9.1三角形的边(1)课件(冀教版七下)

合集下载

9.3 三角形的角平分线、中线和高 课件1 (冀教版七年级下册)

9.3 三角形的角平分线、中线和高 课件1 (冀教版七年级下册)

(2)若∠A=α,试用α的代数式表示∠BPC。 B
P
A
C
3.如图,AD是△ABC的中线,AB=8, AC=6,则△ABD 与△ACD的周长差为 多少? △ABD 与△ACD的面积差为多少?
A
B
D
C
通过这节课的学习活动你有哪些收获?
你还有什么想法吗?
《数学》( 北师大.七年级 下册 )
自学136页
1、什么叫三角形的 角平分线? 它与我们学过的角平分线一样吗? 2、一个三角形有几条角平分线? 3、用你课前准备的三角形纸片,动 手折出它的所有角平分线后,在用 笔画下来,说说你的发现!
在三角形中,一个内角的平分线与它的对 边相交,这个角的顶点与交点之间的线段叫 三角形的角平分线。
注意
!
三角形的角平分线的定义
“三角形的角平分线”是一条线段 。而角平分线是一条射线!
图形:
A 1 2
B
D
C
符号:
∵AD是△ABC的角平分线
∴∠1=∠2
做一做
三角形的角平分线的性质
在每个三角形中,这三条角பைடு நூலகம்分线之间有 怎样的位置关系?
三角形的三条角平分线交于同一点.
三角形的三条中线的性质
三角形的三条中线交于一点.
例1 如图,在△ABC中,AD是△ABC的高AE
是△ABC的角平分线.已知∠BAC=82° ∠C=40°,求∠DAE的大小。 A
1 ∴ ∠EAC= ∠BAC=41° 2
且∠BAC=82°
解: ∵ AE是BC边上的角平分线,
∵ AD是△ABC的高, ∴ ∠ADC=90° ∵ ∠DAC+ ∠C =90°(根据什么?) ∴ ∠DAC=90°-∠C =90°-40°=50°

冀教版初中数学七年级下册教学课件 第九章 三角形 三角形的角平分线、中线和高

冀教版初中数学七年级下册教学课件 第九章 三角形 三角形的角平分线、中线和高
4.如图所示,CD是△ABC的高,且 CD=5,S△ABC=25,则AB= 10 .
知识小结
1.在三角形中,一个内角的平分线与它的对边相交,这个 角的顶点与交点之间的线段叫做三角形的角平分线.
2.把一条线段分成两条相等线段的点是线段的中点.在三 角形中,连接一个顶点与它对边中点的线段,叫做这个三角 形的中线. 三角形的三条中线交于一点,这点称为三角形的重心.
活动2 三角形的中线
你能画一条线将三角形的面积分成相等的两部分吗? 三角形的中线定义:连接三角形顶点和对边中点的线段 叫做三角形的中线. 任意地画出一个三角形,画出这个三角形的三条中线,
总结:任意三角形的三条中线都交于一点,三角形三条 中线的交点叫做三角形的重心.
[知识拓展]
(1)一个三角形有三条中线,并且都在三角形内部 相交于一点. (2)三角形的中线是一条线段. (3)三角形的一条中线把角形分成面积相等的 两个三角形.
冀 新课标 教
数学
7年级/下
七年级数学·下 新课标[冀教]
第九章 三角形
学习新知
检测反馈
问题思考
学习新知
同学们,你也能利用一支铅笔平整的一端支起一个 三角板吗?你知道这里面的数学知识吗?
活动1 三角形的角平分线
如图所示,已知△ABC,画出∠A的平分线.
D
定义:三角形一个内角的平分线与它的对边相交,这个 角的顶点与交点间的线段叫做三角形的角平分线. 如图所示,在△ABC中,∠BAD=∠CAD,线段AD是 △ABC的一条角平分线.
1 2
×4=2.同理可知
3.如图所示,在△ABC中,AD平分∠BAC且与BC相交于点 D,∠B=40°,∠BAD=30°,则∠C的度数是 ( B ) A.70° B.80° C.100° D.110°

冀教版数学七年级下册9.1《三角形的边》教学设计

冀教版数学七年级下册9.1《三角形的边》教学设计

冀教版数学七年级下册9.1《三角形的边》教学设计一. 教材分析冀教版数学七年级下册9.1《三角形的边》是初中的基础课程,主要让学生了解三角形的三条边之间的关系,掌握三角形的性质。

本节内容主要包括三角形的定义、三角形的边长关系、三角形的分类等。

通过本节课的学习,学生能够理解三角形的基本概念,掌握三角形边长之间的关系,并能运用这些知识解决实际问题。

二. 学情分析七年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。

但是,对于三角形这一概念,他们可能还存在着模糊的认识,需要通过实例来进一步明确。

此外,学生对于数学概念的理解往往停留在表面,需要通过大量的练习来加深对概念的理解。

三. 教学目标1.知识与技能:让学生理解三角形的基本概念,掌握三角形边长之间的关系,能运用这些知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生抽象概括的能力,发展空间观念。

3.情感态度与价值观:让学生在解决实际问题的过程中,体验数学的价值,增强学习的信心,培养合作精神。

四. 教学重难点重点:三角形的基本概念,三角形边长之间的关系。

难点:对三角形概念的理解,三角形边长关系的运用。

五. 教学方法1.情境教学法:通过生活情境,让学生在实际问题中感受三角形的存在,理解三角形的基本概念。

2.活动教学法:让学生通过实际操作,自主探索三角形的性质,培养学生的动手能力。

3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题,培养学生的思维能力。

六. 教学准备1.教具准备:三角板、直尺、圆规等。

2.教学课件:制作课件,展示三角形的图片,动画等。

七. 教学过程1.导入(5分钟)通过展示生活中常见的三角形图片,如自行车的三角形车架、三角形的屋顶等,引导学生发现三角形的存在,激发学生的学习兴趣。

同时,让学生举例说明生活中见到的三角形,进一步理解三角形的概念。

2.呈现(10分钟)利用课件,展示三角形的基本概念,三角形的边长关系。

七年级下册第九章三角形9、1三角形的边习题新版冀教版

七年级下册第九章三角形9、1三角形的边习题新版冀教版

14 已知a,b,c是△ABC的三边长. (1)若a,b,c满足|a-b|+(b-c)2=0,试判断△ABC的 形状; 解:∵|a-b|+(b-c)2=0, ∴a-b=0且b-c=0. ∴a=b=c. ∴△ABC为等边三角形.
(2)若a,b,c满足(a-b)(b-c)=0,试判断△ABC的形状; 解:∵(a-b)(b-c)=0, ∴a-b=0或b-c=0. ∴a=b或b=c. ∴△ABC为等腰三角形.
(3)化简:|a-b-c|+|b-c-a|+|c-a-b|. 解:∵a,b,c是△ABC的三边长, ∴a-b-c<0,b-c-a<0,c-a-b<0. ∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.
15 如图,第1个图形是一个三角形,分别连接这个三角形 三条边的中点得到第2个图形,再分别连接第2个图形 中间的小三角形三条边的中点得到第3个图形……按此 方法继续下去,请你根据每个图形中三角形的个数的 规律,完成下列问题:
2 下面各项都是由三条线段组成的图形,其中是三角形 的是( C )
【点拨】 选项A,B,C,D都是由三条线段组成的图形,
但A,B,D不是首尾顺次相接,只有C符合三角形的 定义.
3 如图,图中三角形的个数是( D ) A.3个 B.4个 C.5个 D.6个
4 如图,以CD为边的三角形是_△__C_D__F_,__△__B__C_D_;∠EFB 是_△__B__E_F__的内角;在△BCE中,BE所对的角是 _∠__B_C__E__,∠CBE所对的边是___C__E___;以∠A为内角 的三角形有__△__A_B_D__,__△__A_C__E_,__△__A_B__C___.
【点拨】 ∵m-2+(n-4)2=0,∴m-2=0,n-4=0,解

七年级数学下册 9.1 三角形的边同步练习 冀教版(2021学年)

七年级数学下册 9.1 三角形的边同步练习 冀教版(2021学年)

七年级数学下册9.1 三角形的边同步练习(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.1 三角形的边同步练习(新版)冀教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.1三角形的边同步练习(新版)冀教版的全部内容。

9。

1三角形的边基础训练1。

以下列各组线段为边,能组成三角形的是( )A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cmC。

5 cm,6 cm,12 cmﻩ D.2cm,3 cm,5cm2。

如图所示的图形中共有()三角形.A.1个B.2个ﻩC。

3个ﻩD。

4个3。

已知三角形的两边长分别是3和8,则该三角形第三边的长可能是( )A.5ﻩB。

10ﻩC。

11ﻩD。

124.下列说法正确的是()A。

由三条线段组成的图形叫做三角形B。

在△ABC中∠A所对的边是直线BCC。

三条边分别为a,b,c的三角形记作△abcD。

由不在同一直线上的三条线段首尾顺次相接所组成的图形是三角形5。

已知x=3是关于x的方程4x—m=3的解,且3,m是等腰三角形ABC的两条边长,求△ABC 的周长。

培优提升1.如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得OA=15 m,OB=10 m,A,B两点间的距离不可能是()A。

5 m B.10 m C。

15 m D.20 m2。

若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对ﻩB.3对C。

4对D。

6对3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10 B。

初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(7)

初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(7)

章节测试题1.【答题】一个三角形的两边长分别是3和7,则第三边长可能是()A. 2B. 3C. 9D. 10【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,选C.2.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.3.【答题】a,b,c为△ABC的三边,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|,结果是()A. 0B. 2a+2b+2cC. 4aD. 2b2c【答案】A【分析】本题考查了绝对值及三角形三边关系的知识点.根据三角形的三边关系去绝对值,即两边之和大于第三边,两边之差小于第三边,进而再化简即可.【解答】|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|,=a+b+c+a−b−c−a+b−c−a−b+c=0.选A.4.【答题】若一个三角形两边长分别是3、7,则第三边长可能是()A. 4B. 8C. 10D. 11【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为x,则由三角形三边关系定理得7−3<x<7+3,即4<x<10.因此,本题的第三边应满足4<x<10,把各项代入不等式符合的即为答案。

只有8符合不等式,故选B.5.【答题】下列各组线段,能组成三角形的是()A. 2cm,3cm,5cmB. 5cm,6cm,10cmC. 1cm,1cm,3cmD. 3cm,4cm,8cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边的性质可得选项A,3+2=5,不能组成三角形;选项B,5+6>10,能组成三角形;选项C,1+1<3,不能组成三角形;选项D,4+3<8,不能组成三角形.选B.6.【答题】在平面内,线段AC=5cm,BC=3cm,线段AB长度不可能的是()A. 2 cmB. 8 cmC. 5 cmD. 9 cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】若点A,B,C三点共线,则AC=2cm或8cm;若三点不共线,则根据三角形的三边关系,应满足大于2cm而小于8cm.则2cm⩽Ac⩽8cm.选D.7.【答题】已知等腰三角形的一边长为4,另一边长为8,则它的周长是().A. 12B. 16C. 20D. 16或20【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8,(1)当4是腰时,4+4=8,不能构成三角形;(2)当8是腰时,不难验证,可以构成三角形,周长=8+8+4=20选C.8.【答题】下列长度的三条线段能组成三角形的是(※).A.B.C.D.【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A、∵2+3=5,故2,3,5不能组成三角形;B、∵4+2<7,故7,4,2不能组成三角形;C、∵3+4<8,3,4,8不能组成三角形;D、3+3>4,3,3,4能组成三角形.选D.方法总结:运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.【答题】已知a=3cm,b=6cm,则下列长度的线段中,能与a,b组成三角形的是()A. 2cmB. 6cmC. 9cmD. 11cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三条边为c,则3cm<c<9cm.选C.方法总结:三角形两边之和大于第三边,两边之差小于第三边.10.【答题】下列选项中的三条线段能组成三角形的是()A. 2,2,6B. 1,2,3C. 4,5,6D. 8,3,2【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+2<6,所以不能组成三角形;B选项:1+2=3,所以不能组成三角形;C选项:能组成三角形;D选项:2+3<8,所以不能组成三角形.选C.11.【答题】若等腰三角形有两条边的长为5和7,则此等腰三角形的周长为()A. 12B. 17C. 19D. 17或19【答案】D【分析】根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为5时,三边为5,5,7,5+5=10>7,此等腰三角形的周长5+5+7=17;当等腰三角形的腰为7时,三边为5,7,7,三边关系成立,周长为5+7+7=19选D.12.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,故选.13.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.14.【答题】已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个【答案】D【分析】根据三角形的三边关系进行判断.【解答】∵8-3<x<8+3,∴5<x<11,∴符合条件的偶数有:6,8,10共3个.选D.15.【答题】若三条线段中a=3,b=5,c为奇数,那么由a、b、c为边组成的三角形共有()A. 1个B. 3个C. 无数多个D. 无法确定【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得5−3<c<5+3,2<c<8.又c是奇数,则c=3或5或7.选B.16.【答题】下列各组线段中,能构成三角形的是()A. 2,3,5B. 3,4,5C. 3,4,10D. 2,5,8【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A. 2+3=5,故不能构成三角形,故选项错误;B. 3+4=7>5,故能构成三角形,故选项正确;D. 2+5=7<8,故不能构成三角形,故选项错误;C. 3+4=7<10,故不能构成三角形,故选项错误.选B.17.【答题】已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A. 5B. 10C. 15D. 20【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】由三角形的三边关系,得9-5<第三边<9+5,则4<第三边<14,因此,只有B选项符合.选B.18.【答题】已知等腰三角形的一边等于3,一边等于6,那么它的周长等于()A. 12B. 12或15C. 15D. 15或18【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:当3为腰,6为底时,∵3+3=6,∴不能构成三角形;当腰为6时,∵3+6>6,∴能构成三角形,∴等腰三角形的周长为:6+6+3=15,选C.19.【答题】在平面内,线段AC=5cm,BC=3cm,线段AB长度不可能的是()A. 2cmB. 8cmC. 5cmD. 9cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】若点A,B,C三点共线,则AC=2cm或8cm;若三点不共线,则根据三角形的三边关系,应满足大于2cm而小于8cm.则2cm⩽Ac⩽8cm.选D.20.【答题】下列各组长度的线段能构成三角形的是()A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,11【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项,因为1+2<4,所以A选项中的线段不能构成三角形;B选项,因为4+5=9,所以B选项中的线段不能构成三角形;C选项,因为4+6>8,所以C选项中的线段能构成三角形;D选项,因为5+5<11,所以D选项中的线段不能构成三角形;选C.。

河北省内丘县柳林中学冀教版七年级数学下册导学案:911 三角形的边(答案不全)

河北省内丘县柳林中学冀教版七年级数学下册导学案:911 三角形的边(答案不全)

编号备课日期授课日期课型新课课题9.1.1 三角形的边学[来源:学科网ZXXK]习目标1.掌握三角形的定义,并能正确地表示出三角形,掌握三角形的边、角、顶点的表示方法.2.能正确地进行三角形的分类.3.掌握三角形的三边关系,并能利用此定理判定已知三条线段能否构成三角形.学习重点掌握三角形的分类及三角形的三边关系.学习难点利用三角形的三边关系解答实际问题.学具、课件教科书学习方法小组合作学习过程:学习内容、教师活动设计学生活动设计备注一、出示学习目标[来源:]1.掌握三角形的定义,并能正确地表示出三角形,掌握三角形的边、角、顶点的表示方法.2.能正确地进行三角形的分类.3.掌握三角形的三边关系,并能利用此定理判定已知三条线段能否构成三角形.二、导入新课同学们,大家看这个图案美丽吗?这个图案主要是由什么图形要素构成的?(学生议论后)我们本节课要继续学习三角形的相关知识. 老师有针对性的点拨[设计意图] 通过教材中的章前图,帮助学生感受生活中的建筑中有很多三角形的色彩,引发学生从生活感受中进一步深化认识三角形.三、学习过程。

(一)学 1、独学指出下列图片中的三角形[设计意图] 帮助学生从生活情境中去重新认识三角形,增强数学来源于生活的认识,也有利于学生用数学的眼光观察生活、思考生活.2、对学 三角形的定义(1)如图所示,怎样用线段a,b,c 构成三角形?(2)三角形的定义:由不在同一直线上的三条线段首尾顺次相接所构成的图形叫做三角形.(3)同一条直线上首尾相接的三条线段能组成三角形吗?[设计意图] 意在强调三角形定义中“不在同一直线上”这个前提条件.3、群学学生自己独学只限两人对学,。

三角形的角平分线、中线和高-数学七年级下册同步教学课件(冀教版)

三角形的角平分线、中线和高-数学七年级下册同步教学课件(冀教版)

1 如图.AD,AE,AF 分别是 △ABC 的中线、角平分线和高.
请你指出图中相等的角及相等 的线段.
解:相等的角有∠BAE=∠EAC,∠AFB=∠AFC;相等的线段 有BD=DC.
2 分别画出锐角三角形、直角三角形和钝角三角形的三条角平 分线、三条中线和三条高.
解:(1)锐角三角形(如图所示).
2
想一想,一个三角形有几条中线?请同学们画出. 它们有什么特点?
①三角形的中线是一条线段. ②任何三角形有三条中线,并且都在三角形的内部交于一点.
例2 张大爷的两个儿子都长大成人了,也该分家了.于是张大爷准 备把如图所示的一块三角形田地平均分给两个儿子,两个儿子 要求分成的两块田地的形状仍然是三角形,请你帮助张大爷提 出一种平分的方案.
导引:要知道DO 是不是△DEF 的角平 分线,只需要知道∠EDO 与 ∠FDO 是否相等.若相等,根
据三角形的角平分线的定义即 可判定.
解:DO 是△DEF 的角平分线.理由如下: 因为AD是△ABC 的角平分线, 所以∠DAB=∠DAC (角平分线定义). 因为DE∥AC,DF∥AB, 所以∠DAC=∠ADE,∠DAB=∠ADF (两直线平行, 内错角相等),所以∠ADE=∠ADF (等量代换), 所以DO 是△DEF 的角平分线.
-31°-28°=121°.
5 如图,在△ABC 中,AD 是高,BE 是角平分线,AD,BE 交于点F,∠C= 30°, ∠BFD=70°.求∠BAC 的度数.
解:因为AD 是△ABC 的高, 所以∠ADB=90°,所以在△BFD 中,∠FBD=180° -∠FDB-∠BFD=180°-90°-70°=20°.又因为 BE 是△ABC 的角平分线,所以∠ABF=∠FBD=20°, 所以∠ABC=40°,所以∠BAC=180°-∠ABC-∠C

9.2三角形的内角和外角(1)课件(冀教版七下)

9.2三角形的内角和外角(1)课件(冀教版七下)

B
三角形内角和定理: 三角形内角和等于180°.
证明:过A作AE∥BC, ∴∠C=∠CAE (两直线平行,内错角相等) ∠EAC+∠BAC+∠B=180° (两直线平行,同旁内角互补) B ∴∠B+∠C+∠BAC=180° (等量代换)
方 法 三 A E
C
三角形内角和定理: 三角形内角和等于80°.9.2三角形的内角和外角(1)
旧知回顾
我们已经知道,任意一个三角形的内角 和等于180°.怎么证明这个结论呢?
方法一:通过具体的度量,验证三角形的内角 和为180°.
验证:三角形的三个内角和是180°
A
B C A
A
B
图 1 B
C
B
B
图2
C
A
B
图3
C
结论:三角形的内角和等于1800.
已知:△ABC. 求证:∠A +∠B +∠C =180°
练一练
已知:在△ABC中,∠C= 90゜ 求证:∠A+∠B=90 ゜
证明:在△ABC中
∵∠A+∠B+∠C=180゜(三角形内角和定理) ∠C= 90゜(已知) B ∴∠A+∠B+90゜=180゜(等量代换) ∴∠A+∠B=180゜-90゜= 90゜ (等式性质) 即∠A+∠B=90゜ A
C
课堂小结
E A F
证明:过点A作EF∥BC
则∠B=∠2(两直线平行,内错角相等) 同理∠C=∠1 因为∠2+∠1+∠BAC=1800(平角定义) 所以∠B+∠C+∠BAC=1800(等量代换)
B
三角形内角和定理: 三角形内角和等于180°.

9.1三角形的边(3)课件(冀教版七下)

9.1三角形的边(3)课件(冀教版七下)
9.1三角形的边
生活的思考
斜 梁 斜 梁


动手做一做,并探究下列问题:
1、将三根木条用钉子钉成一个三 角形木架,然后扭动它,它的形 状会改变吗?
2、将四根木条用钉子钉成一个四 边形木架,然后扭动它,它的形 状会改变吗?
做一做
3、在四边形木架上再钉一根木条, 将它的一对顶点连接起来,然后扭动 它,它的形状会改变吗?
做一做

三角形具有稳定性, 四边形具有不稳定性
在日常生活中三 角形稳定性有什 么应用?
稳定性在生活中的运用举例:
四边形不稳定性的应用.
同步练习1
下列图形中具有稳定性的是(C ) (A)正方形 (C)直角三角形 (B)长方形 (D)平行四边形
同步练习2
要使下列木架稳定各至少需要多少根木棍?
同步练习3
如图,工人师傅砌门时,常用木条EF固定 门框ABCD,使其不变形,这种做法的根据是 ( ) A E D E F
B
C
同步练习4
下列图中具有稳定性有( C )
A 1个
B 2个
C 3个 D 4个
同步练习5
下列设备,没有利用三角形的稳定性的 是( ) A.活动的四边形衣架 B.起重机 C.屋顶三角形钢架 D.索道支架
同步练习6
人站在晃动的公共汽车上,若你分 开两腿站立,则需伸出一只手去抓 住栏杆才能站稳,这是利用了那个 数学知识?
课堂小结
1.通过本节课的学习,你有什么收获? 还有什么困惑吗? 2.你对自己本节课的表现满意吗?为 什么?
作 业
这节课我们学习到这里,再见!

冀教版七年级下册数学第9章 三角形 三角形的角平分线、中线和高(2)

冀教版七年级下册数学第9章 三角形 三角形的角平分线、中线和高(2)
3t)× =18,解得t= .综上所述,当t=2或t= 时,△BCP的面积为18 cm2.
2
2
1
1
5 24
2 7
2 7
5
2
2
解:∵BD⊥AC,∴∠ADB=90°. 又∵∠A=55°, ∴∠ABD=180°-∠ADB-∠A=35°. ∵CE⊥AB,∴∠BEH=90°. ∴∠BHC=∠BEH+∠ABD=90°+35°=125°.
(2)若AC=6,BD=4,AB=5,求CE的长.
解:∵BD⊥AC,CE⊥AB,
∴S△ABC= AC·BD= AB·CE.
=
12.【荣德原创】如图,∠1=∠2,∠3=∠4,以线段AE为角平分线的
三角形有( )
A.3个
B.2个
B
C.1个
D.0个
13.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,若∠BAE=36°, 则∠BED为( )
A.136°B.126°C.124°D.114°
【点拨】∵AE平分∠BAC,∴∠CAE=∠BAE=36°. ∵ED∥AC,∴∠CAE +∠DEA=180°. ∴∠DEA=180°-36°=144°. ∵BE⊥AE, ∴∠AEB=90°. ∵∠AED+∠AEB+∠BED=360°, ∴∠BED=360°-144°-90°=126°. 故选B.
冀教版七年级下
第九章 三角形
9.3三角形的角平分线、中线和高
提示:点击 进入习题
1A 2C 3C 4B 5D
6B 7D 8A 9B 10 C
答案显示
提示:点击 进入习题
11 = 12 B 13 B 14 见习题 15 见习题
16 见习题 17 见习题 18 见习题
答案显示

冀教版七年级下册初一数学 (第9章 三角形全章热门考点整合)

冀教版七年级下册初一数学 (第9章  三角形全章热门考点整合)

①若∠A=50°,则∠P=65°=90°-
5;0 2
②若∠A=90°,则∠P=45°=90°- 9;0
③若∠A=100°,则∠P=40°
2
=90°- 10. 0 2
(1)根据上述规律,若∠A=150°,则∠P=__1_5_°____;
(2)请你用数学表达式写出∠P与∠A的关系;
(3)请说明(2)中结论的正确性. 解: (2)∠P=90°- 1 ∠A.
试判断李明与张钢两人的解答过程是否正确,若正确,请写出判 断的依据;若不正确,请你写出正确的解答过程.
解: 李明、张钢两人的解法均不全面. 正确的解答过程
如下:
当该等腰三角形的底边长为8 cm时,腰长为(28-
8)×
1 2
=10(cm).
当该等腰三角形的腰长为8 cm时,底边长为28-
2×8=12(cm).
即__2_(_A__C_+__B_D__)>__A__B_+__B__C_+__C_D__+_____. ∴ACD+ABD> 1 (AB+BC+CD+DA).
2
同类变式
4. 已知a,b,c是三角形的三边长,试化简:|b+c- a|+|b-c-a|+|c-a-b|-|a-b+c|.
解:∵a,b,c是三角形的三边长, ∴b+c-a>0,b-c-a<0, c-a-b<0,a-b+c>0, ∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c| =b+c-a-b+c+a-c+a+b-a+b-c =2b.
根据三角形三边关系可验证这两种情况均成立.
所以这个三角形的另外两边的长是10 cm,10 cm或
8 cm,12 cm.
本题中没有明确8 cm是等腰三角形的底边长还 是腰长,需对其进行分情况讨论,并用三角形 的三边关系进行验证.

七年级数学下册课件(冀教版)三角形的内角和外角

七年级数学下册课件(冀教版)三角形的内角和外角
导引:图中△CEF 的三边的延长线只有EF 的延长线FA, CE 的延长线EB,延长线FA 与边FC 构成的角为 ∠AFC;延长线EB 与边EF 构成的角为∠BEF.由三 角形外角的概念可以判断∠AFC,∠BEF 是△CEF 的外角.
总结
判定一个角是三角形的外角的三个条件:一 是顶点在三角形的一个顶点上;二是一边是三角 形的一条边;三是另一边是三角形的另一条边的 延长线.
∠A 等于( A )
A.40°
B.60°
C.80°
D.90°
7 在△ABC 中,∠A∶∠B∶∠C=3∶4∶5,则∠C 等于( C )
A.45°
B.60°
C.75°
D.90°
知识点 2 三角形内角和的应用
例2 在△ABC 中,∠A∶∠B∶∠C=1∶2∶3,试判断△ABC
的形状,并说明理由.
导引:引用辅助量x °,用x °表示出△ABC 的三个内角, 在△ABC 中,运用三角形内角和定理构造方程,解 方程后,求出△ABC 中各角的度数,再判断△ABC
5 直角三角尺和直尺如图放置.若∠1=20°,则∠2的度数为( C ) A.60° B.50° C.40° D.30°
6 如图,在△ABC中,∠ABC,∠ACB 的平分线BE,CD 相交于 点F,∠ABC=42°,∠A=60°,则∠BFC=( C )
A.118° B.119° C.120° D.121°
解:(1)如图,过A 作AF∥BD,∴∠BAF=∠ABD=40°. 显然AF∥EC,∴∠CAF=∠ECA=50°.∴∠BAC= ∠BAF+∠CAF=40°+50°=90°.∴△ABC 为直
角三角形.
(2)∵∠DBC=75°,∠DBA=40°,∴∠ABC= ∠DBC-∠DBA=75°-40°=35°.∴在Rt△ABC 中,∠BCA=90°-∠ABC=90°-35°=55°.

七年级数学下册第九章《三角形》9.2三角形的内角和外角三角形“五心歌”素材(新版)冀教版

七年级数学下册第九章《三角形》9.2三角形的内角和外角三角形“五心歌”素材(新版)冀教版

七年级数学下册第九章《三角形》素材:
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.
垂心
三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清,
(H为垂心,点A.F、H、E共圆,
点E.H、D.C共圆,
点F、B.D.H共圆)
内心
三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.
外心
三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
0为三角形外心
旁心
三角形有三内角,尚有外角两个三,
三对外角平分线,两两相交有一点,
点点命名曰“旁心”,只因能作旁切圆.。

七年级数学暑假专题—三角形中的线段和角冀教版

七年级数学暑假专题—三角形中的线段和角冀教版

初一数学暑假专题—三角形中的线段和角冀教版【本讲教育信息】一. 教学内容:暑假专题——三角形中的线段和角1. 利用三角形的内角和外角进行角度的转化和计算.2. 三角形的角平分线、中线、高的应用.二. 知识要点:1. 三角形的内角和外角(1)三角形的内角和是180°.(2)三角形的一个外角等于与它不相邻的两个内角的和. (3)三角形的一个外角大于与它不相邻的任意一个内角. 2. 三角形中的三条重要线段(1)角平分线的性质:把一角平分.(2)中线的性质:把一边平分,把三角形面积平分. (3)高线的性质:把三角形分成两个直角三角形.三. 考点分析:中考要求会利用三角形内角和及内外角的关系求三角形内、外角的度数,能灵活运用内角和解决相关问题. 三角形内角和的应用是中考热点,中考常利用其求角的度数,常出现填空、选择题,大题中求角的度数也是离不开它的. 会画出三角形中的三条主要线段并会应用它们的性质解决有关问题也是中考的常见题型.【典型例题】题型一 利用三角形内角和求值例1. 在△ABC 中,2∠A =3∠B ,且∠C -30°=∠A +∠B ,则△ABC 是( ) A. 锐角三角形 B. 钝角三角形C. 有一个角是30°的直角三角形D. 等腰直角三角形分析:根据题意有⎩⎪⎨⎪⎧2∠A =3∠B ①∠C -30°=∠A +∠B ②∠A +∠B +∠C =180°③,由②得∠A +∠B -∠C =-30°④,③-④得2∠C =210°,即∠C =105°,所以△ABC 是钝角三角形.解:B题型二三角形外角与内角关系的运用例2.如图所示,D是△ABC中∠C的外角平分线与BA的延长线的交点. 试说明∠BAC >∠B.分析:本题考查的是三角形角之间的关系及角的平分线定义. 由题意可知:想直接判断∠BAC与∠B的大小关系有些困难,因而可找一个与它们都有关系的角,由图可知,∠BAC 是∠DAC的外角,故∠BAC>∠ACD,同理∠DCE>∠B,又由题意知,∠ACD=∠DCE,此题得解.ABC D E解:在△ACB中,∠BAC是△CAD的外角.所以∠BAC>∠ACD(三角形的外角大于与它不相邻的任意一个内角)因为CD平分∠ACE(已知)所以∠ACD=∠DCE(角平分线定义)又因为∠DCE是△BCD的外角所以∠DCE>∠B(三角形的外角大于与它不相邻的任意一个内角)所以∠BAC>∠B.评析:要善于看一个角是哪一个三角形的外角,能跟哪些角有关系.题型三三角形的中线例3.如图所示,等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分成15和6两部分,求这个三角形的腰及底边长.分析:由题意可知,中线BD将△ABC的周长分成AB+AD和BC+CD两部分,故有两种可能:(1)AB+AD=15且BC+CD=6. (2)AB+AD=6且BC+CD=15. 再由AB =AC=2AD=2CD及三角形三边关系知(1)成立,(2)不成立.AB CD解:设AB =AC =2x ,则AD =CD =x(1)当AB +AD =15,BC +CD =6时,有2x +x =15. 所以x =5,2x =10,BC =6-5=1.(2)当BC +CD =15,AB +AD =6时,有2x +x =6 所以x =2,2x =4, 所以BC =15-2=13又因为4+4<13,故不能组成三角形,舍去. 答:三角形的腰长为10,底边长为1.评析:涉及等腰三角形的边的问题时,常要分情况讨论,讨论这条边是等腰三角形的腰还是底,然后看它们是否满足三角形的三边关系,不满足的要舍去.题型四 中线平分三角形面积例4. 如图所示,△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =4cm 2,求阴影部分的面积S 阴.分析:S 阴=12S △BEC ,如何求△BEC 的面积成为解题关键,由点E 的由来,即为AD 的中点可得S △BED =12S △ABD ,S △ECD =12S △ADC ,因此S △BEC =12S △ABC =2cm 2,S 阴=1cm 2.ABD解:因为E 为AD 中点 所以S △BED =12S △ABD ,S △DEC =12S △ADC所以S △BED +S △DEC =12S △ABD +12S △ADC即S △BEC =12S △ABC =12×4=2cm 2又因为F 为EC 中点 S 阴=12S △BEC =12×2=1cm 2.评析:运用中线把一个三角形面积平分成相等的两部分.题型五 与三角形高线相关的角例5.△ABC 中,已知∠A =58°,BD 、CE 是△ABC 的两条高线,BD 交CE 于H ,求BD 与CE 的夹角.分析:依题意画出图形,图中直角三角形较多,与∠A 相关的三角形可选择其中的R t△ABD ,可求∠1,在R t △BEH 中,已知∠1可求∠2,∠2求出后可求边BD 与CE 的夹角.A BC E DH12解:因为BD 、CE 是△ABC 的高 所以△ABD 、△BEH 为直角三角形 所以∠1=90°-∠A =90°-58°=32°∠2=90°-∠1=90°-32°=58°(直角三角形两锐角互余) 而∠DHC =∠2=58°,∠BHC =∠EHD =180°-∠2=112° 所以BD 与CE 夹角为58°或112°.评析:在图中∠2与∠A 均为∠1的余角,所以∠A =∠2,因此三角形两条高夹角等于第三个角或其补角.题型六 三角形的高线与面积关系的转化例6. 如图所示,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求(1)△ABC 的面积;(2)CD 的长.ABCD分析:直角三角形面积有两种求法:(1)S R t △=12ab (a 、b 为直角边). (2)S R t △=12ch(c 为斜边,h 为斜边上的高). 利用两种表示法可得ab =ch .解:(1)因为R t △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°所以S △ABC =12AC ·BC =12×12×5=30(cm 2)(2)因为CD 是AB 边上的高 所以S △ABC =12AB ·CD ,即30=12×13×CD所以CD =6013(cm )【方法总结】1. 角的计算常和三角形内角和联系起来,列出方程求解.2. 三角形的角平分线常与平行线的性质综合运用,而三角形的中线将三角形面积二等分,常用在一些实际问题的作图中.3. 学习本节内容一定要“数形结合”,善于将问题转化.【模拟试题】(答题时间:30分钟)一. 选择题1. 如图所示,AB ⊥BD ,AC ⊥CD ,∠A =35°,则∠D 的度数为( ) A. 35°B. 65°C. 55°D. 45°ABCDE2. 如图所示,已知△ABC 的角平分线BD 、CE 交于点F ,∠A =60°,则∠BFC =( ) A. 100°B. 105°C. 110°D. 120°A BCDEF3. 如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B =35°,∠C =65°,则∠DAE =( )A. 30°B. 20°C. 15°D. 10°ABCDE 4. 如图所示,点I 是△ABC 的三条角平分线的交点,∠BIC =130°,则∠A 的度数是( ) A. 40°B. 50°C. 65°D. 80°A BCI5. △ABC 中,∠C =90°,BC =6,AC =8,AB =10,则边AB 上的高的长是( ) A. 8B. 6*6. 锐角三角形中,最大锐角x 的取值X 围是( )A. 0°<x <180°B. 60°<x <90°C. 60°≤x <90°D. 0°<x ≤60° 二. 填空题1. 在R t △ABC 中,锐角A 的平分线与锐角B 的平分线相交于点D ,则∠ADB =__________.2. 根据图示直接写出∠α的度数.(1)α62°38°(2)20°α25°30°150°α(3)70°α(4)70°60°20°α(5)20°α45°135°(6)(1)∠α=__________,(2)∠α=__________,(3)∠α=__________, (4)∠α=__________,(5)∠α=__________,(6)∠α=__________, 三. 解答题1. 如图所示,AD 是△ABC 的中点,E 为AD 上任意一点,那么S △ABE 与S △AEC 的面积是什么关系?说明理由.ABCDE**2. 如图所示,在△ABC 中,∠B =∠C ,D 为BC 上的点,∠BAD =30°,AC 上有点E ,且∠ADE =∠AED ,求∠EDC 的度数.ABCDE**3. 已知,如图所示,在△ABC 中,AB =AC ,AC 边上的中线把三角形的周长分成12和15两部分,求△ABC 各边长.ADB C【试题答案】一. 选择题1. A2. D3. C4. D5. C6. C二. 填空题1. 135°2.(1)100°,(2)35°,(3)60°,(4)70°,(5)30°,(6)70°三. 解答题1. S△ABE=S△AEC. 因为AD是△ABC的中线,所以S△ABD=S△ACD,且S△BDE=S△CDE,所以S△ABD-S△BDE=S△ACD-S△CDE,即S△ABE=S△AEC.2. 设∠EDC=x°. 因为∠AED是△DCE的一个外角,所以∠AED=x°+∠C,又因为∠ADC=∠ADE+x°=∠AED+x°是△ABD的一个外角,所以∠ADE+x°=∠B+∠BAD,所以∠AED+x°=∠B+30°,即x°+∠C+x°=∠B+30°,所以2x°=30°,x=15.3. 当AB+AD=12,BC+CD=15时,AB=AC=8、BC=11;当AB+AD=15,BC+CD=12时,AB=AC=10、BC=7. 这两种情况都满足题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
a
三角形的表示
A记作:bFra bibliotekABC
c
三角形的顶点: A、B、C 三角形的内角: A、 B、 C
C
B
a
三角形的边:AB、AC、BC
c
b
a
A 腰 B 底 C 角B
A
顶 角 腰 底 C 角B
A
C
底 边 有两条边相等的三角形叫 等腰三角形 。 三条边都相等的三角形叫 等边三角形 。
三角形的分类
例题讲解
有两根长度分别为5㎝和8㎝的 木棒,用长度为2㎝的木棒与它们能 摆成三角形吗?为什么?长度为13 ㎝的木棒呢?
同步练习1
1、a=4 b=3 c=6 能构成三角形吗?
2、a=1 b=2 C=8 能构成三角形吗?
同步练习2
用两根长度分别为4㎝和7㎝的两根木棒, (1)用长度为2 ㎝的木棒能与它们组成三角形吗 ?为什么?
(2)用长度为11㎝的木棒呢?
(3)如果第三边是正整数,那么第三边可能是哪 几个数?
同步练习3
三条线段的长度分别为:
(1)3、8、10
(3)5、5、11
(2)5、2、7
(4)13、12、20 )组
能组成三角形的有(
课堂小结
三角形两边之和大于第三边 三角形两边之差小于第三边 三角形按边分可以分为: 不等边三角形 三角形
B 三角形两边的和大于第三边 A
C A
想一想
B
计算三角形的任意两边之差,并与第三边 比较,你能得到什么结论? 三角形两边的差小于第三边
考考你
有人说,自己步子大,一步能 走3米多,你相信吗?说说你的 理由! 答:不能。
如果此人一步能走3米多,由 三角形三边的关系得,此人两 腿的长大于3米多,平均每条 腿1.5米,这与实际情况相矛 盾,所以它一步不能走3米多。
第九章三角形
• 9.1三角形的边
旧知回顾
我们小学时是怎样给三角形定义的?
是否任意长度的三条线段都能首尾顺次连结?
观察与思考
1、你能从中找出4个不同的三角形吗?与同伴交 流各自找的三角形。
2、这些三角形有什么共同特点? A F B D EE C
G
三角形的定义
A
c
b
三角形的特征有: (1)三条线段 (2)不在同一直线上 (3)首尾顺次连接
等腰三角形
底边和腰不等的等 腰三角形
等边三角形
作 业
这节课我们学习到这里,再见!
按角分
锐角三角形 直角三角形
钝角三角形
按边分
不等边三角形(不规则三角形) 等腰三角形
只有两条边相等 的等腰三角形
等边三角形
想一想
在A点的小狗,为了尽快吃到B点的香肠,它 会选择哪条路线?如果小狗在C点呢? C C B A B
A
在一个三角形中,任意两边之和与第 三边的长度有怎样的关系呢?
想一想
在一个三角形中,任意两边之和与第三边的 长度有怎样的关系呢? C
相关文档
最新文档