电力牵引系统

合集下载

牵引供电系统的组成

牵引供电系统的组成

牵引供电系统的组成
牵引供电系统的组成
牵引供电系统是由若干主要部件组成的,其主要部件包括:
①轨道电源:轨道电源是牵引供电系统的核心,主要包括牵引变压器、小阳极、大阴极和电缆等。

牵引变压器是根据轨道电源的所需电压自动调节牵引电流的装置。

小阳极和大阴极是牵引电源的重要组成部分,它们用于将原有的低压电源转换成高压电源。

电缆则用于将牵引电源供应给牵引设备。

②牵引控制系统:牵引控制系统是指控制牵引电源提供的电力供应的装置,主要包括控制器和变频器等。

控制器是控制牵引电源供电的装置,控制电源的输入和输出,并对牵引电源提供的电压进行反馈。

变频器是将电源的输入频率调节为适合牵引设备运行的频率的装置。

③牵引电动机:牵引电动机是牵引设备的核心部件,可以将电能转换为机械能,从而实现牵引设备的运动。

④供电分系统:供电分系统是由多个电源器组成的,用于将牵引电源供应给牵引电动机,它可以分散牵引电源的输出,有效地分配电力,使牵引设备的安全运行。

⑤控制设备:控制设备是指控制牵引电源的供电、控制牵引电动机的转速和牵引设备的运行方向等装置,主要包括变压器、控制器和变频器等。

⑥其他配件:牵引供电系统的其他主要部件还包括避雷器、轨道
线路保护器、接地装置、红外探测器、安全保护装置等。

牵引供电系统SCADA系统

牵引供电系统SCADA系统
问题追踪与定位
根据分析结果,追踪和定位问题所在,为后 续的修复和优化提供依据。
测试结果评估与讨论
测试结果评估
根据设计要求和测试标准,对测试结果 进行评估,判断系统是否满足预期目标

改进措施提出
针对发现的问题,提出相应的改进措 施和建议,优化系统的设计和实现。
问题总结与分类
对发现的问题进行总结和分类,分析 问题的性质、严重程度和影响范围。
监控与控制
通过监控软件对现场设备进行实时监控,并 根据需要远程控制设备的运行。
04
牵引供电系统SCADA 系统设计
设计目标与原则
实时性
可靠性
确保系统能够实时监测牵引供电系统的状 态,及时响应和处理各种事件。
保证系统在各种恶劣环境下都能稳定运行 ,减少故障发生的概率。
可扩展性
安全性
考虑到未来发展的需要,系统应具有良好 的可扩展性,方便后续升级和改造。
数据处理
对采集的数据进行处理,如滤波、计算、转换等 。
数据传输
将处理后的数据通过通信网络传输到服务器或人 机界面。
控制策略实现
故障定位与隔离
通过实时监测和分析数据,定位故障点并自动或手动隔离故障区 域。
越区供电
在故障情况下,实现越区供电以保证列车的正常运行。
负荷分配与优化
根据实时数据和历史数据,对牵引供电系统的负荷进行分配和优 化,提高系统的运行效率和稳定性。
06
牵引供电系统SCADA 系统测试与验证
测试方案制定
测试目的明确
确保牵引供电系统SCADA系统的功能、性 能和安全性满足设计要求。
测试范围确定
涵盖系统的各个模块和组件,包括硬件、软 件和网络通信等。

牵引供电系统名词解释

牵引供电系统名词解释

牵引供电系统名词解释
牵引供电系统是指为城市轨道交通、铁路、有轨电车等交通运输工具提供动力能源的电气系统。

它的主要功能是向行驶中的车辆提供电力,使其具有牵引和制动能力,同时也为车辆提供辅助电源。

在牵引供电系统中,电源为交流或直流电源,通过接触网、第三轨等设备向车辆传输电能。

牵引供电系统通常包括以下主要组成部分:
1.接触网:接触网是铁路牵引供电系统的主要组成部分,它用于提供电力给行驶中的列车。

接触网一般由钢轨、导线和支架组成,通过支架固定在正常的高度和位置。

2.集电装置:集电装置是车辆与接触网之间传递电能的设备,它通过对接触网的接触,将电能传输到车辆上。

3.变电所:变电所是牵引供电系统的电源设备,它将电网输送的高压电流转换为适合运输工具使用的低压电流,并将其输送到接触网上。

4.牵引变流器:牵引变流器是一种用于控制电力输出的电气设备,它将接收到的电能转换为适合电动车辆使用的电流和电压。

5.辅助电源:辅助电源是为车辆提供照明、空调、信号等设备供电的电源,也可以为车辆的启动和停车提供电能。

在牵引供电系统中,各个组成部分之间的协调和运行非常重要,它们共同保证了交通运输工具的牵引和制动能力,保障了交通运输的安全和稳定。

城市轨道交通车辆基础电子课件第六章电力牵引系统

城市轨道交通车辆基础电子课件第六章电力牵引系统
13
城市轨道交通车辆电力牵引系统框图 14
城市轨道交通车辆电力牵引系统主电路
ห้องสมุดไป่ตู้15
五、 电力牵引系统的发展
随着电力电子器件和计算机技术的发展,城市轨道交通车辆的电力牵引传动 技术由最初的变阻调速发展到斩波器调速,并不断进一步发展,在采用三相异步 牵引电动机的动车中应用了变压变频技术。目前,逆变器技术已在城市轨道交通 动车组上得到了非常广泛的应用。
40
转子结构如图所示, 由电气绝缘钢片叠装而成的铁芯组件被冷缩装配到由高强 度热处理钢制成的转子轴上,同时配以分别布置于其左右的转子止推环。转子配有 通风用的轴向风道。铜制转子线排位于铁芯组件的槽中。
41
(2)牵引电动机的工作原理 受流装置从接触网上获得直流电流,经过列车牵引逆变器转换成三相交流电,输 送给交流牵引电动机(三相异步电动机)定子上空间位置相差120°的三相绕组,使 定子三相绕组中有对称的三相电流流过,从而在气隙中产生旋转磁场。转子绕组在这 个旋转磁场中感应出电动势,使转子绕组中产生电流。转子电流与旋转磁场相互作用, 产生电磁力,形成使转子旋转的电磁转矩,转轴通过联轴器和齿轮箱把转矩传送给车 辆转向架的车轴,带动车轮滚动,驱动列车运行。
因此,城市轨道交通车辆的电力牵引系统大致经历了20世纪80年代前的凸轮 变阻调压直流传动系统、20世纪80年代的斩波调压直流传动系统和20世纪90年代 的变压变频交流传动系统三个阶段。
16
在城市轨道交通车辆电力牵引传动系统中,牵引变流器(包括斩波器、逆变器 等)广泛采用了门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT)模块或智能 功率(IPM)模块作为主开关器件,尤其是IGBT模块或IPM模块对于较高频率工作具 有良好的适应能力。微电子技术在城市轨道交通车辆的牵引、制动、辅助控制、信 息显示与储存、防滑与防空转控制及行车安全等方面也得到了广泛应用。城市轨道 交通车辆除了采用摩擦制动外,还采用了电气制动技术,如再生制动、电阻制动及 磁轨制动等,提高了车辆运行过程中的节能效果与安全性。

牵引供电系统简介

牵引供电系统简介

牵引供电系统简介一、系统功能牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路:AC110 kV或AC220kV,城市轨道交通:中心变电所AC220kV或AC110kV→AC35 kV环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV或AC2×25kV,城市轨道交通:DC750V、DC1500V或DC3000V),向电力机车提供连续电能。

电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。

交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。

图1.1 交流电气化铁路牵引供电系统图1.2 城市轨道交通牵引供电系统二、牵引网供电方式1.交流电气化铁路交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT供电方式和AT供电方式。

(1)直接供电方式直接供电方式又可分为不带回流线直接供电方式(图 2.1)和带回流线的直接供电方式(图2.2)两种。

图2.1 不带回流线的直接供电方式图2.2 带回流线的直接供电方式不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。

在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。

带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。

由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。

在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km)。

电力牵引供电系统

电力牵引供电系统
有下述主要几种。 环形供电 见图2,为电力系统将牵引变电所 联成环形网,优点是供电可靠性好,当任一输 电线或电源故障时都不影响牵引变电所的正常 供电。但因牵引变电所一次侧进出线多及开关
多,继电保护复杂,会使成本增加。
• 双侧供电 电源来自电力系统的两个地区变 电所,给铁路供电的输电线是联络这两个 地区变电所的道路。根据可靠性的要求及 实际情况,双侧供电可分为图3的双路输电 线和单路输电线两种类型。但不论哪种类 型,各路输电线的容量应不小于相关牵引 变电所容量之和。单路输电线方式一次侧 进出开关少,投资也少,供电可靠性不及 双路方式,但一输电线或一电源分别故障 仍不会导致牵引变电所失电。
牵引变电所
接触网
• 接触网是一种悬挂在电气化铁道钢轨上方 并和轨顶保持一定距离的链型或单导线的 输电网。电力机车的受电弓和接触网滑动 接触取得电能。
馈电线
• 馈电线是联接牵引变电所和接触网的导线。 它把牵引变电所变换完备的牵引用电能输 送给接触网。馈电线大都采用大截面的钢 芯铝绞线。
轨道
复线环状供电方式
• 牵引变电所同侧的上、下行牵引网由同相 牵引母线供电,在供电臂末端将上、下行 牵引网联通,可构成环状供电方式
• 复线牵引网环状供电方式
复线全并联供电方式
• 每隔数百米将上、下行接触网进行死连接, 便于充分利用接触网导线截面的供电方式
• 这种方式的网内电压降和电能损失较小, 但上、下行牵引网在电气上无法分开,发 生短路事故时的影响范围较大。
• 习惯上将馈电线、接触网、钢轨、回流线 统称为牵引网。
分区亭(SP)
• 分区亭设于两个牵引变电所的中间,可使相邻的 接触网供电区段(同一供电臂的上、下行或两相邻 变电所的两供电臂)

简述电力牵引系统的组成

简述电力牵引系统的组成

简述电力牵引系统的组成电力牵引系统是指利用电能驱动车辆行驶的系统,电力牵引系统主要由电源系统、变流器系统、牵引电机系统和控制系统组成。

1. 电源系统:电力牵引系统的电源系统主要是提供电能给牵引电机系统,一般采用锂电池组、混合动力系统或接触网供电。

锂电池组是目前广泛应用于电动车的一种电源系统,其具有体积小、重量轻、能量密度高、无记忆效应等优点。

混合动力系统综合了高效的内燃机和清洁的电力系统,通过内燃机和发电机来供电。

接触网供电是指通过高压电缆连接到铁路接触网,将电能供给给牵引电机系统。

2. 变流器系统:变流器系统是将电源提供的直流电转换为交流电,并且能够调节电流和电压的系统。

变流器通常由电源逆变器、牵引逆变器和充电机组成。

电源逆变器将电源提供的直流电转换成交流电供给牵引逆变器和充电机。

牵引逆变器将交流电转换为牵引电机所需要的电能,同时可以根据需要调节电流和电压,以实现对牵引电机的驱动控制。

充电机则负责对电池组进行充电。

3. 牵引电机系统:牵引电机系统是电力牵引系统的核心部分,负责将电能转换为机械能,驱动车辆行驶。

牵引电机通常采用交流异步电机或永磁同步电机。

交流异步电机具有结构简单、可靠性高等特点,适用于牵引车辆的起步和低速行驶;永磁同步电机具有高效、体积小等特点,适用于高速行驶和大功率需求的车辆。

另外,牵引电机系统还包括传动装置,将电机输出的转矩传递给车轮,通常采用传统的机械传动装置,如齿轮传动、链传动等。

4. 控制系统:控制系统是对电力牵引系统的各个部分协调、控制和保护的核心部分。

控制系统主要包括控制器、传感器、控制算法和通信系统。

控制器是对整个牵引系统的控制中心,利用传感器采集到的电流、电压、转速等参数信息,通过控制算法完成对牵引电机的驱动控制,并实现对整个系统的保护功能。

传感器主要用于采集牵引电机和其他关键部件的运行状态,如电流传感器、温度传感器等。

控制算法主要是对电机的控制策略进行优化,使得系统能够更加稳定、高效地工作。

牵引供电系统外部电源与供电方式

牵引供电系统外部电源与供电方式
高速铁路牵引供电系统外部电源主要来自国家电网,采用专用的输电线路 或与普通电力用户共用线路。
高速铁路牵引供电系统的实际应用中,需要关注供电能力、电能质量和环 境保护等方面的问题。
磁悬浮列车牵引供电系统
磁悬浮列车牵引供电系统通常采用直流供电方式,通过磁悬浮变电所将来自电网的高压交流电转换为 直流电,为磁悬浮列车提供动力。
牵引供电系统外部电 源与供电方式
目录
• 牵引供电系统概述 • 牵引供电系统外部电源 • 牵引供电系统供电方式 • 牵引供电系统外部电源与供电方式的
优化 • 牵引供电系统外部电源与供电方式的
实际应用案例
01
牵引供电系统概述
牵引供电系统的定义与功能
定义
牵引供电系统是为电气化铁路或 城市轨道交通提供电能的系统, 通过接触网向电力机车或电动汽 车提供所需直流或交流电能。
容量
牵引供电系统外部电源的容量应根据 牵引负荷的大小和运行方式进行选择 ,以确保供电的可靠性和稳定性。
稳定性
外部电源的稳定性对牵引供电系统的 正常运行至关重要,应采取措施确保 电源的电压、频率和波形等参数的稳 定。
03
牵引供电系统供电方式
直接供电方式
01
直接供电方式是一种简单的牵引 供电方式,通过牵引网直接向电 力机车供电。
02
该方式结构简单,投资少,但会 对沿线通信线路产生干扰。
串联电容补偿供电方式
串联电容补偿供电方式是在牵引网中 串联电容,补偿感性负载的无功功率, 提高功率因数。
该方式可以减少对通信线路的干扰, 但需要增加补偿装置和滤波装置。
吸流变压器供电方式
吸流变压器供电方式是通过吸流变压 器将牵引电流从接触网引至回流线, 减少对通信线路的干扰。

电力牵引系统的工作原理

电力牵引系统的工作原理

电力牵引系统的工作原理
嘿,你知道电力牵引系统吗?这玩意儿可神奇啦!它就像是一个不知疲倦的大力士,默默地为我们的现代生活提供着强大的动力。

电力牵引系统啊,简单来说,就是利用电能来驱动车辆或其他设备前进。

这不就好比人的心脏为身体输送血液一样重要嘛!它主要由供电系统、牵引电动机、传动装置等部分组成。

供电系统就像是能量的源头,源源不断地提供着电能,那可是电力牵引系统的“粮草”呀!而牵引电动机呢,就是那个真正干活的家伙,把电能转化为机械能,让车子跑起来。

你想想看,要是没有电力牵引系统,我们的火车、地铁还怎么跑得那么快、那么稳呢?它让我们的出行变得如此便捷和高效。

这难道不令人惊叹吗?
传动装置呢,就像是一个协调者,把电动机产生的动力合理地分配到各个部位,让一切都有条不紊地进行着。

这不就跟乐队的指挥一样嘛,指挥着各个乐器演奏出美妙的乐章。

而且啊,电力牵引系统还有很多优点呢!它比传统的燃油牵引更加环保,不会排放那么多的废气污染环境,对我们的地球多友好啊!它还很节能,能把电能高效地利用起来,这不是很棒吗?
再看看我们生活中的那些电力牵引设备,它们在轨道上飞驰,在城市中穿梭,为我们带来了多少便利呀!这一切都要归功于电力牵引系统这个神奇的家伙。

它就像是一个默默奉献的英雄,一直在背后为我们的生活保驾护航。

电力牵引系统的发展也是日新月异啊!科学家和工程师们一直在不断地改进和创新,让它变得更加强大、更加智能。

说不定未来的某一天,它会给我们带来更多意想不到的惊喜呢!
总之,电力牵引系统真的是太重要、太神奇了!它是现代科技的杰作,是我们生活中不可或缺的一部分。

我们应该好好珍惜它,让它为我们的生活创造更多的美好!。

牵引供电系统

牵引供电系统

- U b +

• I b •

I a I c
U a

U c
UC
*
3、供电臂电流与绕组电流关系
(A )
(B ) (C )
(1)当只有Ib流通时,
bc绕组中的电流为

而ca23 与I ba13 bI绕b 组电流为
*
Ia
2* Ia
3
(a)
1* Ia
3
1* Ib
3
1
*
Ib
3
(b )
1
*
Ia
2* Ib
33
定向。
规格化定向的具体含义:
(1)原边绕组电压、电流采用电动机惯例定向,即牵引变压器从 电力系统吸收电能。
(2)次边绕组电压、电流采用发电机惯例定向,即牵引变压器是 次边负荷的电源。
(3)负荷吸收正功率。
简单讲就是: 对于原边:电压U首端为正尾端为负;电流I首端流入,尾端流出。 对于次边:电压U首端为正尾端为负;电流I首端流出,尾端流入。
绕组(cz)为自由相绕组
接供电臂
b. 展开图
(A)
为分析的直观与方便,
更常见使用YN,d11接线
(B)
牵引变压器的展开图。 画展开图有如下约定:
(1)为施工和运行安全起见,
(C) *
(a)
(b)
统一规定次边绕组的(c)端子接钢轨和地;
*
(c)
(2)原、次边对应绕组相互平行;
(3)原、次边每相绕组的同名端放在同一侧;
或者表示为:
电力 地铁
G
电力系统(发电厂)
输电线
主(降压)变电站
回流线

电力牵引供电系统

电力牵引供电系统

《电力牵引交流传动及其控制系统》报告—电力牵引供电系统电力牵引供电系统是向电力机车供给牵引用电能的系统。

主要由牵引变电所和接触网组成。

牵引变电所将电力系统通过高压输电线送来的电能加以降压和变流后输送给接触网,以供给沿线路行驶的电力机车。

有些国家电气化铁路有时由专用发电厂供电。

电力牵引供电系统按照向电力机车提供的电流性质分为直流制和交流制,交流制又分工频单相交流制和低频单相交流制。

工频指工业标准频率,即50赫或60赫;低频指低于工业标准频率的频率,应用最多的是[92-01]赫,即50赫的三分之一。

各种电流制的电力牵引供电系统的设备有很大的差别。

电流制的发展直流制应用最早,19世纪末电力牵引开始用于铁路干线时,应用的就是直流制。

目前在英、法、日、苏等国直流制仍然大量存在。

直流制是将电力系统的三相交流电降压并变换为直流电供应接触网。

接触网电压有1200伏、1500伏、3000伏等多种。

由于电力机车电压受直流牵引电动机换向条件的限制,接触网电压很难大幅度提高,所以直流制须沿接触网输送大量电流,在接触网上一般须用两根铜接触导线,并应用铜承力索,另加一些平行的铝加强导线来分流,耗费有色金属量较大。

另外,为了保持接触网的电压水平,沿线路每隔10~30公里须设置一个牵引变电所。

直流制的这些弱点,推动了交流制的研究。

交流牵引供电系统20世纪初,工频三相交流制和低频单相交流制相继出现。

工频三相交流制曾在意大利应用,由接触网输送三相中的两相,另一相接地。

后因两相接触网结构复杂、维护困难被淘汰。

低频单相交流制则在德国、瑞典、瑞士等国得到发展。

这种电流制接触网电压一般为 15000伏,在电力机车上降压,使用单相整流子牵引电动机。

交流制的接触网比直流制的简单得多,牵引变电所的设置间距也加长。

采用低频的主要原因是整流子牵引电动机换向困难,不适宜于在工频运转。

低频制需要低频电源,所以低频制电气化铁路必须建设专用低频发电厂,或者在牵引变电所将电力系统送来的工频电流降压并变换成低频电流。

电力牵引传动控制系统

电力牵引传动控制系统

电力牵引传动控制系统:核心技术与应用优势一、电力牵引传动控制系统概述电力牵引传动控制系统,作为现代轨道交通领域的关键技术,以其高效、环保、低噪音等优势,逐渐成为我国铁路、城市轨道交通等领域的主流驱动方式。

该系统主要包括电力变换、电机控制、传动装置及监控系统等部分,通过先进的控制策略,实现列车牵引与制动的高效运行。

二、电力牵引传动控制系统的核心技术1. 电力变换技术电力变换技术是电力牵引传动控制系统的核心,主要包括整流、逆变和滤波等环节。

通过对输入的电能进行高效转换,为电机提供稳定、可靠的电源供应,确保列车在各种工况下都能实现优异的牵引性能。

2. 电机控制技术电机控制技术主要针对牵引电机进行精确控制,包括速度、转矩和位置控制等。

采用矢量控制、直接转矩控制等先进控制策略,实现电机的高效、稳定运行,降低能耗,提高列车运行品质。

3. 传动装置技术传动装置技术主要包括齿轮箱、联轴器等部件,将电机输出的动力传递到车轮,实现列车的牵引和制动。

通过优化传动装置的设计,降低噪音、提高传动效率,确保列车运行的安全性和舒适性。

4. 监控系统技术监控系统技术负责对整个电力牵引传动控制系统进行实时监控,包括故障诊断、保护、数据处理等功能。

通过集成化、智能化的监控手段,提高系统的可靠性和运行稳定性。

三、电力牵引传动控制系统的应用优势1. 节能环保电力牵引传动控制系统采用电能作为动力来源,相较于传统燃油驱动方式,具有显著的节能环保优势。

同时,系统的高效运行有助于降低能源消耗,减少污染物排放。

2. 运行速度快电力牵引传动控制系统具有较高的功率密度,能够实现列车的快速启动、加速和制动,提高运行速度,缩短运行时间。

3. 维护成本低相较于传统传动系统,电力牵引传动控制系统结构简单,故障率低,维护方便。

通过智能化监控手段,可实现故障预警和远程诊断,降低维护成本。

4. 噪音低、舒适性高电力牵引传动控制系统采用交流电机驱动,相较于直流电机,噪音更低,振动更小,提高了乘客的舒适度。

牵引供电系统的组成

牵引供电系统的组成

牵引供电系统的组成
牵引供电系统是铁路运输中不可或缺的一部分,它主要负责为铁路牵引机车和列车提供电力。

牵引供电系统由多个组成部分组成,这些部分共同协作,确保铁路运输的安全和顺畅。

第一个组成部分是接触网。

接触网是牵引供电系统的核心部分,它负责将电能传输到牵引机车和列车上。

接触网通常由一组悬挂在铁路轨道上的导线构成,这些导线与牵引机车和列车上的接触装置相连。

当牵引机车和列车行驶在铁路轨道上时,它们的接触装置会与接触网上的导线接触,从而获得电能。

第二个组成部分是变电所。

变电所是将高压电能转换为适合牵引机车和列车使用的低压电能的设备。

变电所通常位于铁路线路沿线,它们通过接触网将电能传输到牵引机车和列车上。

变电所还负责监控牵引供电系统的电压和电流,以确保系统的稳定运行。

第三个组成部分是牵引变流器。

牵引变流器是将接收到的电能转换为适合牵引机车和列车使用的电能的设备。

牵引变流器通常安装在牵引机车上,它们将接收到的电能转换为直流电能,以供机车和列车使用。

第四个组成部分是牵引电机。

牵引电机是将电能转换为机械能的设备,它们通常安装在牵引机车上。

当牵引机车接收到电能时,牵引电机会将电能转换为机械能,从而驱动机车和列车行驶在铁路轨道
上。

以上是牵引供电系统的主要组成部分。

这些部分共同协作,确保铁路运输的安全和顺畅。

在未来,随着科技的不断发展,牵引供电系统也将不断升级和改进,以适应铁路运输的不断发展和变化。

电力牵引系统的组成

电力牵引系统的组成

电力牵引系统的组成
电力牵引系统是指电力机车或电动车辆的动力源,它将电能转化为机械能,驱动车辆行驶。

电力牵引系统通常由以下几个部分组成:
1. 电源:电力牵引系统的电源可以是来自于电网的交流电,也可以是由发电机产生的直流电。

电源的电压和频率需要与牵引电机的要求相匹配。

2. 变压器:变压器将电源的电压升高或降低到适合牵引电机工作的电压等级。

变压器还可以用于将交流电转换为直流电。

3. 牵引电机:牵引电机是电力牵引系统的核心部件,它将电能转化为机械能,驱动车辆行驶。

牵引电机的类型和参数根据车辆的类型和用途而定。

4. 控制系统:控制系统用于控制牵引电机的运行,包括电机的启动、停止、调速和转向等。

控制系统还可以监测电机的运行状态,确保其安全可靠地运行。

5. 传动系统:传动系统将牵引电机的转矩传递到车轮上,驱动车辆行驶。

传动系统包括齿轮箱、传动轴、联轴节等部件。

6. 制动系统:制动系统用于控制车辆的速度和停止,它可以是机械制动、电气制动或两者的组合。

制动系统需要与控制系统协调工作,确保车辆安全可靠地制动。

7. 辅助系统:电力牵引系统还包括一些辅助系统,如冷却系统、通风系统、照明系统等,它们为车辆的正常运行提供必要的支持。

总之,电力牵引系统是电力机车或电动车辆的核心部分,它由电源、变压器、牵引电机、控制系统、传动系统、制动系统和辅助系统等组成,协同工作,为车辆的安全、可靠、高效运行提供保障。

牵引供电系统继电保护原理

牵引供电系统继电保护原理

测量元件
用于检测被保护设备的故障或异常状态,输出相应的电气量。
逻辑元件
根据测量元件的输出结果,按照一定的逻辑关系判断是否发生故障 或异常,并输出相应的动作信号。
执行元件
根据逻辑元件输出的动作信号,执行相应的断路器跳闸或信号报警 等操作。
继电保护的配置原则
01
02
03
04
可靠性
继电保护装置应能够可靠地检 测和隔离故障元件,避免误动
灵敏度要求
继电保护装置应具备足够的灵敏度, 能够快速、准确地检测到故障信号。
选择性要求
继电保护装置应具备一定的选择性, 优先切除距离故障点最近的断路器, 缩小故障影响范围。
继电保护的优化策略
配置优化
通信优化
合理配置继电保护装置,提高系统的 整体保护效果。
加强继电保护装置之间的通信联系, 确保信息传输的准确性和稳定性。
总结词
牵引变压器是牵引供电系统中的重要设备,其继电保护对于保障牵引供电系统 的正常运行至关重要。
详细描述
牵引变压器的继电保护主要包括过电流保护、电流速断保护、过负荷保护以及 瓦斯保护等。这些保护措施可以有效防止牵引变压器在运行过程中发生短路、 过载等故障,从而保障牵引供电系统的稳定性和可靠性。
输电线路的继电保护
总结词
输电线路是牵引供电系统的重要组成部分,其继电保护对于 保障牵引供电系统的安全性和稳定性具有重要意义。
详细描述
输电线路的继电保护主要包括距离保护、电流保护、方向保 护以及差动保护等。这些保护措施可以有效检测输电线路的 故障,并及时切除故障线路,从而避免故障扩大,保障牵引 供电系统的正常运行。
牵引网与辅助设备的继电保护
智能决策与控制

牵引供电系统

牵引供电系统

牵引供电系统牵引供电系统是指为电气牵引车辆在运行过程中提供电力的系统。

牵引供电系统的设计和运行是交通运输的重要组成部分,特别是电气化铁路、电气胶轮车和电气地铁等交通工具的运营。

本文将讨论牵引供电系统的基本结构、工作原理和常见故障及解决方案。

基本结构牵引供电系统的基本结构包括两部分:接触网和接触网配电系统。

接触网是通过架空线路将电力输送到电气牵引车辆的触点上,而配电系统则负责将电能分配到接触网上的各个部分。

接触网通常由钢制上行线及钢制下行线组成,在两条线路之间悬挂的弹性线圈保持钢制上行线的张力,同时具有压在下行线上的力。

接触网配电系统由变电站、分段开关、隔离开关、牵引变压器和组合开关等组成。

变电站是牵引供电系统的核心设备,它将输送电压由高压变成适合电气牵引车辆的低电压。

分段开关用于分段,以便进行检修和维护工作。

隔离开关用于断开接触网和电气牵引车辆之间的电气连接。

牵引变压器是通过变压器将高压电能逐步变成电气牵引车辆所需的低电压。

组合开关用于控制配电系统的操作。

工作原理接触网通过上行线将高压电力输送到牵引变压器,在牵引变压器中将高压电能变成低电压电能,然后牵引变压器通过下行线将低电压电能输送到电气牵引车辆的触点上。

电气牵引车辆的牵引系统和辅助供电系统通过触点连接到接触网上,从而获取所需的电力。

在牵引供电系统的工作过程中,接触网将高压交流电输送到牵引变压器,通过牵引变压器将高压转换为低电压,供电给电气牵引车辆。

通过运用继电保护及其他电气保护设备,来保证接触网和牵引车辆之间的安全和稳定的电气连接。

常见故障及解决方案牵引供电系统因为工作原理的复杂性,有时候会出现不同的故障。

以下是常见的故障及解决方案:接触网脱落接触网脱落通常经常发生在高速运行中。

接触网脱落会导致接触网配电系统的保护装置动作,并给地面人员造成威胁。

对于接触网脱落的处理,一般有两种解决方案:第一种是通过调整钢制上行线张力来修复接触网的位置,第二种是通过使用特殊挂钩来吊起接触网,从而重新修复接触网的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牵引系统主电路
接触网 AC25KV DC1500V/750V
受电弓
变压器
牵引变流器
牵引电动机
主电路的结构
车控方式(集中供电)
车控方式下机车或动车的所有牵引电动机并联起来由一 个电源(整流器或逆变器)供电;
架控方式(混合供电)
架控方式是一个转向架上的2台或3台牵引电动机并联后 由一个整流器或逆变器供电;
二、 电力牵引系统
牵引系统的功能
实现能量的转换,即实现电能到机械能的转换
能量转换—牵引主电路 牵引系统 转换控制—控制电路
3.1.电力牵引系统的供电制式
直流供电 直流1500v,用于地铁和轻轨列车; 直流 750v,用于地铁和轻轨列车; 直流 600v,用于城市电车; 交流供电 单相、工频、25KV,用于干线铁路;
轴控方式(独立供电)
轴控方式则是每一个牵引电动机均由一个独立的整流器 或逆变器供电;
车控方式的电路结构相对比较简单,但由于多台 牵引电动机并联运用,牵引电动机的特性、电路 参数以及车轮的轮径均不相同,所以控制模式上 需要考虑多方面的因素,而显得比较复杂,特别 是在粘着控制方面难以获得理想的控制效果。 轴控方式下,一个整流器或逆变器只对一个牵引 电动机,其控制模式直接且简单,但显然电路结 构复杂、使用的逆变器或整流器数量成倍增加, 经济性差。 架控方式的性能则介于车控方式和轴控方式两者 之间,可以说是一个比较好的兼顾方式。
1.控制逻辑电路 顺序逻辑控制、控制连锁和互锁; 电路用以实现“与”、“或”等逻辑控制,从而确 保正确形成牵引、制动等运行工况; 继电器、接触器 电子器件 逻辑控制单元
2.信息传送电路
传送控制命令即牵引、制动指令; 传送各个电气设备的工作状态; 信息传送电路采用DC110v电源 三种方式: 直通线方式 串行通信方式 计算机网络通信方式
架控模式
轴控模式
主电路保护
1.主电路短路保护
主电路短路故障是指电网侧短路或接地、变压器 的副边绕组或其中的一段短路、硅整流器击穿短 路、中间直流环节短路、牵引逆变器可控硅( GTOI或GBT)击穿短路和牵引电动机短路。 交-直-交牵引系统中的中间直流环节短路也是一 种严重的短路故障 主断路器是主电路也是整台机车和动车的主要保 护装置和最后的保护屏障。主断路器可以切断整 个车辆的供电,所以是列车保护的最后屏障。
4.主电路过电压保护 雷击过电压 操作过电压 中间直流回路过电压保护
辅助电路
辅助电路将牵引系统中的各种辅助电气设备和 辅助电源连成一个电系统,成为保证牵引系统 正常运转不可缺少的电气装置 辅助电路还可以包括列车照明、旅客信息系统 的供电、通信设备、空调、自动门以及取用来 改善乘务人员和旅客的工作和生活条件的设备
交直系统
内燃机车的交-直流牵引系统
直流—直流方式 直流供电—斩波器—直流牵引电动机;
直直系统
交流牵引系统—牵引电动机为交流牵引电动机
直流—交流方式 直流供电—逆变器—交流牵引电动机;
交直交方式 交流供电—整流—逆变器—交流牵引电动机;
电力牵引系统归为二大类,一类是采用直流牵 引电动机的牵引系统我们称为直流传动系统; 另一类采用交流异步牵引电动机的牵引系统我 们称为交流传动系统。 这二类系统在使用的电子电气装置、控制的策 略和方法以及实现的技术手段方面都有很大的 不同,在系统的性能方面也有很大的差别。
2.主电路过载保护
过载保护本质上也是电 流保护,与短路保护只 是保护电流整定值的大 小和程度上的差别。 过载保护主要是指牵引 电动机的负载电流过大 ,因此在每一个牵引电 动机的回路中都设置过 载保护继电器。另外在 交流牵引系统中还要设 置交流牵引电动机的三 相不平衡保护。
3.主电路接地保护
主电路接地故障是由于主电路中的电气设备或导 线的绝缘破坏,造成主电路与车体钢结构接触或 者与钢结构之间发生放电。保护的手段主要是设 置接地继电器 交流牵引系统的中间直流回路是接地保护的一个 主要对象
辅助电源装置——辅助逆变器
CVCF(恒压恒频)和VVVF(变压变频)两种 工作模式; 扩展供电;
多个辅助逆变器以实现分散供电和互为冗余的目的
辅助电源母线
K1-2
辅助电源母线
K2-2 K1-1 1 K2-1 2
蓄电池组和充电装置
蓄电池组; 充电装置——直-直变流器;
控制电路
控制电路将主电路和辅助电路中的各电气设备的控 制装置﹑信号装置和控制电源连成一个电系统,实 现对列车的操纵和控制; 控制电路普遍采用的是间接控制,司机通过控制器 操纵各种低电压的控制电器,再通过这些电器的动 作去改变主电路或辅助电路的工作状态,实现对机 车运行的控制; 控制逻辑电路 信息(命令和状态)传送电路 信息显示(仪表)电路。
3.信息显示电路
信息显示电路就是习惯上所谓的仪表电路 列车信息显示已经采用智能化的显示终端来补充 和替代常规的仪表显示和显示电路
显示终端基本采用10英吋或12英吋的LCD屏构成, 其主要功能为显示列车正常运行的状态信息。
3.4.电力牵引系统的特点
牵引功率大; 传动效率高; 能源利用率高; 无污染; 容易实现自动化控制;
直通线方式
以DC110v电平为信号电平来传送信息,信号传送 简单、直接、快速,单信号传送可靠性较好。
需要大量的直通线来传送各种命令和设备状态,随 着直通线数量的增加,其可靠性随之大幅度下降。 PWM调制的方法在一根直通线上传送多个信息,从 而部分解决了信号量的问题, PWM调制的方法需要增加调制、解调器;
TO NEXT
供电方式
接触网供电;
25 kV
正馈线 保护线 承力索 接触线
-25kV 50kV 2上臂 上导杆 阀板 下臂 升弓装置 下导杆 底架 阻尼器 ADD系统
第3轨供电
供电轨
第三轨供电形式
3.2.电力牵引系统的类型
直流牵引系统 牵引电动机为直流牵引电动机 交流-直流方式 交流供电—整流—直流牵引电动机;
3.3.牵引电路
列车(机车、动车、车辆)上的各种电气设 备,通过电气线路互相连接起来,构成一个整 体,实现列车的各项功能; 列车电路的设计对于列车牵引、控制等各方面 的性能有很大的影响,是列车电气系统中一个 非常重要的组成部分;
主电路
列车电路
辅助电路 控制电路 励磁电路
主电路
牵引系统电路称为主电路。 主电路将产生列车牵引力和制动力的各种电气设 备连成一个电系统,实现牵引功率的传输。 主电路是牵引系统最重要的组成部分。它的结构 不但决定牵引系统的类型,而且即使同一类型的 机车或动车,如主电路的结构不同,也会在很大 程度上决定该型机车或动车的基本特性。
串行通信方式 彻底解决通信量的问题;几根(2根或4根)串行通 信线就可以传送所有的信息; 可靠性也有较大的提高; 常用的串行通信方式有RS-232和RS-485两种串行通 信总线; 串行通信方式的主要问题在于没有保证通信数据完整 无缺的机制,即串行通信缺少数据安全的保障机制 。
计算机网络通信方式 传输速度高、可靠性强、 数据传输安全性好、 传输距离长, 比较普遍应用的网络有:TCN(IEC61375-1)、 WORLDFIP(EN50170-3)和LONGWORKS( IEEE1473) 三种方式可以是在同一列车或机车上同时运用。传 送的方式应该根据控制电路设计的需要而采用不 同的方式。 现场总线实际上是一种计算机网络通信的低级形式
相关文档
最新文档