一元二次方程的近似解
一元二次方程
ax²+c=0(a、c是实数,a≠0);ax²=0(a是实数,a≠0).注:a≠0这个条件十分重要.配方式两根式求解方法直接开平方法形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。
如果方程化成x²=p的形式,那么可得x=±。
如果方程能化成(nx+m)²=p的形式,那么,进而得出方程的根。
注意:①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
[3]配方法步骤将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
配方法的理论依据是完全平方公式a²+b²±2ab=(a±b)²配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
举例例一:用配方法解方程3x²-4x-2=0解:将常数项移到方程右边3x²-4x=2将二次项系数化为1:方程两边都加上一次项系数一半的平方:配方:直接开平方得:∴ , .∴原方程的解为 , .求根公式法步骤用求根公式解一元二次方程的方法叫做求根公式法。
用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在(注:此处△读“德尔塔”)的前提下,把a、b、c的值代入公式进行计算,求出方程的根。
《利用二次函数求方程的近似根》人教版九年级数学(下册)
B. 3.23 < x < 3.24 D. 3.25 <x< 3.26
2.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求
得一个近似根x=-3.4,则方程的另一个近似根(精确到0.1)为( )
A.4.4
B.3.4
C.2.4 D D.1.4
3.用图象法求一元二次方程
x2 的x 近1似根0(精确到0.1).
解:画出函数 y=x²-2x-1 的图象(如下图),由图象可知,方程有两个 实数根,一个在-1与0之间,另一个在2与3之间.
先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器 进行探索,见下表:
x
…
-0.4
-0.5
…
y
…
-0.04
0.25
…
观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这 时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.
+bx+c=0的近似根为( )
B
A.x1≈-2.1,x2≈0.1
B.x1≈-2.5,x2≈0.5
C.x1≈-2.9,x:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而
对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称
轴为x=-1,则
y=ax2+bx+c的图象与 x轴有____ 个交点,坐标是______.方1程
ax2+bx+c=0的根是__(2_,_0_)_.
第二十四章 一元二次方程
的长和宽
例2
解方程3x2-32x-48=0.
x232 3
解:方程两边都除以3,得 x-16=0. 将方程的二次项系 数化为1,更便于配 方!
移项,得 x2x232 3 x=16.
配方,得
16 16 32 x+( 3 )2=16+( 3 )2, 3 (x- 16 )2=( 20)2, 3 3 20 16 16 x= ,或x- = 20 . 3 3 3 3
2 b b 4ac 2 最后得到(x+ 2a ) = 2 4a
对于方程ax2+bx+c=0(a≠0): x
小明认为,
把上式两边开平方并整理,就可求得方程的根
x b± b 4ac 2a
2
小亮认为,
小明的做法存在着问题。由a ≠0,得4a2>0,所以, 只有在b2-4ac≥0,即
b 4ac 4a
看看下面几道题的结果是什么呢?
如果(x+2)2=9,那么x= _______ 1或-5
7 3 或 7 3 如果(x-3)2=7,那么x= ___________
1或-3 如果x2+2x+1=4,那么x= _______
事实上,方程x2+2x-3=0可变形为 x2+2x+1=4,也就是(x+1)2 =4,在通 过开平方即可求出x1=-3,x2=1。
4 所以, x1=12,x2= . 3
用配方法解一元
二次方程的一般
步骤是什么?
例3 有一张长方形 桌子,它的长为2m,宽 为1m。有一张长方形台 布,它的面积是桌面面 积的2倍,将台布铺在 桌面上时,各边垂下的 长相等。求这块台布的 长和宽(均精确到 0.01m)。
利用函数的图象求一元二次方程近似根
21.3 二次函数与一元二次方程(第二课时)实验中学-余志高一、教材分析:《利用二次函数的图像解一元二次方程》选自义务教育课程教科书《数学》(沪科版)九年级上册第21章第3节,这节课是在学生学习了二次函数与一元二次方程的关系,知道二次函数的图像与x 轴交点个数的不同对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况下继续经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验及了解一元二次不等式的解集..这也突出了课标的要求:注重数形结合。
二、教学目标【知识与技能】掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系,会用二次函数的图象求一元二次方程的近似解以及一元二次不等式的解集.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.【过程与方法】经历探究二次函数与一元二次方程、一元二次不等式关系的过程,体会函数、方程、不等式之间的联系.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.【情感、态度与价值观】进一步培养学生的综合解题能力,掌握解决问题的方法,培养探究精神.重点难点【重点】用函数图象求一元二次方程的近似解及一元二次不等式的解集.【难点】利用二次函数的图象求一元二次方程的近似根【教学方法】学生合作交流学习法三、教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.Ⅱ.讲授新课【例】用图象法求一元二次方程x2+2x-1=0的近似解(精确到0.1).解:画出函数y=x2+2x-1的图象,如图.由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.先求位于-3和-2之间的根.由图象可估计这个根是-2.5或-2.4,利用计算器进行探索,见下观察上表可以发现,当x分别取-2.5和-2.4时,对应的y由正变负,可见在-2.5与-2.4之间肯定有一个x使y=0,即有方程x2+2x-1=0的一个根.题目只要求精确到0.1,这时取x=-2.5或x=-2.4作为根都符合要求.但当x=-2.4时,y=-0.04比y=0.25(x=-2.5)更接近0,故选x=-2.4.同理,可求出方程x2+2x-1=0在0和1之间精确到0.1的另一个根.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2和y=-2x+1的图象,如图,它们的交点A、B的横坐标就是方程x2+2x-1=0的根.函数图象求一元二次不等式的解集.:画出函数y=ax2+bx+c(a≠0)的图象,不等式ax2+bx+c>0的解集为图象在x轴上方的点所对应的x值所组成的集合,不等式ax2+bx+c<0的解集为图象在x轴下方的点所对应的x值所组成的集合.如下表:ax2+bx+c>0(a>0)的解集是x<x1或x>x2ax2+bx+c<0(a>0)的解集是x1<x<x2ax2+bx+c>0(a<0)的解集是x1<x<x2ax2+bx+c<0(a<0)的解集是x<x1或x>x2Ⅲ.课堂练习P34随堂练习Ⅳ.课时小结本节课学习的内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系;2.经历了用图象法求一元二次方程的近似根的过程,获得了用图象法求方程近似根的体验.3.了解一元二次方程不等式的解集可由二次函数图象直接得出结论。
部编数学九年级上册专题22.4二次函数与一元二次方程【六大题型】(人教版)(解析版)含答案
专题22.4 二次函数与一元二次方程【六大题型】【人教版】【题型1 抛物线与x 轴的交点情况】....................................................................................................................1【题型2 抛物线与x 轴交点上的四点问题】........................................................................................................3【题型3 由二次函数解一元二次方程】................................................................................................................6【题型4 由二次函数的图象求一元二次方程的近似解】....................................................................................9【题型5 由二次函数的图象解不等式】..............................................................................................................11【题型6 由二次函数与一次函数交点个数求范围】 (13)【题型1 抛物线与x 轴的交点情况】【例1】(2022春•西湖区校级期末)抛物线y =(x ﹣x 1)(x ﹣x 2)+mx +n 与x 轴只有一个交点(x 1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【分析】由抛物线与x轴只有一个交点(x1,0)可得抛物线顶点式,从而可得x1,x2与m的关系.【解答】解:∵抛物线经过(x1,0),且抛物线与x轴只有一个交点,∴抛物线顶点坐标为(x1,0),y=(x﹣x1)2,∴x2﹣2x1x+x21=(x﹣x1)(x﹣x2)+mx+n=x2﹣(x1+x2﹣m)x+x1x2+n,∴x1+x2﹣m=2x1,即x2﹣x1=m,故选:B.【变式1-1】(2022春•澧县校级月考)抛物线y=x2+2x﹣3与坐标轴的交点个数有( )A.0个B.1个C.2个D.3个【分析】由b2﹣4ac的大小可判断抛物线与x轴交点个数,由c的大小可判断抛物线与y轴的交点,进而求解.【解答】解:∵y=x2+2x﹣3,∴a=1,b=2,c=﹣3,∴b2﹣4ac=22+12=16>0,∴抛物线与x轴有2个交点,∵c=﹣3,∴抛物线与y轴交点为(0.﹣3),∴抛物线与坐标轴有3个交点,故选:D.【变式1-2】(2022•广阳区一模)已知抛物线y=﹣3x2+bx+c与x轴只有一个交点,且过点A(m﹣2,n),B(m+4,n),则n的值为( )A.﹣9B.﹣16C.﹣18D.﹣27【分析】根据点A、B的坐标易求该抛物线的对称轴是直线x=m+1.故设抛物线解析式为y=﹣3(x﹣m ﹣1)2,直接将A(m﹣2,n)代入,通过解方程来求n的值.【解答】解:∵抛物线y=﹣3x2+bx+c过点A(m﹣2,n)、B(m+4,n),∴对称轴是直线x=m+1,又∵抛物线y=x2+bx+c与x轴只有一个交点,∴顶点为(m+1,0),∴设抛物线解析式为y=﹣3(x﹣m﹣1)2,把A(m﹣2,n)代入,得:n=﹣3(m﹣2﹣m﹣1)2=﹣27,即n=﹣27.故选:D.【变式1-3】(2022春•汉滨区期中)已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x =3,则抛物线的顶点P关于x轴对称的点P'的坐标是( )A.(3,9)B.(3,﹣9)C.(﹣3,9)D.(﹣3,﹣9)【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x 轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.【题型2 抛物线与x轴交点上的四点问题】【例2】(2022•武汉模拟)二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是( )A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【分析】由y=(x﹣m)(x﹣n)可得抛物线与x轴交点坐标为(m,0),(n,0),开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点坐标为(s,﹣1),(t,﹣1),从而可得m,n,s,t 的大小关系.【解答】解:由1+(x﹣m)(x﹣n)=0可得(x﹣m)(x﹣n)=﹣1,由y=(x﹣m)(x﹣n)可得抛物线y=(x﹣m)(x﹣n)与x轴交点坐标为(m,0),(n,0),抛物线开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点在x轴下方,坐标为(s,﹣1),(t,﹣1),∴m<s<t<n.故选:C.【变式2-1】(2022•定远县模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则下列结论正确的是( )A.x1<﹣1<5<x2B.x1<﹣1<x2<5C.﹣1<x1<5<x2D.﹣1<x1<x2<5【分析】方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,据此可判断选项.【解答】解:令y=a(x+1)(x﹣5),则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(5,0),函数图象如图所示,由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,∴x1<﹣1<5<x2,故选:A.【变式2-2】(2022•张店区期末)已知二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0),方程(x﹣1)2﹣t2﹣1=0的两根分别为m,n(m<n),方程(x﹣1)2﹣t2﹣3=0的两根分别为p,q(p<q),判断m,n,p,q的大小关系是( )A.p<q<m<n B.p<m<n<q C.m<p<q<n D.m<n<p<q【分析】在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象,再作出直线y =1,y=3,它们与抛物线交于A,B和C,D,分别过交点作x轴的垂线,则垂足对应的数值为题干中方程的根,利用数形结合的方法即可得出结论.【解答】解:在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象如下图:作直线y=1与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于A,B,分别经过A,B作x轴的垂线,垂足对应的数值分别为m,n,∴m,n是方程(x﹣1)2﹣t2﹣1=0的两根;作直线y=3与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于C,D,分别经过AC,D作x轴的垂线,垂足对应的数值分别为p,q,∴p,q是方程(x﹣1)2﹣t2﹣3=0的两根.由图象可知m,n,p,q的大小关系是:p<m<n<q.故选:B.【变式2-3】(2022•河东区期末)已知抛物线y=x2+bx+c的图象与x轴的两交点的横坐标分别α,β(α<β),而x2+bx+c﹣2=0的两根为M、N(M<N),则α、β、M、N的大小顺序为( )A.α<β<M<N B.M<α<β<N C.α<M<β<N D.M<α<N<β【分析】依题意画出函数y=(x﹣α)(x﹣β)和y=2的图象草图,根据二次函数的图象可直接求解.【解答】解:依题意,画出函y=(x﹣α)(x﹣β)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为α,β(α<β),方程x2+bx+c﹣2=0的两根是抛物线y=(x﹣α)(x﹣β)与直线y=2的两个交点.由M<N,可知对称轴左侧交点横坐标为M,右侧为N.由图象可知,M<α<β<N,故选:B.【题型3 由二次函数解一元二次方程】【例3】(2022•娄底一模)已知二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A.﹣2或4B.﹣2或0C.0或4D.﹣2或5【分析】根据二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点求对称轴,后面两个方程二次项、一次项系数没变,所以两根的和也不变还是2.【解答】解:∵二次函数y=ax2+bx+c的图象经过(3,0)与(﹣1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为3和﹣1,函数y=ax2+bx+c的对称轴是直线x=1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣3,函数y=ax2+bx+c的图象开口向下,如图,∵0<n<m,∴﹣m>﹣m,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴直线y=﹣n与y=ax2+bx+c的交点的横坐标为﹣2,4,∴这关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,是﹣2或4,故选:A.【变式3-1】(2022•潮南区模拟)已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的根是 x1=﹣1,x2=3 .【分析】利用二次函数y=ax2﹣2ax+c的解析式求得抛物线的顶点坐标,利用抛物线的对称性求得抛物线与x轴的另一个交点,再利用抛物线与x轴的交点的横坐标与一元二次方程的根的关系得出结论.【解答】解:∵y=ax2﹣2ax+c,=1.∴抛物线的对称轴为直线x=−−2a2a∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该抛物线与x轴的另一个交点为(3,0).∴关于x的一元二次方程ax2﹣2ax+c=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【变式3-2】(2022•咸宁一模)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是 x1=﹣4,x2=1 .【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x=−522=−32,∵抛物线经过(﹣4,0),对称轴为直线x=−32,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【变式3-3】(2022•永嘉县校级模拟)已知二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,且关于x的方程﹣x2+bx+c+d=0有两个根,其中一个根是6,则d的值为( )A.5B.7C.12D.﹣7【分析】先由二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,求出b、c,再把b、c代入方程﹣x2+bx+c+d=0后,由方程的根是6求出d.【解答】解:∵二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,∴−1−b+c=0−25+5b+c=0,解得:b=4 c=5,将b=4,c=5代入方程﹣x2+bx+c+d=0,可得:﹣x2+4x+5+d=0,又∵关于x的方程﹣x2+4x+5+d=0有两个根,其中一个根是6,∴把x=6代入方程﹣x2+4x+5+d=0,得:﹣36+4×6+5+d=0,解得:d=7,经验证d=7时,Δ>0,符合题意,∴d=7.故选:B.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2022•平度市期末)如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为( )x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.3.故选:B.【变式4-1】(2022•灌云县期末)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是 6.18<x<6.19 .x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【解答】解:由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,于是可得,当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【变式4-2】(2022•渠县一模)如图,是二次函数y=ax2+bx﹣c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是 x1=0.8,x2=3.2合理即可 .(精确到0.1)【分析】直接利用抛物线与x 轴交点的位置估算出两根的大小.【解答】解:由图象可知关于x 的一元二次方程ax 2+bx =c 的两个根可能是:x 1=0.8,x 2=3.2合理即可.故答案为:x 1=0.8,x 2=3.2合理即可.【变式4-3】(2022秋•萍乡期末)代数式ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,x 与ax 2+bx +c 的对应值如下表: x ﹣1−12 0121 322 523ax 2+bx +c﹣2−141742741−14 ﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的( )A .−12<x 1<0,32<x 2<2B .﹣1<x 1<−12,2<x 2<52C .−12<x 1<0,2<x 2<52D .﹣1<x 1<−12,32<x 2<2【分析】观察表格可知,在x <1时,随x 值的增大,代数式ax 2+bx +c 的值逐渐增大,x 的值在−12~0之间,代数式ax 2+bx +c 的值由负到正,故可判断ax 2+bx +c =0时,对应的x 的值在−12~0之间,在x >1时,随x 的值增大,代数式ax 2+bx +c 逐渐减小,x 的值在2~52之间,代数式ax 2+bx +c 的值由正到负,故可判断ax 2+bx +c =0时,对应的x 的值在2~52之间,【解答】解:根据表格可知,代数式ax 2+bx +c =0时,对应的x 的值在−12~0和2~52之间,即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是−12<x1<0,2<x2<52故选:C.【题型5 由二次函数的图象解不等式】【例5】(2022秋•垦利区期末)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为( )A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1【分析】由抛物线与直线交点横坐标确定直线在抛物线上方时x的取值范围.【解答】解:∵A(﹣1,p),B(3,q),∴﹣1<x<3时,直线在抛物线上方,即﹣1<x<3时,ax2+c<mx+n,∴不等式ax2﹣mx+c<n的解集为﹣1<x<3.故选:C.【变式5-1】(2022•定远县二模)抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…请求出当y<0时x的取值范围 x<﹣2或x>3 .【分析】把点(0,6)代入求出c,把点(﹣1,4)和(1,6)代入抛物线的解析式列方程组,解出可得a、b,即可得抛物线的解析式,进而可列不等式求出y<0时x的取值范围.【解答】解:由表得,抛物线y=ax2+bx+c(a≠0)过点(0,6),∴c=6,∵抛物线y=ax2+bx+6过点(﹣1,4)和(1,6),∴a−b+6=4a+b+6=6,解得:a=−1 b=1,∴二次函数的表达式为:y=﹣x2+x+6,所以令﹣x2+x+6<0,解得:x<﹣2或x>3.故答案为:x<﹣2或x>3.【变式5-2】(2022•工业园区校级模拟)若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为 x<﹣1或x>1 .【分析】根据图象可得x<1或x>3时ax2+bx+c<0,则a(x+2)2+b(x+2)+c<0时x+2<1或x+2>3,进而求解.【解答】解:由图象可得x<1或x>3时ax2+bx+c<0,∴当a(x+2)2+b(x+2)+c<0时,x+2<1或x+2>3,解得x<﹣1或x>1,故答案为:x<﹣1或x>1.【变式5-3】(2022•驿城区校级期末)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.则满足kx+b≥x2﹣4x+m的x的取值范围是( )A.x≤1或x≥4B.1≤x≤4C.x≤1或x≥5D.1≤x≤5【分析】由二次函数解析式可得抛物线对称轴为直线x=2,从而可得点B横坐标,进而求解.【解答】解:∵y=x2﹣4x+m,∴抛物线对称轴为直线x=2,∵点B和点C关于直线x=2对称,∴点B横坐标为4,∵点A横坐标为1,∴1≤x≤4时,kx+b≥x2﹣4x+m,故选:B.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2022•虞城县三模)已知抛物线y=a(x﹣2)2+c(a>0).(1)若抛物线与直线y=mx+n交于(1,0),(5,8)两点.①求抛物线和直线的函数解析式;②直接写出当a(x﹣2)2+c>mx+n时自变量x的取值范围.(2)若a=c,线段AB的两个端点坐标分别为A(0,3),B(3,3),当抛物线与线段AB有唯一公共点时,直接写出a的取值范围.【分析】(1)①利用待定系数法求解析式即可,②抛物线开口向上,数形结合直接写出答案;(2)结合抛物线和线段AB,分情况讨论求a的取值范围.【解答】解:(1)①∵抛物线y=a(x﹣2)2+c与直线y=mx+n交于(1,0),(5,8)两点,∴a+c=09a+c=8,m+n=05m+n=8,解得a=1c=−1,m=2n=−2,∴抛物线和直线的函数解析式分别为y=(x﹣2)2﹣1,y=2x﹣2.②∵a>0,抛物线开口向上,抛物线与直线y=mx+n交于(1,0),(5,8)两点,∴当a(x﹣2)2+c>mx+n时自变量x的取值范围为x<1或x>5.(2)若a=c,则抛物线y=a(x﹣2)2+a(a>0),∴开口向上,对称轴为x=2,顶点坐标为(2,a),当抛物线顶点在线段AB上时有唯一公共点,此时a=3,当抛物线顶点在线段AB下方时,当经过B(3,3)时,a+a=3,解得a=32,当经过A(0,3)时,4a+a=3,解得a=35,∴当抛物线与线段AB有唯一公共点时,a的取值范围为35≤a<32或a=3.【变式6-1】(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.【分析】(1)将(3,m),(n,﹣6)代入直线解析式求出点坐标,然后通过待定系数法求解,根据图象可得y1<y2时x的取值范围.(2)﹣x2+bx+c=2x﹣2,由Δ=0求解.【解答】解:(1)将(3,m)代入y1=2x﹣2得m=6﹣2=4,将(n,﹣6)代入y1=2x﹣2得﹣6=2n﹣2,解得n=﹣2,∴抛物线经过点(3,4),(﹣2,﹣6),将(3,4),(﹣2,﹣6)代入y2=﹣x2+bx+c得4=−9+3b+c−6=−4−2b+c,解得b=3 c=4,∴y=﹣x2+3x+4,由图象可得﹣2<x<3时,抛物线在直线上方,∴y1<y2时x的取值范围是﹣2<x<3.(2)令﹣x2+bx+c=2x﹣2,整理得x2+(2﹣b)x﹣(2+c)=0,当Δ=(2﹣b)2+4(2+c)=0时,两函数图象只有一个公共点,∴b=2,c=﹣2,满足题意.【变式6-2】(2022•河南模拟)小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 y=|x2﹣4x|﹣3 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: 函数关于直线x=2对称 ;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k= 1 ;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集: x=0或3≤x≤5 .【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为:y=|x2﹣4x|﹣3;(2)如图:函数关于直线x=2对称,故答案为:函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=|x2﹣4x|﹣3的交点为x=0或x=3,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为x=0或3≤x≤5,故答案为:x=0或3≤x≤5.x+t与函数y=【变式6-3】(2022•海珠区一模)令a、b、c三个数中最大数记作max{a,b,c},直线y=12 max{﹣x2+4,x﹣2,﹣x﹣2}的图象有且只有3个公共点,则t的值为 1或65 .16【分析】只需画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,然后结合图象并运用分类讨论的思想,就可解决问题.【解答】解:在直角坐标系中画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,如图所示.当直线y =12x +t 经过(﹣2,0)或与抛物线y =﹣x 2+4相切时,直线y =12x +t 与函数y =max {﹣x 2+4,x ﹣2,﹣x ﹣2}的图象有且只有3个公共点.①若直线y =12x +t 经过(﹣2,0),则有0=12×(﹣2)+t ,解得t =1;②若直线y =12x +t 与抛物线y =﹣x 2+4相切,则关于x 的方程12x +t =﹣x 2+4即x 2+12x +t ﹣4=0有两个相等的实数根,则△=(12)2﹣4×1×(t ﹣4)=0,解得t =6516.综上所述:t =1或6516.故答案为1或6516.。
九年级数学第二章二次函数与一元二次方程
用函数观点看一元二次方程【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x 轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac =-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>00a >抛物线2(0)y ax bx c a =++≠与x轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b ac x a-±-=0a <△=00a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-0a <△<00a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)0a <要点进阶:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点进阶:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点进阶: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0). 要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点进阶:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点例1. 已知抛物线22(1)423y k x kx k =+++-.求:(1)k 为何值时,抛物线与x 轴有两个交点; (2)k 为何值时,抛物线与x 轴有唯一交点;(3)k 为何值时,抛物线与x 轴没有交点.举一反三:【变式】二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx+c=0的两个根; (2)写出不等式ax 2+bx+c >0的解集; (3)求y 的取值范围.类型二、利用图象法求一元二次方程的解例2. 利用函数的图象,求方程组的解.类型三、二次函数与一元二次方程的综合运用例3. 已知关于x 的二次函数22(21)34y x m x m m =--+++.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数为2,1,0.(2)设二次函数y 的图象与x 轴的交点为A(1x ,0),B(2x ,0),且22125x x +=与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.举一反三:【变式】已知抛物线)(2442是常数m m mx mx y -+-=.(1)求抛物线的顶点坐标;(2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.例4.如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线与y 轴的交点为E ,连结AD 、AE ,求△ADE 的面积.【巩固练习】 一、选择题1. 若二次函数241y ax x a =++-的最大值为2,则a 的值是( )A.4B.-1C.3D.4或-12.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k <0B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠33.方程2123x x x++=的实数根的个数是( ) A. 1 B. 2 C. 3 D. 44.如图所示的二次函数2y ax bx c =++(a ≠0)的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)1c >;(3)20a b -<;(4)0a b c ++<.你认为其中错误的有( )A .2个B .3个C .4个D .1个5.方程2252x x x-++=的正根的个数为( ) A .3个 B .2个 C .1个 D .0个6.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A .m <a <b <n B . a <m <n <b C . a <m <b <n D .m <a <n <b二、填空题7. 已知二次函数22(21)44y x m x m m =--+++的图象的顶点在x 轴上,则m 的值为 .8.如图所示,函数y =(k-8)x 2-6x+k 的图象与x 轴只有一个公共点,则该公共点的坐标为 .第8题 第9题9.已知二次函数2y ax bx c =++(a ≠0)的顶点坐标为(-1,-3.2)及部分图象(如图所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别为1 1.3x =和2x =________.10.已知二次函数222(1)2y x m x m m =-+-+-的图象关于y 轴对称,则此图象的顶点A 和图象与x 轴的两个交点B 、C 构成的△ABC 的面积是________.11.抛物线2y ax bx c =++(a ≠ 0)满足条件:(1)40a b -=;(2)0a b c -+>;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①0a <;②0c >;③0a b c ++<;④43c ca <<,其中所有正确结论的序号是 .12.如图是二次函数和一次函数y 2=kx+t 的图象,当y 1≥y 2时,x 的取值范围是 .三、解答题 13.已知抛物线212y x x k =-+与x 轴有两个不同的交点. (1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在点B 的左侧,点D 是抛物线的顶点,如果△ABC 是等腰直角三角形,求抛物线的解析式.14.如图所示,已知直线12y x =-与抛物线2164y x =-+交于A 、B 两点.(1)求A、B两点的坐标;(2)如图所示,取一根橡皮筋,端点分别固定在A、B两处,用铅笔拉着这根橡皮筋使笔尖在直线AB上方的抛物线上移动,动点P将与A、B两点构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,指出此时P点的坐标;如果不存在,请简要说明理由.15.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?。
用二次函数的图象求一元二次方程的近似解
用二次函数的图象求一元二次方程的近似解课标要求会利用二次函数的图象求一元二次方程的近似解.中招考点用二次函数图象求一元二次方程的近似解.例1 阅读材料回答问题:有如下一道题:画图求方程22+-=x x 的解.两位同学的解法如下:甲:将方程22+-=x x 化为022=-+x x ,画出22-+=x x y 的图象,观察它与x 轴的交点,得出方程的解.乙:分别画出函数2x y =和2+-=x y 的图象,观察它们的交点, 把交点的横坐标作为方程的解.你对这两种解法有什么看法?请与你的同学交流.归纳反思上面甲、乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线2x y =的图象,再根据待解的方程,画出相应的直线,两线交点的横坐标即为方程的解.所以建议同学们以后尽量用乙的方法.例2利用函数的图象,求下列方程的解:(1)0322=-+x x ;(2)02522=+-x x .解:(1)先把方程化成x 2=-2x+3.如图:在同一直角坐标系中分别画出函数2x y =和32+-=x y 的图象,得到它们的交点(-3,9)和(1,1),则方程0322=-+x x 的解为x=–3或x=1.(2)先把方程02522=+-x x 化为 01252=+-x x ,然后在同一直角坐标系中画出函数2x y =和125-=x y 的图象,如图,得到它们的交点(21,41)和(2,4), 则方程02522=+-x x 的解为 21,2. 归纳反思一般地,求一元二次方程)0(02≠=++a c bx ax 的近似解时,通常先把方程化成a c x a b x --=2的形式,然后在同一直角坐标系中分别画出y=x 2和ac x a b y --=两个函数的图象,得出交点,交点的横坐标即为方程的解.例3 利用函数的图象,求下列方程组的解: (1)213,22.y x y x ⎧=-+⎪⎨⎪=⎩(2)236,2.y x y x x =+⎧⎨=+⎩ 分析:(1)可以通过直接画出函数2321+-=x y 和2x y =的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.解:(1)在同一直角坐标系中画出函数2x y =和2321+-=x y 的图象,如图.得到它们的交点(23-,49)和(1,1), 则方程组⎪⎩⎪⎨⎧=+-=22321x y x y 的解为:12213,1,29 1..4x x y y ⎧=-⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩ (2)在同一直角坐标系中画出函数x x y 22+=和63+=x y 的图象,如图.得到它们的交点(-2,0).(3,15),则方程组⎩⎨⎧+=+=x x y x y 2632的解为⎩⎨⎧==⎩⎨⎧=-=153,022211y x y x .思考:(2)中的抛物线画出来比较麻烦,你能想出更好的解决此题的方法吗?比如利用抛物线2x y =的图象,请尝试一下.强化练习1.已知二次函数432--=x x y 的图象如图,(1)则方程0432=--x x 的解是 ,(2)不等式0432>--x x 的解集是 ,(3)不等式0432<--x x 的解集是 .2.利用函数的图象,求方程组22.y x y x =-+⎧⎨=⎩,的解.。
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
2022年北师版数学《一元二次方程的解及其估算》精品教案
第2课时一元二次方程的解及其估算1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点)2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)一、情景导入在上一课时情境导入中,苗圃的宽满足方程x(x+2)=120,你能求出该方程的解吗?二、合作探究探究点一:一元二次方程的解下列哪些数是方程x2-6x+8=0的根?0,1,2,3,4,5,6,7,8,9,10.解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x2-6x+8=0中,发现当x=2和x=4时,方程x2-6x+8=0成立,所以x=2,x=4是方程x2-6x+8=0的根.解:2,4是方程x2-6x+8=0的根.方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.探究点二:估算一元二次方程的近似解请求出一元二次方程x2-2x-1=0的正数根(精确到0.1).解析:先列表取值,初步确定正数根x在哪两个整数之间,然后再用类似的方法逐步确定出x的近似正数根.解:(1)列表,依次取x=0,1,2,3,…x 0123…x2-2x-1-1-2-12…由上表可发现,当2<x<3时,-1<x-2x-1<2;(2)x …x2-2x-1…由上表可发现,当2.4<x<2.5时,-0.04<x-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴2.4<x<2.45,∴x≈2.4.方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.【知识与技能】1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.【过程与方法】1.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.2.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.【情感态度】在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.。
2.1一元二次方程的近似解
在一般形式ax2+bx+c=0中,
注意(1)一般形式的右边必须是0, (2)左边是按降幂排列的三项式,
当然也可以没有一次项、常数项。
3、方程ax²+bx+c=0的条件:
(1)当a≠0时,是一元二次方程。
(2)当a=0并且b≠0 时,是一元一次方程。
我能行
小 试 牛 刀
根据题意列出方程:
(1)造一个池底为正方形,深度为2.5cm的长方体无盖蓄水池, 池壁的造价为120元/m2,池底的造价为240元/m2,总造价为 8640元.求池底的边长.
x
18m2
x 8
因此,x取值的大致范围是:0<x<2.5.
在0<x<2.5这个范围中,x具体的值= ? 完成下表(取值计算,逐步逼近):
x 2x2-13x+11 … …
0.5 4.75
1 0
1.5 -4
2 -7
… …
由此看出,可以使2x2-13x+11的值为0的x=1.故可知花边宽为1m. 你还有其它求解方法吗?与同伴交流.
数学化
8m
7m
xm
你能猜得出x取值的大致范围吗?
你能猜得出x取值的大致范围吗?
完成下表(取值计算,逐步逼近):
x x2+12x-15 … …
0.5 -8.75
1 -2
可知x取值的大致范围是:1<x<1.5
在1<x<1.5这个范围中,如果x取整数是几? 如果x精确到十分位呢?百分位呢?
如果将(8-2x)(5-2x)=18看作是6×3=18. 则有8-2x=6, 5-2x=3.从而也可以解得x=1.
怎么样,你还敢挑战吗?
2.5.2求一元二次方程的近似根(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程近似根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的计算器操作实验。这个操作将演示如何使用计算器求解一元二次方程的近似根。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程及其近似根的基本概念。一元二次方程是形如ax^2 + bx + c = 0的方程,它的近似根是指在一定误差范围内接近真实解的数值解。这些近似根在工程、物理等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算器求解方程x^2 - 3x + 2 = 0的近似根,展示近似方法在实际中的应用,以及如何帮助我们解决问题。
举例:
-重点1:求解一元二次方程近似根的公式,如ax^2 + bx + c = 0的求根公式;
-重点2:使用计算器进行近似计算的方法,如牛顿迭代法、二分法等;
-重点3:结合实际例题,如求解二次方程x^2 - 5x + 6 = 0的近似根。
2.教学难点
(1)理解求根公式中各个参数的含义,尤其是判别式的应用;
2.5.2求一元二次方程的近似根(教案)
一、教学内容
本节课选自教材第二章第五节第二部分“2.5.2求一元二次方程的近似根”。教学内容主要包括以下两个方面:
1.掌握用求根公式求一元二次方程的Байду номын сангаас似根的方法。
2.学会利用计算器计算一元二次方程的近似根,并比较不同近似方法的精确度。
用函数观点看一元二次方程讲解
用函数观点看一元二次方程撰稿:庄永春责编:张晓新一、目标认知学习目标1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根.重点1.体会方程与函数之间的联系.2.能够利用二次函数的图象求一元二次方程的近似根.难点1.探索方程与函数之间关系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.二、知识要点梳理知识点一、二次函数与一元二次方程的关系1.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.2.函数与直线的公共点情况方程的根的情况.函数与直线的公共点情况方程的根的情况.知识点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数2.由二次函数图象与的交点位置,确定交点的横坐标的取值范围;3.利用计算器计算方程的近似根.三、规律方法指导求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根:(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根;(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根。
1 第2课时 一元二次方程的根及近似解
全品教学课件
数学
九年级 上册
新课标(BS)
第二章 一元二次方程
1 认识一元二次方程
第二章 一元二次方程
第2课时 一元二次方程的根
及近似解
知识回顾
情知景识导回入顾
获取新知
例知题识讲回解顾
随堂演练
课堂小结
第2课时 一元二次方程的根及近似解 问1:一元二次方程有哪些特点?
① 只含有一个未知数; ②未知数的最高次项系数是2; ③整式方程; ④二次项的系数不能为0
问2:一元二次方程的一般形式是什么? ax2 +bx + c = 0(a , b , c为常数, a≠0)
第2课时 一元二次方程的根及近似解
情景导入
上节中我们遇到了这样一个问题 1.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去, 横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门 的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你 知道竹竿有多长吗? 我们得到了方程x2-12 x +20 = 0 如何求解x呢?
第2课时 一元二次方程的根及近似解
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x
2.2
2.3
2.4
2.5
…
x2 - 2x - 1 -0.79 -0.31 -0.04
0.25
…
由表发现,当2.4<x<2.5时,-0.04< x2 -2x-1<0.25; (3)取x=2.45,则x2 - 2x - 1≈0.1025. ∴2.4<x<2.45, ∴x≈2.4.
根据题意,x的取值范围大致是0 < x < 11. 解方程 x2 + 2x - 120 = 0. 完成下表(在0 < x < 11这个范围内取值计算,逐步逼近):
二次函数与一元二次方程 第2课时 利用二次函数图象求方程近似根 课件
x 1≈-1.4,x 2≈3.4.
现在我们用求根公式来验证一下.
对于方程-x 2+2x-3=-8,
整理,得x 2-2x-5=0.
± +
解得 x =
=1±
.
∴ x1=1- ≈-1.4, x2=1+ ≈3.4.
∴利用图象法求得方程- x2+2 x -3=-8的近似根 x1≈
第二章 二次函数
5 二次函数与一元二次方程
第2课时 利用二次函数图象求方程近似根
1. 用图象法求一元二次方程的近似根
2
方 直接作出二次函数 y = ax + bx + c 的图象,则图
法 象与 x 轴的交点的 横坐标 就是一元二次方程
2
一 ax + bx + c =0的根
2
ax
先将一元二次方程变为 + bx =- c ,再在同一
-6.41 -6.84 -7.29 -7.76 -8.25
因此,x=-1.4是方程-x 2+2x-3=-8的一个近似
根.
②另一个根可以类似地求出:
x
3.1
3.2
3.3
3.4
3.5
y
-6.41 -6.84 -7.29 -7.76 -8.25
因此,x=3.4是方程-x 2+2x-3=-8的另一个近似
根.
是 x1=0.8, x2=3.2(合理即可) .(精确到0.1)
(第2题)
题型二 抛物线的对称性运用
(1)如图1,抛物线 y = ax2+ bx + c ( a ≠0)的图
象与 x 轴的一个交点是(-2,0),顶点是(1,3),
下列说法中不正确的是( C )
初中数学 什么是一元二次方程的近似解
初中数学什么是一元二次方程的近似解一元二次方程的近似解是指对于无法精确求解的一元二次方程,我们可以使用近似方法来获得一个接近于真实解的估计值。
在这里,我将详细解释一元二次方程的近似解的概念,并提供一些实例和解题技巧。
希望这能帮助你更好地理解和应用一元二次方程的近似解。
首先,让我们回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0,其中a、b和c是实数,且a不等于0。
对于某些一元二次方程,我们可能无法通过精确求解得到方程的根。
这时,我们可以使用近似方法来获得一个接近于真实解的估计值。
一元二次方程的近似解可以通过以下方法来获得:方法1:图像法通过绘制方程的图像,我们可以观察到方程的根在哪个区间内,并获得一个近似解的估计值。
我们可以使用计算机或手绘图像来帮助我们更准确地确定方程的根所在的位置。
例如,考虑方程x^2 - 4x + 3 = 0。
我们可以绘制方程的图像,并观察到方程的根位于x=1和x=3之间。
因此,我们可以估计方程的近似解为x ≈ 2。
方法2:二分法二分法是一种常用的近似求解方法,适用于对于一个在某个区间内连续的函数进行求解。
我们可以通过迭代的方式逼近方程的根。
具体步骤如下:1. 选择一个初始的区间[a, b],确保方程在这个区间内连续。
2. 计算区间中点c = (a + b) / 2。
3. 计算方程在中点c处的函数值f(c)。
4. 如果f(c)接近于0,我们可以认为c是方程的近似解。
如果不是,则根据f(c)与0的关系,更新区间[a, b]。
5. 重复步骤2至4,直到我们获得一个满足要求的近似解。
例如,考虑方程x^2 - 4x + 3 = 0。
我们可以选择初始的区间[a, b]为[1, 3]。
计算中点c = (1 + 3) / 2 = 2,然后计算f(c) = (2)^2 - 4(2) + 3 = -1。
由于f(c)不接近于0,我们可以更新区间为[a, b] = [2, 3],然后重复上述步骤,直到获得一个满足要求的近似解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时一元二次方程的解
1.使一元二次方程左右两边___________的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根.
2.对于一元二次方程ax2+bx+c=0(a≠0)来说,求近似解的过程就是找到这样的x,使ax2+bx+c的值接近____,则可大致确定x的取值范围.
知识点一:一元二次方程的解
1.下列各数中是x2-3x+2=0的解的是()
A.-1B.1C.-2D.0
2.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值是()
A.-1 B.0 C.1 D.2
3.已知关于x的一元二次方程2x2-mx-6=0的一个根是2,则m=____.
4.写出一个根为x=-1的一元二次方程,它可以是__________________.
5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=____.
6.关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根为0,则a=____.
7.小颖在做作业时,一不小心,一个方程3x2-■x-5=0的一次项系数被墨水盖住了,但从题目的条件中,她知道方程的解是x=5,请你帮助她求出被覆盖的数是多少.
知识点二:估算一元二次方程的近似解
8.已知x2-101=0,那么它的正数解的整数部分是()
A.8 B.9 C.10 D.11
9.方程x2-2x-2=0的一较小根为x1,下面对x1的估计正确的是()
A.-2<x1<-1 B.-1<x1<0 C.0<x1<1 D.1<x1<2
10.已知长方形宽为x cm,长为2x cm,面积为24 cm2,则x最大不超过()
A.1 B.2 C.3 D.4
11.为估算方程x2-2x-8=0的解,填写下表:
________________
12.填写下表,并探索一元二次方程x2-6x+9=0的解的取值范围.
13.观察下表:
根的取值范围.
14.(2014·菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为() A.1B.-1C.0D.-2
15.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()
A.3<x<3.23 B.
16.若关于x的一元二次方程ax2+bx+c=0(a≠0),满足a+b+c=0,则方程必有一个实根为____.17.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=____.
18.小明在做“一块矩形铁片,面积为1 m2,长比宽多3 m,求铁片的长”时是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面
是他的探索过程: 第一步:
所以,____<x <____. 第二步:
所以,____<x <____(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片长的整数部分为____,十分位为____.
19.对于向上抛出的物体,在没有空气阻力的条件下,有如下关系:h =vt -1
2gt 2,其中h 是离抛出点所在
平面的高度,v 是初速度,g 是重力加速度(g =10米/秒2),t 是抛出后所经过的时间.如果将一物体以25米/秒的初速度向上抛,几秒种后它在离抛出点20米高的地方?
20.已知m 是关于x 的一元二次方程x 2-2015x +1=0的一个不为0的根,求代数式m 2-2014m +2015
1+m 2的
值.
21.某大学为改善校园环境,计划在一块长80 m ,宽60 m 的长方形场地中央建一个长方形网球场,网球场占地面积为3 500 m 2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m .
(1)你能列出相应的方程吗?
(2)x可能小于0吗?说说你的理由;
(3)x可能大于40吗?可能大于30吗?说说你的理由;
(4)你知道人行走道的宽x是多少吗?说说你的求解过程.
参考答案
1.使一元二次方程左右两边__相等__的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根.2.对于一元二次方程ax2+bx+c=0(a≠0)来说,求近似解的过程就是找到这样的x,使ax2+bx+c的值接近__0__,则可大致确定x的取值范围.
知识点一:一元二次方程的解
1.下列各数中是x2-3x+2=0的解的是(B)
A.-1B.1C.-2D.0
2.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值是(C)
A.-1 B.0 C.1 D.2
3.已知关于x的一元二次方程2x2-mx-6=0的一个根是2,则m=__1__.
4.写出一个根为x=-1的一元二次方程,它可以是__x2-1=0(答案不唯一)__.
5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=__-2__.
6.关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根为0,则a=__-2__.
7.小颖在做作业时,一不小心,一个方程3x2-■x-5=0的一次项系数被墨水盖住了,但从题目的条件中,她知道方程的解是x=5,请你帮助她求出被覆盖的数是多少.
解:设被覆盖的数是a,将x=5代入原方程,得3×25-5a-5=0.解得a=14
知识点二:估算一元二次方程的近似解
8.已知x2-101=0,那么它的正数解的整数部分是(C)
A.8 B.9 C.10 D.11
9.方程x2-2x-2=0的一较小根为x1,下面对x1的估计正确的是(B)
A.-2<x1<-1 B.-1<x1<0 C.0<x1<1 D.1<x1<2
10.已知长方形宽为x cm,长为2x cm,面积为24 cm2,则x最大不超过(D)
A.1 B.2 C.3 D.4
11.为估算方程x2-2x-8=0的解,填写下表:
__-2或4__
12.填写下表,并探索一元二次方程x2-6x+9=0的解的取值范围.
__4____2__
13.观察下表:
从表中你能得出方程5x 2-24x +28=0的根是多少吗?如果能,写出方程的根;如果不能,请写出方程根的取值范围.
解:一个解为x =2,另一个解的取值范围为2.5<x <3
14.(2014·菏泽)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( A ) A .1 B .-1 C .0 D .-2
15.根据下列表格中的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是( C )
A .3<x <3.23
B .16.若关于x 的一元二次方程ax 2+bx +c =0(a ≠0),满足a +b +c =0,则方程必有一个实根为__x =1__. 17.(2014·白银)一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =__1__.
18.小明在做“一块矩形铁片,面积为1 m 2,长比宽多3 m ,求铁片的长”时是这样做的:设铁片的长为x ,列出的方程为x (x -3)=1,整理得x 2-3x -1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程: 第一步:
所以,__3__<x <__4__. 第二步:
所以,__3.3__<x <__3.4__(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片长的整数部分为__3__,十分位为__3__.
19.对于向上抛出的物体,在没有空气阻力的条件下,有如下关系:h =vt -1
2gt 2,其中h 是离抛出点所在
平面的高度,v 是初速度,g 是重力加速度(g =10米/秒2),t 是抛出后所经过的时间.如果将一物体以25米/秒的初速度向上抛,几秒种后它在离抛出点20米高的地方?
解:由题意得,25t -5t 2=20,列表(略),估算,当t =1秒和t =4秒时,物体在离抛出点20米高的地方
20.已知m 是关于x 的一元二次方程x 2-2015x +1=0的一个不为0的根,求代数式m 2-2014m +2015
1+m 2的
值.
解:∵m2-2015m+1=0,∴m2=2015m-1,m2+1=2015m,m+1
m=2015,
∴原式=m-1+1
m=2015-1=2014
21.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地中央建一个长方形网球场,网球场占地面积为3 500 m2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m.
(1)你能列出相应的方程吗?
(2)x可能小于0吗?说说你的理由;
(3)x可能大于40吗?可能大于30吗?说说你的理由;
(4)你知道人行走道的宽x是多少吗?说说你的求解过程.
解:(1)由题意,得(80-2x)(60-2x)=3 500,整理为x2-70x+325=0(2)x的值不可能小于0,因为人行走道的宽度不可能为负数(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40
(4)
显然,当x=5时,x2-70x+325=0,∴人行走道的宽为5 m。