡状态。 设 BB1 端固定, AA1 端宽度一定,只调节其高度,则 AA1 端下降,将会出现由平衡状态上滚的现 象。AA1 端至多下降到 BB1 端所在水平面上,不过此时滚动虽明显,但“往上” 不明显。故本实验装置高低宽窄布局要适度,使 AA1 端比平衡位置略低,锥体 能自动滚动即可。 三、装置 双锥体,V 字形斜面轨道
四、现象演示 操作者坐在转椅上,左手持车轮使车轮轴保持水平,用右手拨动车轮使它快 速转动,坐在转椅上的操作者沿与车轮旋转方向相反的方向旋转。 五、讨论与思考: 为改进演示效果,你认为应从哪些方面改进仪器? 6、傅科摆 实验目的: 证明地球时刻在自西往东自转。 实验原理: 该实验被称为“最美丽的十大实验”之一。 证实地球自转的仪器,是法国物理学家傅科于 1851 年发明的。地球自西向 东绕着它的自转轴自转,同时在围绕太阳公转。观察地球的自转效应并不难。用 未经扭曲过的尼龙钓鱼线,悬挂摆锤,在摆锤底部装有指针。摆长从 3 米至 30 米皆可。当摆静止时,在它下面的地面上,固定一张白卡片纸,上面画一条参考 线。把摆锤沿参考线的方向拉开,然后让它往返摆动。几小时后,摆动平面就偏 离了原来画的参考线.这是在摆锤下面的地面随着地球旋转产生的现象。 由于地球的自转,摆动平面的旋转方向,在北半球是顺时针的,在南半球是 反时针的。摆的旋转周期,在两极是 24 小时,在赤道上傅科摆不旋转。在纬度 40°的地方,每小时旋转 10°弱,即在 37 小时内旋转一周。 显然摆线越长,摆锤越重,实验效果越好。因为摆线长,摆幅就大。周期也 长,即便摆动不多几次(来回摆动一二次)也可以察觉到摆动平面的旋转、摆锤 越重,摆动的能量越大,越能维持较长时间的自由摆动。
大学物理演示实验
实验报告课程名称大学物理演示实验专业班级姓名学号电气与信息学院和谐勤奋求是创新实验一大型闪电盘(辉光盘)演示实验【实验目的】:观察平板晶体中的高压辉光放电现象。
【实验仪器】:大型闪电盘演示仪图11 大型闪电盘演示仪【实验原理】:闪电盘是在两层玻璃盘中密封了涂有荧光材料的玻璃珠,玻璃珠充有稀薄的惰性气体(如氩气等)。
控制器中有一块振荡电路板,通过电源变换器,将12V低压直流电转变为高压高频电压加在电极上。
通电后,振荡电路产生高频电压电场,由于稀薄气体受到高频电场的电离作用二产生紫外辐射,玻璃珠上的荧光材料受到紫外辐射激发二发出可见光,其颜色由玻璃珠上涂敷的荧光材料决定。
由于电极上电压很高,故所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。
【实验步骤】:1.将闪电盘后控制器上的电位器调节到最小;2.插上220V电源,打开开关;3.调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光;4.用手触摸玻璃表面,观察闪光随手指移动变化;5.缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。
【注意事项】:1.闪电盘为玻璃质地,注意轻拿轻放;2.移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂;3.闪电盘不可悬空吊挂。
【实验感想】:通过上述实验,我看到了如此神奇奥秘的现象,了解到了更多的物理知识,原来物理的奥妙就在我们触手可及的地方,加深了我对物理的兴趣和求知的欲望,令我更加着迷于对物理世界的学习和探索!不断追求于更高的探索境界和实验水平!实验二伯努利悬浮球【实验目的】:了解伯努利原理及实验现象【实验仪器】:伯努利悬浮球图4伯努利悬浮球【实验原理】:据伯努利原理,单位质量的流体的动能(流速头)、势能(位置头)和压力能(压力头)的和在同一流线上为一定值。
流体的流速大处,其压强小,流速小时,其压强大。
由此可知:当球体靠近喷口时,由于喷流从球体上向下喷出,就造成球体上方的压力低于下方的大气压力,由于两者之间的压差大于球体的重量,球体就被压在(托举在)喷口下方不被吹离。
大学物理演示实验报告
大学物理演示实验报告大学物理演示实验报告引言大学物理实验是物理学学习中不可或缺的一部分,通过实际操作和观察,学生们可以更好地理解和应用所学的物理知识。
本报告将介绍我参与的一次大学物理演示实验,通过这次实验,我对一些物理现象有了更深入的了解。
实验目的本次实验的目的是通过演示实验的方式,展示一些基本物理原理和现象,激发学生对物理学的兴趣,加深对物理知识的理解。
实验装置与原理实验中使用了多个装置来演示不同的物理现象。
其中包括牛顿摆、电磁铁、光学仪器等。
牛顿摆的实验原理是利用重力和摆动的力来观察摆动的规律。
通过调整摆线的长度和摆球的质量,可以观察到摆动的周期与摆线长度的关系。
电磁铁的实验原理是利用电流通过线圈产生磁场,从而吸引或排斥磁性物体。
通过改变电流的大小和方向,可以观察到磁场的变化对磁性物体的影响。
光学仪器的实验原理是利用光的传播和折射规律来观察光的行为。
通过使用凸透镜、凹透镜等光学器件,可以观察到光的折射、聚焦等现象。
实验过程与观察结果在实验过程中,我们按照老师的指导,依次进行了牛顿摆、电磁铁和光学仪器的演示实验。
在牛顿摆实验中,我们调整了摆线的长度,并记录下摆动的周期。
通过数据的分析,我们发现摆线长度与周期的平方成正比,验证了牛顿摆的周期公式。
在电磁铁实验中,我们通过改变电流的大小和方向,观察了磁场对磁性物体的吸引和排斥现象。
我们还观察到,当电流方向改变时,磁性物体的运动方向也发生了改变,这进一步验证了电磁铁的工作原理。
在光学仪器实验中,我们使用了凸透镜和凹透镜,观察了光的折射和聚焦现象。
我们发现,凸透镜会使光线聚焦,而凹透镜则会使光线发散。
这些现象与光的传播规律相符。
实验分析与讨论通过这次实验,我对牛顿摆、电磁铁和光学仪器的工作原理有了更深入的理解。
我明白了牛顿摆的周期与摆线长度的关系,电磁铁的磁场对磁性物体的影响,以及光的折射和聚焦现象。
这些实验不仅仅是为了验证物理原理,更重要的是通过实际操作和观察,让学生们亲身体验物理现象,培养他们的观察力和实验技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将对你们一生的学习、工作和创造性产 生重大影响。
实验误差与数据处理
第一节 1.测量
测量与误差
(1)直接测量:
如,长度、时间
(2)间接测量:
如,速度
2.误差
误差
测量值 真值
↓
ΔA = A — A0
ΔA E=─
(100%)
A0
x (误差)
0 x x+dx
x
f(x) — 误差的概率密度分布函数
f (x)
1
e
x2
2 2
2
f(x)dx _-------误差出现在 x---x+dx 之间的概率
3.标准误差σ
f(x)
-σ 0 +σ
—— 用于评价测量的精密程度
(n )
1 n
n i1
( Ai
A0 )2
或修正,则测量结果应表示为:
A A U(单位) E U 100%
A p 0.683
例 用50分度的卡尺测一长度,7次测量的结果(单 位:mm)分别为:139.70, 139.72, 139.68, 139.70, 139.74, 139.72, 139.72。
已知卡尺的仪器误差=0.02mm,且服从均匀分 布,写出测量结果的表达式。
C.由于实验操作者或环境因素引起的系统误差。
例如:单摆的研究-测量振动周期
T 2 /g(1 1 sin2 9 sin4 ......)
4 2 64 2
当 50
T 2 / g
例如:用伏安法测电阻
例如:电表零点不准
由于实验方法问题 引起系统误差
由于仪器的缺陷 引起系统误差
Eratosthenes‘ measurement of the Earth’s circumference(公元前3世
纪)
Galileo‘s experiment on falling objects(16世纪末)
Galileo‘s experiments with rolling balls down inclined(16世
数关系为
Y f (x1, x2 , x3,,xn )
则其平均值为
Y f x1, x2 , x3,,xn )
假设间接测量量 Y 的各直接测量量 xi 之间相互独立,且
各直接测量量 xi 的合成不确定度分别为 U1,U 2 ,,U n ,
则 Y 的合成不确定度的计算公式为:
绝对合成不确定度:
g
4
T
2l
2
4 2 0.7059
1.6882
9.780
(m/
s2 )
ln g ln 4 2 ln l ln T 2
EU g
(
ln l
g
)2U
l
2
(
ln T
g
)
2UT
2
(1)2 l
U
l
2
(2 T
)2UT
2
( 1 )2 0.222 ( 2 )2 0.0072 9.71106 6.88105
绪论
前言
物理学从本质上来讲是一门实验 科学。物理学领域的所有成果都是理 论与实验密切结合的结晶。
诺贝尔物理学奖(1901-2006年)
开奖 100次
得奖人数
总计
163
实验
110
理论
46
实验和理论
7
物理学十大经典美丽实验
• 埃拉托色尼测量地球圆周 (7)Eratosthenes' measurement of the Earth's circumference
2.偶然误差服从的统计规律:
在相同条件下,对同一物理量 A 进行多次测量,
得 A1 , A2 , A3 ,…An,
设真值为A0 ;
则各次测量的误差(称为残差): xi = Ai - A0
当测量次数较多时,测量误差 x 常有如下分布规律:
F (出现频率)
测量次数
正态分布
f(x)
→∝时
0
分布特点: 1.单值性 2.对称性
在本课中主要考虑与仪器误差相关联的B类不确定度, 并且就用仪器误差表示B类不确定度。
仪器误差 仪 :在正确使用仪器的条件下测量结果与 真值之间可能产生的最大误差。
仪器误差所给出的值一般都是误差限,即“极限误 差”, 其置信概率不是 0.683,而是 1 。为了能够 将两类不确定度合成为总不确定度,可近似将 仪
测量结果表达为: L=139.71±0.02 (mm) E=0.01% p=0.683
第七节 间接测量结果的表示方法
间接测量结果的表达式仍是:
Y Y U (单位) E U 100%
Y p 0.683
问题是,如何计算它的不确定度U?
1. 间接测量量的不确定度
假定间接测量量Y是通过各直接测量量X测量的,它们的函
X
1
X
2
X
n
1
2
n
注意,这是函数 f 的自然对数对各自变量的偏微商。
2.间接测量结果的表示 与直接测量结果表示的方式是一样的。
例 用单摆测重力加速度 g 4 2l
T2
直接测量量为 l 和 T,测得: l = 70.59 cm , Ul = 0.22 cm
T = 1.688 s , UT = 0.007 s
• 卢瑟福发现核子 (9)
Rutherford's discovery of the nucleus
• 托马斯·杨的双缝演示应用于电子干涉实验 (1)
Young's double-slit experiment applied to the interference of single electrons
精密度-数据集中的程度,反映偶然误差的大小 正确度-平均值接近真值的程度,反映系统误差的大小 准确度-对精密度和正确度的综合评价
可以用打靶来进行类比
精密度高 正确度不高
正确度高 精密度不高
精密度高 正确度高
准确度高
第三节 偶然误差的处理
1.偶然误差的产生:
由测量过程中的一些偶然的或不确定的因素产生的。
i 1
n(n 1)
平均值的标准偏差 S 的统计意义: A
A0
落在 A S 到 A+S
A
A
间的可能性为 68.3%
A0
落在
A 2S 到 A+2S
A
A
间的可能性为
95.5%
A0 落在
A 3S 到 A+3S
A
A
间的可能性为
99.7%
在本实验课中,指定采用第一种规 范,即使用± S ,置信概率为68.3%。
解: L平均值
L
1 7
7 i 1
Li
139.71
(mm)
7
(Li L)2
A类不确定度 sL
i 1
7(7 1)
0.0086 (mm)
B类不确定度
uL
仪 3
=0.02 =0.012(mm) 3
总不确定度:
U sL2 uL2 0.0092 0.0122 0.015(mm)
x
概率 p f (x)dx 0.683
σ的统计意义?
σ 越大,曲线越坡
误差大的次数越多
σ 越小,曲线越陡
误差大的次数越少
置信区间 置信概率
[ , ] ; [2 ,2 ] ; [3 ,3 ]
68.3% ; 95.5% ; 99.7%
[ , ]
[2 ,2 ]
例 1.009 — 四位数, 9.000 — 四位数,
900.0 — 四位数
0.009 — 一位数,
纪末)
Newton's decomposition of sunlight with a prism(1665-1666)
实验是最有力的杠杆,
我们可以利用这个杠杆
去撬开自然界的秘密
-
伦琴
(1845—1923)
一个矛盾的实验结果
就足以推翻一种理论
------------爱因斯坦
物理实验课----大学学习期间第一门最 系统、最严格、最基础也最有趣的实验课 程。
[3 ,3 ]
注意两个问题:(1)实际上只能是有限次测量; (2)真值是不知道的。
4. 测量列的平均值(最接近真值的值)
n
Ai
A i1 n
6. 有限次测量值的标准偏差
SA
n
( Ai A)2
i 1
(n 1)
6. 有限次测量平均值的标准偏差
S SA
A
n
n
( Ai A)2
(2)无法消除未定系统误差,需在测量结果中合 理地表达出来。
第五节 测量结果的不确定度 1. 不确定度的概念
不确定度是对被测量的真值所处量值范围的评 定,表示由于测量误差存在而对测量值不能确定 的程度。不确定度是一定概率下的误差限值。
A0以某一概率落到这个范围内
AU A AU
A
不确定度
这表明待测量 A0 以某一概率落到 A U 范围内
A
即 p = 0.683
第四节 系统误差的处理
1. 系统误差的分类 (1)可定系统误差
特点:大小和正负是确定或按可知的规律变化的。
(2)未定系统误差
特点:它是按某种规律变化的,但我们无法确定其规律。