中考专题复习等腰三角形. 共32页
--2021年春人教版数学九年级中考专题复习课件 等腰三角形
【对应训练1】如图,在△ABC中,CD是∠ACB的平分线, DE∥BC交AC于点E,若AC=15 cm,AE=7 cm,则DE=__8_cm.
等边三角形 【例2】(2020·营口)如图,△ABC为等边三角形,边长为6,AD⊥BC, 垂足为点D,点E和点F分别是线段AD和AB上的两个动点, 连接CE,EF,则CE+EF的最小值为_3___3_.
∴EC=4,AB=AC=12,∴AE= AC2+EC2 = 122+42 =4 10 , ∴DP=PA=PE=12 AE=2 10 ,∵EF=13 AF,AP=PE, ∴PF=EF=12 PE= 10 ,∵∠DPF=90°,∴DF= DP2+PF2 =5 2
A.3
3 4
B.3 8 3
C.
3 4
D.
3 8
20.(2020·眉山)如图,等腰△ABC中,AB=AC=10,
边AC的垂直平分线交BC于点D,交AC于点E. 若△ABD的周长为26,则DE的长为___1_45_.
21.(2020·襄阳)在△ABC中,∠BAC=90°,AB=AC, 点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图①,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=90°; (2)探究证明:如图②,当AD≠AF时,请探究∠ACE的度数是否为定值,并 说明理由;
∴△ADM∽△AEC,∴∠ACE=∠AMD=90°,
即∠ACE的度数为定值90°
(3)连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴AECB =AEFF =13 , 设EC=a,则AB=AC=3a,AK=3a-136 ,∵DA=DE,DK⊥AE, ∴AP=PE,∴AK=KE=3a-136 ,∵EK2=CK2+EC2, ∴(3a-136 )2=(136 )2+a2,解得a=4或0(舍去),
中考数学专题复习:等腰三角形
中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。
中考复习第19讲:等腰三角形课件 (共26张PPT)
D )
A.44°
B.66°
C.88°
D.92°
难点突破
3、如图所示,等边三角形 OAB 的边长为 2,则点 B 的坐标为( D A.(1,1) B.( 3,1) C.( 3, 3) D.(1, 3) )
知识梳理 考点3
性质 判定
角平分线的性质与判定
相等 角平分线上的点到这个角两边的距离______ 平分线 上 角的内部到角两边距离相等的点在这个角的________
难点突破
4、如图所示,在 Rt△ABC 中,∠C=90°,AD 平分∠CAB,且交 BC 边于点 D,DE 是 AB 的垂直平分线,垂足为 E.若 BC=3,则 DE 的长为( A )
A.1
B.2
C.3
D.4
知识梳理 考点4 线段垂直平分线上的点到这条线段两端的距离________
知识梳理 考点2
定义
等边三角形
三 边都相等的三角形叫做等边三角形 ________
等边三角形是轴对称图形,有____ 3 条对称轴
性质
相等 ,且等于____ 60° 等边三角形的内角都______
三 个角都相等的三角形是等边三角形 ____
判定
等腰 三角形是等边三角形 有一个角等于 60°的______
到线段两端的距离相等的点在这条线段的垂直平分线 __________ 上
难点突破
5、如图所示,已知等腰三角形 ABC 中,AB=AC,点 D,E 分别在边 AB,AC 上, 且 AD=AE,连结 BE,CD 交于点 F. (1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点 A,F 的直线垂直平分线段 BC.
第21讲:等腰三角形
中考数学专题复习课件(第20讲_等腰三角形)
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
2.(2011 中考预测题)在△ABC 中,AB=AC,点 D 在 AC 上,且 BD =BC=AD ,则∠A 等于( ) A.30° B.40° C.45° D.36°
举 一 反 三
【解析】AD= BD, ∴∠ABD= ∠A.∵BD= BC, ∴∠BCD= ∠BDC= ∠A+ ∠ABD= 2∠A.∵AB= AC, ∴∠ABC= ∠C= 2∠A, ∵∠A+ ∠ABC+ ∠C= 180°, ∴∠A+ 2∠A+ 2 ∠ A = 180° , ∴∠ A = 36° . 考
点 训 练
【答案】D
目录 首页 上一页 下一页 末页
3. (2009 中考变式题 )若等腰三角形一腰上的高等于腰长的一半, 则这个等腰三角形的底 考 点 角为( ) 知 A.75° 或 15° B.36° 或 60° 识 C.75° D .30° 精 讲 【解析】注意分情况讨论:①若等腰三角形为锐角三角形,底角为 75° ;②若等腰三角
目录 首页 上一页 下一页 末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
5.下面给出的几种三角形:(1)有两个角为 60°的三角形;(2)三个外角都相等的三角形; (3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为 60°的等腰三角形.其中一定 是等边三角形的有( B ) A.4 个 B.3 个 C.2 个 D.1 个
中考总复习《等腰三角形》课件
4、如图,在△ABC中,AB=AC,BF=CD,BD=CE, ∠FDE=α,则下列结论正确的是( ) A.2α+∠A=180° B.α+∠A=90° C.2α+∠A=90° D.α+∠A=180°
整合提升 冲刺中考
5、在△ABC中,∠ABC=90°,AB=3,BC=4,点Q是 线段AC上的一个动点,过点Q作AC的垂线交直线AB 于点P. 当△PQB为等腰三角形时,求AP的长.
考点梳理 聚焦中考
考点1 等腰三角形的概念与性质
常见 结论
(1)等腰三角形两腰上的高相等 (2)等腰三角形两腰上的中线相等 (3)等腰三角形两腰上的角平分线相等 (4)等腰三角形一腰上的高与底边的夹角等于 顶角的一半
(5)等腰三角形顶角的外角平分线与底边平行
(6)等腰三角形底边上任意一点到两腰的距离 之和等于一腰上的高
归类探究 点击中考
考点3 等边三角形
2、[2015·铜仁] 如图,点D在等边三角形ABC的边AB 上,点F在边AC上,连接DF并延长交BC的延长线于点E, EF=FD.
求证:AD=CE.
考点梳理 聚焦中考
考点4 线段的垂直平分线
经过线段的中点与这条 定义 线段垂直的直线叫做这
条线段的垂直平分线 线段垂直平分线上的 性质 点与这条线段两个端 点的距离相等
整合提升 冲刺中考
1、若等腰三角形一腰上的高等于腰长的一半,则这个
等腰三角形的底角为
.
2、在平面直角坐标系xOy中,已知点A(2,3),在坐
标轴上找一点P,使得△AOP是等腰三角形,则这样的
点P共有
个.
整合提升 冲刺中考
3、如图,△DAC和△EBC均是等边三角形,AE、BD分 别与CD、CE交于点M、N,有如下结论,其中结论正确 的有( ) ①△ACE≌△DCB; ②CM=CN;
中考一轮复习数学第24讲等腰三角形PPT课件
考点1:等腰三角形的性质
1.(202X•江苏)如图,在△ABC中,AB=AC,D为 BC中点,∠BAD=35°,则∠C的度数为 .
2.如图,在△ABC中,AB=AD=DC, ∠B=70°,则
∠C的度数为
.
3.若等腰三角形的一底个角角等为于303°0°,则这个等腰三 角形的顶角的大小为________.
4.如图已知,△ABC中,AB=5,BC=3,AC=4, PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上. (1)当△PQC的面积与四边形 PABQ的面积相等时,求CP的长; (2)当△PQC的周长与四边形 PABQ的周长相等时,求CP的长; (3)试问:在AB上是否存在点M, 使得△PQM为等腰直角三角形? 若不存在,请简要说明理由; 若存在,要求出PQ的长.
则EP+BP=
.
13CE时,
H
2.如图,△ABC中,AB=10,AC=7,AD是角平分 线,CM⊥AD于M,且N是BC的中点,则MN= .
三线中出现两线
构造等腰三角形 E
变式:在△ABC中,AD平分∠BAC,BD⊥AD,垂足
为D,过D作DE∥AC,交AB于E,若AB=5,则线段
DE的长为
.
E
考点3:分类讨论思想的应用(等腰三角形) 1.如图正方形网格中,网格线的交点称为格点.已 知A、B是两格点,如果C也是图中的格点,且使 得△ABC为等腰三角形,则点C的个数是( )
.
自学检测4:(8分钟) 1.如图,一个等边三角形纸片,剪去一个角后得到 一个四边形,则图中∠α+∠β的度数是 .
2.如图,等边△ABC的边长为1cm,D、E分别是 AB、AC上的点,将△ADE沿着直线DE折叠,点 A落在点A′处,且点A′在△ABC外部,则阴影部分 图形的周长为_______cm.
2024年中考数学一轮复习考点课件:等腰三角形与直角三角形
9,12,15 ).
(2) 研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如
果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三
边的三角形为直角三角形[即(x,y,z)为勾股数],请你加以证明.
解:∵ x2+y2=(2n)2+(n2-1)2=4n2+n4-2n2+1=n4+2n2+1=
B. 15°
C. 20°
D. 25°
考点二
等腰三角形的判定
典例4 如图,下列说法中,正确的是( B )
A. ①是等腰三角形
B. ②是等腰三角形
C. ①和②均是等腰三角形
D. ①和②都不是等腰三角形
典例4图
典例5 (2023·蚌埠模拟)在如图所示的网格中找到格点C,使△ABC为
等腰三角形,则这样的点有( C )
开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形
模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的
高是( B )
第4题
A. 4m
B. 6m
1
2
3
C. 10m
4
5
6
7
8
D. 12m
9
10
11
12
13
14
15
5. 如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使
三边相等,即==(如图1)
三个内角相等,每一个角都等于60°,
性质 即∠=∠=∠ = 60° 如图1
等边三角形
等边三角形是轴对称图形,有⑤
三 条对称轴
三条边相等的三角形是等边三角形(定义)
判定 三个角都相等的三角形是等边三角形
中考数学考点20等腰三角形总复习(解析版)
等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。
【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 【答案】D【解答】解:当相等的两边是4cm时.4+4>5.能够组成三角形.则它的周长是4+4+5=13(cm);当相等的两边是5cm时.4+5>5.能够组成三角形.则它的周长是5+5+4=14(cm).故选:D.2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°【答案】A【解答】解:∵AD是△ABC的一条角平分线.∠BAC=60°.性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高∴∠BAD=∠DAC=∠BAC=×60°=30°.∵AD=AC.∴∠ADC=∠C==75°.∴∠B=∠ADC﹣∠BAD=75°﹣30°=45°.故选:A.3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.【答案】5【解答】解:∵∠ABC和∠ACB的平分线相交于点F.∴∠DBF=∠FBC.∠ECF=∠BCF.∵DE∥BC.交AB于点D.交AC于点E.∴∠DFB=∠DBF.∠CFE=∠ECF.∴BD=DF=3cm.FE=CE=2cm.∴DE=DF+CE=5(cm).故答案为:5.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°【答案】A【解答】解:①如图.等腰三角形为锐角三角形.∵BD⊥AC.∠ABD=40°.∴∠A=50°.即顶角的度数为50°.②如图.等腰三角形为钝角三角形.∵BD⊥AC.∠DBA=40°.∴∠BAD=50°.∴∠BAC=130°.故选:A.5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.【答案】(1)BE=DE(2)∠BDE的度数为30°【解答】解:(1)证明:在△ABC中.∠ABC的平分线交AC于点D.∴∠ABD=∠CBD.∵DE∥BC.∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.(2)∵∠A=80°.∠C=40°∴∠ABC=60°.∵∠ABC的平分线交AC于点D.∴∠ABD=∠CBD=∠ABC=30°.由(1)知∠EDB=∠EBD=30°.故∠BDE的度数为30°.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.【答案】(1)略(2)∠DEF=70°【解答】证明:∵AB=AC.∴∠ABC=∠ACB.在△DBE和△ECF中.∴△DBE≌△ECF.∴DE=EF.∴△DEF是等腰三角形;(2)∵△DBE≌△ECF.∴∠1=∠3.∠2=∠4.∵∠A+∠B+∠C=180°.∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.【答案】(1)△OCD是等边三角形(2)△AOD是直角三角形(3)α=110°或125°或140°【解答】证明:(1)∵△BOC≌△ADC.∴OC=DC.∵∠OCD=60°.∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形.∴∠ODC=60°.∵△BOC≌△ADC.α=150°.∴∠ADC=∠BOC=α=150°.∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°.∴△AOD是直角三角形.(3)∵△OCD是等边三角形.∴∠COD=∠ODC=60°.∵∠AOB=110°.∠ADC=∠BOC=α.∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α.∠ADO=∠ADC﹣∠ODC=α﹣60°.∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时.190°﹣α=α﹣60°.∴α=125°.②当∠AOD=∠OAD时.190°﹣α=50°.∴α=140°.③当∠ADO=∠OAD时.α﹣60°=50°.∴α=110°.综上所述:当α=110°或125°或140°时.△AOD 是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .【答案】A【解答】解:∵△ABC 是等边三角形.∴AC =AB .∠CAB =60°.∵将△P AB 绕点A 逆时针旋转得到△P 1AC∴△CP 1A ≌△BP A .∴AP 1=AP .∠CAP 1=∠BAP .∴∠CAB =∠CAP +∠BAP =∠CAP +∠CAP 1=60°.即∠P AP 1=60°.∴△APP 1是等边三角形.∴P 1P =P A =4.性质 1. 三条边相等 2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定 1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长.h 是任意边上的高9.(2020秋•紫阳县期末)如图.在等腰△ABC中.AB=AC.点E为AC的中点.延长BC 到点D.使得CD=CE.延长DE交AB于点F.若∠A=60°.EF=4cm.则DF的长为()A.12cm B.10cm C.8cm D.6cm【答案】A【解答】解:∵AB=AC.∠A=60°.∴△ABC为等边三角形.∴∠ACB=60°.∴∠ACB=∠CED+∠D.∵CD=CE.∴∠CED=∠D=∠ACB=30°.∴∠AEF=∠CED=30°.∴∠AFE=180°﹣∠A﹣∠AEF=90°.∵EF=4cm.∴设AF=x.则AE=2x.∴由勾股定理得:x2+42=4x2.∴x=.∴AF=.AE=.∴BF=AB﹣AF=2AE﹣AF=.∵∠D=30°.∴BD=2BF=.∴DF2=BD2﹣BF2=3BF2.∴DF=BF=×=12.10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°【答案】D【解答】解:∵△ABC是等边三角形.∴∠ABC=60°.∵△BQC≌△BP A.∴∠BP A=∠BQC.BP=BQ=4.QC=P A=3.∠ABP=∠QBC.∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°.∴△BPQ是等边三角形.∴PQ=BP=4.∵PQ2+QC2=42+32=25.PC2=52=25.∴PQ2+QC2=PC2.∴∠PQC=90°.即△PQC是直角三角形.∵△BPQ是等边三角形.∴∠BOQ=∠BQP=60°.∴∠BP A=∠BQC=60°+90°=150°.∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC.∵∠PQC=90°.PQ≠QC.∴∠QPC≠45°.即∠APC≠135°.∴选项A、B、C正确.选项D错误.故选:D.11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.【答案】略【解答】证明:∵BM=CN.BC=AC.∴CM=AN.又∵AB=AC.∠BAN=∠ACM.∴△AMC≌△BNA.则∠BNA=∠AMC.∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°.∴∠AQN=∠ACB.∵∠BQM=∠AQN.∴∠BQM=∠AQN=∠ACB=60°1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°【答案】B【解答】解:∵AB=AC.∠A=40°.∴∠ABC=∠C==70°.∵AD=BD.∴∠DBA=∠A=40°.∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°.故选:B.2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【答案】D【解答】解:∵AB=AC.BE=CE.∴AE⊥BC.故工程人员这种操作方法的依据是等腰三角形“三线合一”.故选:D.3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.8【答案】A【解答】解:连接AD.则:S△ABD+S△ACD=S△ABC.即:×8•DF+8•DE=24.可得:DE+DF=6.∵DF=2DE.∴DF=4.故选:A.5.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【解答】解:如图.分情况讨论:①AB为等腰△ABC的底边时.符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时.符合条件的C点有4个.故选:C.55.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.2【答案】A【解答】解:延长BD交AC于E.如图.∵CD平分∠ACB.BD⊥CD.∴△BCE为等腰三角形.∴DE=BD=1.CE=CB=3.∵∠A=∠ABD.∴EA=EB=2.∴AC=AE+CE=2+3=5.故选:A.6.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.【答案】34°【解答】解:∵AB=AD.∴∠B=∠ADB.∵∠BAD=44°.∴∠ADB==68°.∵AD=DC.∠ADB=∠C+∠DAC.∴∠C=∠DAC=∠ADB=34°.故答案为:34°.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.【答案】(1)48°(2)AE=FE【解答】解:(1)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∠ADC=90°.又∠C=42°.∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC.AD⊥BC于点D.∴∠BAD=∠CAD.∵EF∥AC.∴∠F=∠CAD.∴∠BAD=∠F.∴AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.【答案】(1)30°(2)CD=CF【解答】(1)解:∵△ABC是等边三角形.∴∠B=60°.∵DE∥AB.∴∠B=∠EDC=60°.∵DE⊥EF.∴∠DEF=90°.∴∠F=∠DEF﹣∠EDF=90°﹣60°=30°;(2)证明:∵△ABC是等边三角形.∴∠B=∠ACB=60°.∵DE∥AB.∴∠B=∠EDC=60°.∴∠EDC=∠ECD=∠DEC=60°.∴△DEC是等边三角形.∴CE=CD.∵∠ECD=∠F+∠CEF.∠F=30°.∴∠CEF=∠F=30°.∴EC=CF.∴CD=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).【答案】(1)=;(2)=(3)3【解答】解:(1)当E为AB的中点时.AE=DB;(2)AE=DB.理由如下.过点E作EF∥BC.交AC于点F.证明:∵△ABC为等边三角形.∴△AEF为等边三角形.∴AE=EF.BE=CF.∵ED=EC.∵∠DEB=60°﹣∠D.∠ECF=60°﹣∠ECD.∴∠DEB=∠ECF.在△DBE和△EFC中..∴△DBE≌△EFC(SAS).∴DB=EF.则AE=DB;(3)点E在AB延长线上时.如图所示.同理可得△DBE≌△EFC.∴DB=EF=2.BC=1.则CD=BC+DB=3.故答案为:(1)=;(2)=1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°【答案】B【解答】解:∵AB∥CD.∴∠C=∠ABC=30°.又∵CD=CE.∵∠C+∠D+∠CED=180°.即30°+2∠D=180°.∴∠D=75°.故选:B.2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8【答案】D【解答】解:∵+(2a+3b﹣13)2=0.∴.解得:.当b为底时.三角形的三边长为2.2.3.周长为7;当a为底时.三角形的三边长为2.3.3.则周长为8.∴等腰三角形的周长为7或8.故选:D.3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3【答案】C【解答】解:连接OA.∵OC⊥AB.∴∠ADC=90°.∴∠DAC+∠ACD=90°.∵∠BAC=30°.∴∠ACO=60°.∵OA=OC.∴△AOC为等边三角形.∵OC⊥AB.∴OD=OC=2.故选:C.4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4【答案】C【解答】解:根据等边三角形:三线合一.设它的边长为x.可得:.解得:x=4.x=﹣4(舍去).故选:C.5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°【答案】B【解答】解:过C点作CD∥m.∴∠ACD=∠1=25°.∵m∥n.∴CD∥n.∴∠2=∠DCB.∵∠ACD+∠DCB=∠ACB.∴∠2=∠ACB﹣25°.∵△ABC为等边三角形.∴∠ACB=60°.∴∠2=60°﹣25°=35°.故选:B.6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.【答案】B【解答】解:连接AD交BC于点O.取AC中点N.连接ON.如图.∵△ABC是等边三角形.∴AB=AC=BC=8.∠ABC=60°.∵△BCD是等腰三角形.∴BD=DC.∴AD垂直平分BC.∴BO=CO=4.∵AN=CN.∴ON=AB=4.ON∥AB.∵AB∥DE.∴ON∥DE.∴.∴=2.∴OD=AO.∴tan∠ABO=.即.∴AO=4.∴OD=2.在Rt△BOD中.BD==2.故选:B.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°【答案】B【解答】解:∵△ABC是等边三角形.∴∠BAC=60°.∵AD是BC边上的中线.∴∠BAD=BAC=30°.AD⊥BC.BD=CD=BC.∴∠CDE=90°.∵DE=BC.∴DE=DC.∴∠DEC=∠DCE=45°.∴∠AEF=∠DEC=45°.∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°.故选:B.8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.【答案】6【解答】解:∵等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∴EF=2.∵△ABC是等边三角形.∴∠B=∠C=60°.又∵DE∥AB.DF∥AC.∴∠DEF=∠B=60°.∠DFE=∠C=60°.∴△DEF是等边三角形.∴剪下的△DEF的周长是2×3=6.故答案为:6.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.【答案】2【解答】解:如图.连接AC交BD于点O∵AB=AD.BC=DC.∠A=60°.∴AC垂直平分BD.△ABD是等边三角形∴∠BAO=∠DAO=30°.AB=AD=BD=8.BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°.∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4.OF=OD﹣DF=2∴OC==2∴BC==210.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.【答案】(.4)或(.4)或(10.4)【解答】解:设点P的坐标为(x.4).分三种情况:①PM=P A.∵点A的坐标为(5.0).点M的坐标为(0.4).∴PM=x.P A=.∵PM=P A.∴x=.解得:x=.∴点P的坐标为(.4);②MP=MA.∵点A的坐标为(5.0).点M的坐标为(0.4).∴MP=x.MA==.∵MP=MA.∴x=.∴点P的坐标为(.4);③AM=AP.∵点A的坐标为(5.0).点M的坐标为(0.4).∴AP=.MA==.∵AM=AP.∴=.解得:x1=10.x2=0(舍去).∴点P的坐标为(10.4);综上.点P的坐标为(.4)或(.4)或(10.4).故答案为:(.4)或(.4)或(10.4).1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10【答案】C【解答】解:∵在△ABC中.AB=BC=10.∠A=36°.∴∠C=∠A=36°.∵AB的垂直平分线是DE.∴AE=BE.∴∠ABE=∠A=36°.∴∠EBC=∠ABC﹣∠ABE=108°﹣36°=72°.∵∠BEC=∠A+∠ABE=72°∴∠BEC=∠EBC.∴CE=BC=10.故选:C.2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°【答案】D【解答】解:∵AB=AD=DC.∠BAD=α.∴∠B=∠ADB.∠C=∠CAD=β.∵DE⊥AD.∴∠ADE=90°.∴∠CAD+∠AED=90°.∵∠CDE=γ.∠AED=∠C+∠CDE.∴∠AED=γ+β.∴2β+γ=90°.故选:D.3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6【答案】B【解答】解:∵△ABC中.AB=AC.AD⊥BC.∴AD是△ABC的中线.∴S△ABC=2S△ABD=2×AB•DE=AB•DE=2AB.∵S△ABC=AC•BF.∴AC•BF=2AB.∵AC=AB.∴BF=2.∴BF=4.故选:B.4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个【答案】D【解答】解:如图.在x轴上共有4个这样的P点(图中实心点).故选:D.5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°【解答】解:由翻折可知:△BED≌△BCD.∴∠EBD=∠CBD.∠E=∠C=90°∵△EDF是等腰三角形.∴∠EFD=∠AFB=∠ABF=45°.∴∠CBF=45°.∴∠CBD=∠CBE=22.5°.∴∠BDC=67.5°.故选:C.6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°【答案】C【解答】解:∵m∥n.∴∠ACB=∠1=70°.∵AB=BC.∴∠BAC=∠ACB=70°.故选:C.7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定【答案】B【解答】解:∵∠ABC和∠ACB的平分线交于点E.∴∠ABE=∠CBE.∠ACE=∠BCE.∴∠CBE=∠BEM.∠BCE=∠CEN.∴∠ABE=∠BEM.∠ACE=∠CEN.∴BM==NE.∴△AMN的周长=AM+ME+AN+NE=AB+AC.∵AB=AC=4.∴△AMN的周长=6+4=10.故选:B.8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解答】解:延长AP交BC于E.∵AP垂直∠B的平分线BP于P.∴∠ABP=∠EBP.∠APB=∠BPE=90°.在△APB和△EPB中.∴△APB≌△EPB(ASA).∴S△APB=S△EPB.AP=PE.∴△APC和△CPE等底同高.∴S△APC=S△PCE.∴S△PBC=S△PBE+S△PCE=S△ABC=4cm2.故选:C.9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128【答案】A【解答】解:∵△A1B1A2是等边三角形.∴∠B1A1A2=60°.∵∠MON=30°.∴∠OB1A1=30°∴A1B1=OA1=1.∴A2B1=1.∵△A2B2A3、△A3B3A4是等边三角形.∴A1B1∥A2B2∥A3B3.B1A2∥B2A3.∴A2B2=2B1A2.B3A3=2B2A3.∴A3B3=4B1A2=4.A4B4=8B1A2=8.A5B5=16B1A2=16.以此类推:△A7B7A8的边长为26=64.故选:A.10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.【答案】(1)略(2)EF=.【解答】解:(1)∵∠ADB=∠ACB+∠CAD.∠ADB=90°∠CAD.∴∠ACB=∠ADB﹣∠CAD=90°∠CAD.∵∠ADB+∠CDA=180°.∴∠CDA=180°﹣∠ADB=180°﹣(90°∠CAD)=90°∠CAD.∴∠ACB=∠ADC.∴AD=AC;(2)①过点D作DG∥CE交AB于点G.∵∠CFD=∠CAB.∠CFD=∠CAD+∠ACE.∠CAB=∠CAD+∠DAB.∴∠ACE=∠DAB.又∵∠ACD=∠ADC.∠ECB=∠ACD﹣∠ACE.∠B=∠ADC﹣∠DAB.∴∠ECB=∠B.∴CE=BE.∵DG∥CE.∴∠ECB=∠BDG.∴∠BDG=∠B.∴DG=BG.∵∠AEC=∠DGA.AC=DA.∠ACE=∠DAG.∴△AEC≌△DGA(AAS).∴DG=AE.又∵AE=BD.∴DG=BD=BG.∴△BDG为等边三角形.∴∠ABC=60°;②EF=.过点D作DH∥AB交CE于点H.由①知△EBC和△HDC均为等边三角形.设AE=BD=x.则BE=BC=8﹣x.∴DH=CD=8﹣2x.∵DH∥AB.∴=.即=.∴x=2.∵∠ACE=∠DAB.∵△F AE∽△ACE.∴=.∵AC=AD=3AF.∴=.EF=AE=.。
等腰三角形复习PPT课件
例8 如图2-8-6,在△ABC中,AB=AC=CB,AE=CD,AD、 BE相交于P,BQ⊥AD于Q. 求证:BP=2PQ
D
150°
H
O
CE
Fa
请把这个等腰三角形纸片折成两个等腰
三角形!
A
A
A
36°
36°
D
36°
D
B
CB
CB
C
请把这个三角形纸片折成两个等腰三角形!
20°
B
A
120°
40°
C
A
120°
20°
B
D
40°
20°
CB
A
120°
40°
DC
在下图三角形的边上找出一点,使得该点与 三角形的其中两顶点构成等腰三角形!
例7 如图2-8-1,中,AB=AC,D为AB上一点,E为AC延长线 上一点,且BD=CE,DE交BC于G 求证:DG=EG
• 思路 因为△GDB和△GEC不全等,所以考虑在△GDB内 作出一个与△GEC全等的三角形。
证明:过D作DH∥AE,交BC于H ∴ ∵AB=AC ∴ ∴ ∴DB=DH 又∵DB=CE ∴DH=CE 又∵ ∴ ∴DG=EG.
AD=DE=EB.
• 分析:求本∠A题的有度较数多.的等腰三角形的条件,最好用列方程组 的方法来求解,应当在图形上标出各未知数,可使解题过
程清晰明了。
解:设∠A=x ,∠EBD=y,∠C=z
∵AB=AC
A
北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)
A.1 cm
B.2 cm
C.3 cm
D.4 cm
课堂精练
7. 如图,在等边三角形ABC中,BD,CE是两条中 线,则∠1的度数为( C ) A.90° B.30° C.120° D.150°
课堂精练
8.【中考·南充】如图,等边三角形OAB的边长为 2,则点B的坐标为( D ) A.(1,1) B.( 3,1) C.( 3, 3) D.(1, 3)
北师版八年级数学下册
第1章 三角形的证明
1.1 等腰三角形 第2课时 等边三角形的性质
复习导入
等腰三角形有哪些性质? 1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,
即等腰三角形顶角的平分线、底边上 的中线及底边上的高线互相重合.
新知探究
一. 等腰三角形中相等的线段
在等腰三角形中画出一些线段(如角平分 线、中线、高等),你能发现其 中一些相等 的线段吗?能证明你的结论吗?
A.BD,CE为AC,AB边上的高
B.BD,CE都为△ABC的角平分线
C.∠ABD=
1 3
∠ABC,
∠ACE= 1 ∠ACB 3
D.∠ABD=∠BCE
课堂精练
3. 求等边三角形两条中线相交所成锐角的度数. 解:如图,在等边三角形ABC中,CE,BF分别是AB,
AC边上的中线,且CE与BF相交于点O, 则CE垂直平分AB,BF垂直平分AC, 在Rt△ABF中,∵∠A=60°, ∴∠ABF=30°. 在Rt△BEO中,∵∠EBO=30°,∴∠EOB=60°, 即等边三角形两条中线相交所成锐角的度数为60°.
②点G与点H一定重合;③点I与点H一定重合;④点G,点I
与点H一定重合.其中正确的有( D )
人教版八年级下册数学专题复习及练习(含解析):等腰三角形
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
中考数学专题《等腰三角形》复习课件(共18张PPT)
挑战7:已知△ABC中,AB=AC,点D在AC上,
且BD=BC=AD,求△ABC各角的度数。 A
解:因为AB=AC,所以∠ABC=∠C 因为BD=BC=AD,所以 ∠C=∠BDC ∠A=∠ABD 设∠A=x°,则∠ABD= x°, ∠BDC=2 x°, ∠C=2 x°
X°
D
B
X°
2X° 2X°
C
根据题意得:x+2x+2x=180
等腰三角形复习
思考
怎样的三角形叫做等腰三角形?
有__两__条__边__相__等____的三角形叫做_等__腰__三__角__形______。 A 顶角
腰
腰
B 底角
底边
C 底角
三角形
性质
判定
等腰 1.等边对等角。 三角 形 2.三线合一 。
1.等角对等边。
2.定义:两边相等的 三角形是等要三角形。
A
D
B
C
E
5、 如图,直线AB平行直线CD,AD
交BC于O,且AO=BO。求证:
A
(1)∠C=∠D
(2)OC=OD
C
B O
D
6、如图,AB=AC,BD⊥AC于D, A
求证:∠DBC= ∠A
1
2
D
B
E
C
7、在Rt △ ABC中,∠ACB=90°,D、 E在斜边AB上,且AC=AE,BD=BC,
求∠DCE的度数
BD
C
2. 如图:点B、C、D、E、F在∠MAN的 边上, ∠A=15°,AB=BC=CD=DE=EF, 求∠ MEF的度数。
M
E C
A
B
DF
N
3 求证:等腰三角形底边中点到两腰(中 点)的距离相等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的顶角平分线、底边上的中线和
高互相重合(等腰三角形三线合一)
A
等腰三角形是轴对称图形,底边的
垂直平分线线是它的对称轴.
BD
C
A
4、已知:如图,△ABC中,AB=AC,
∠B=60°,则△ABC 为_等__边__三角形
有一个角等于600的等腰三角形是等边三B角形。D
C
三边相等的三角形是等边三角形。
G E
F
B
DC
1
C
• 在ABC中,AD平分∠BAC,E、F分别在BD、 AD上,且AC=EF,ED=DC,求证:EF//AB
BE D
C
由于这里要证明的是EF//AB,而AD平分,所以必须通过 辅助线构造出平行线,这样就可以得到等腰三角形了
(5)若过△ABC的一个内角和一个外角平分线的交 点作这两个角的公共边的平行线, 如图,EF与BE,CF三者有何数量关系?
*图中共有几个等腰三角形?
* EF,EB,FC 之间有什么关系?
A
EF=BE+FC
E
OF
B
C
(3)在△ABC中,∠ABC=∠ACB,BO平分
∠ABC ,CO平分∠ACB,过O点作EF, 使EF∥BC,且∠EBO=30° A
* 有几个等边三角形?
* 若BE=5,你能求出
△AEF的周长吗?
E
O
F
* 还能求出△ABC的 B
A
EF
D
B
G C
EF = BE — CF
(6)若过△ABC的两个外角平分线的交点作这两个 角的公共边的平行线,则EF与BE,CF三者有何数量 关系?
A
B
C
E
D
F
EF=BE+CF
• 例1、如图:BD是角平分线DE//BC,交AB 于点E,∠A=90°且AB=AC=1。求DE之长。
A
E B 12
3D C
三个内角都相等的三角形是等边三角形。
如果AD⊥BC,则∠BAD=__3_0_°_
等边三角形的内角都相等,且等于600. 等边三角形的三条边都相等。 等边三角形有___3___条对称轴。
基础演练
1、等腰三角形有两边长分别为3cm、4cm,则周长
为 10或11 cm。若两边长改为2cm、4cm呢? 10cm 2、等腰三角形有一个内角为70°,则一个底角
等腰三角形中分类讨论思想的应用
对于等腰三角形中边、角的有关计算与证明,往往运用到数 学的分类讨论思想: 1、当涉及到等腰三角形的边时,首先看某边是腰还是底,并 且在求出了三边的长之后,还要验证是否满足三角形的三边 关系; 2、等腰三角形的顶角可以为锐角、直角、钝角,而其底角只 能为锐角,在没有指明等腰三角形的顶角还是底角时,应注 意分类讨论,以免漏解.
专题复习 等腰三角形
结合近几年中考试题分析,对等腰三角形的内容考查主 要有以下特点:
1.命题方式为对等腰三角形的性质、判定及三角形全等、 线段垂直平分线进行综合考查,题型以选择、填空或解答题 为主;
2.命题的热点为等边三角形的性质的综合运用.
A
1、已知:如图,△ABC中,AB=AC,
(1)∠B=50°,则∠C=__5__0_°___
• 例2、在矩形ABCD中,AC与BD交于点O;
DE平分∠ADC,交BC于点E,∠BDE=150
,求∠COE的度数。
A
D
O
B E
C
• 角平分线+垂线→等腰三角形
• 当一个三角形中出现角平分线和垂线时, 我们就可以寻找到等腰三角形。
• 12、如图,在△ABC中,AC=BC, ∠ACB=900,D是AC上一点,AE⊥BD交 BD的延长线于E,且AE=½ BD,求证: BD是∠ABC的角平分线.
E
F
B
D
C
变式1:如图,在等腰△ABC中,AB=AC,若D为
边BC上任意一点,且DE⊥AB于E,DF⊥AC于F, BG⊥AC于G,则DE+DF=BG吗?请说明理由。
解:连结AD
A
∵ S△ABD+ S△ACD =S△ABC
S△ABD=
1 2
AB·DE
S△ACD=
1 2
AC·DF
1
S△ABC= 2 AC·BG
C
周长吗?
基本构图:角平分线+平行线构成等腰三角形.
(4)在△ABC中,∠ABC≠∠ACB,BO平分∠ABC CO 平分∠ACB,过O点作EF, 使EF∥BC
又会有几个等腰三角形?
BE+CF=EF仍然成立吗?
A
成立
在上述条件下当AB=12 ,AC=8时你能求ΔAEF E 的周长吗?
OF
ΔAEF的周长=AC+AB=20 B
B
C
等腰三角形两个底角相等(在同一三角形中, 等边对等角)
2、已知:△ABC中, ∠B = ∠C ,AB=5cm,
则AC=__5___cm
等腰三角形两条腰相等(在同一三角形中,等角对等边)
3、已知:△ABC中, AB=AC, ∠B = 50 °,D为BC的
中点,连结AD,则∠ DAC=___4_0__°____,BD=__C_D___
1. 角与角的转化: 2. 边与角的转化: 3. (在同一个三角形) 3.边与边的转化:
相等角之间的代换. 等边对等角.
等角对等边. 相等线段之间进行代换
1. 如图,在等腰△ABC中,AB=AC,若 D为BC的中点,DE⊥AB于E,DF⊥AC于F ,则DE=DF吗?请说明理由。
A
E
F
B
ቤተ መጻሕፍቲ ባይዱ
D
C
常见的辅助线:等腰三角形三线合一
为 70或55度。若改为一个内角为100°呢? 400
3、(2012 中考变式题)等腰三角形的底和腰是方程 x2-6x+8=0
的两根,则这个三角形的周长为( B )
A.8
B.10
C.8 或 10
D.不能确定
4.若等腰三角形的一个内角是50°,则它一腰上的高与 底边所夹的角为( 25°或40° ).
点拨:本组题考查了等腰三角形中的分类讨论思想
2. 如图,在等腰△ABC中,AB=AC,若D
为BC的中点,DE⊥AB于E,DF⊥AC于F,则
DE=DF吗?请说明理由。
A
解:连结AD
∵D为BC的中点
∴ S△ABD= S△ACD
1
又∵ S△ABD= 2 AB·DE
∴
S△ACD=
1
1 2
AC·DF
1
2 AB·DE= 2 AC·DF
∵ AB=AC
∴ DE=DF
基本构图:角平分线+平行线构成等腰三角形.
在△ABC中,AB=AC,BO平分∠ABC, CO平分∠ACB (1)过O作OE∥BC,交AB于E,你能得到哪些结论?
AA
E
22
B 11
OO
4 3
CC
(2)在△ABC中,AB=AC,BO平分∠ABC CO平分∠ACB,过点O作EF ∥ BC交AB于E,交 AC于F,