自锚式悬索桥的特点与计算

合集下载

地锚式、自锚式与双链式悬索桥特点及多跨悬索桥实例分析

地锚式、自锚式与双链式悬索桥特点及多跨悬索桥实例分析

实例:我国重庆市北碚附近的嘉陵江朝阳大桥为A型双链式 悬索桥。

B型,
特点:它只在左右两个半跨范围的下链部分布置有吊索吊 拉桥面加劲梁。也就是每链只吊挂半跨加劲梁。
四、悬索横向布置
1、形式:习惯上为双主索(或四主索)布置,近年 也出现单索布置形式,
实例:日本的北港大桥仅设一根主索,为了吊桥 的横向稳定而将吊杆横向斜放。
特点:(1)下链的形式是根据桥面半跨有活载时,用适合 该荷载的力多边形来定出,下链不再产生变形,于是吊桥 此时将不发生S形变形。

(2)因此双链吊桥体系显示出比单链吊桥有大得多
的刚度,因而从根本上解决了刚度不足的问题。

(3)双链吊桥中的加劲梁内力较单链吊桥小,加劲
梁所需钢材减少,虽然悬索和吊杆比单链吊桥多用一些钢
香港青马大桥的1377m
日本来岛海峡二桥的1020m
4、多跨
定义:相对于3跨悬索桥来说,通常将4跨以上(包 括4跨)的称为多跨悬索桥或多塔(3塔以上包括3塔) 悬索桥。
特点:(1)多跨(塔)悬索桥常因中间桥塔与两边桥塔的塔
高不同的关系导致主缆的垂度偏大,使悬索桥的整体刚度 减小,因此对中间桥塔必须加大其刚度而采用在桥梁纵向 呈A型的4柱立体桥塔。
特点:满足结构受力要求的条件下,避免了缆、 索交错的繁杂感,视觉印象简洁明了,造型别致, 优美。但设计理论、结构构造方面有争论。
五、地锚式悬索桥的孔跨布置形式:
地锚式悬索桥的形式是以悬吊的孔跨数来作分类的。
1、三跨悬索 桥是最常见的一
种形式,它的结 构特性也比较合 理,迄今为止世 界上的大跨度悬 索桥大部分是采 用这种形式。
2、单跨悬索桥:由地形条件或线路平面条件

自锚式悬索桥介绍

自锚式悬索桥介绍

一. 自锚式悬索桥简介1. 自锚式悬索桥概述自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆锚固在加劲梁的两端,用加劲梁来承担主缆的水平分力[1]。

因此,端部支撑只需承担拉索的竖向分力,这给不方便建造锚碇的地方修建悬索桥提供了一种解决方法。

因为加劲梁要承担索力,所以一般情况下,加劲梁先于主缆架设之前完成施工,这种与一般悬索桥相反的施工顺序使这种桥梁目前还只局限于中等跨径。

不同于一般的悬索桥,自锚式悬索桥的计算必须考虑主梁中轴力的影响,因此设计师和有关学者也探索出,并不断地完善各种适用于自锚式悬索桥的设计理论和施工控制理论。

本文首先回顾一下这种桥型的发展历史。

1.1 自锚式悬索桥的发展历史19世纪后半叶,奥地利工程师约瑟夫·朗金和美国工程师查理斯·本德分别独立地构思出自锚式悬索桥的造型。

朗金首先在1859年写出了这种设想,本德在1867年申请了专利。

1870年朗金在波兰建造了一座小型的铁路自锚式悬索桥。

尽管他们都没有直接影响未来的设计,但20世纪初期自锚式悬索桥已经在德国兴起。

图1.1.1 德国1915年修建的科隆-迪兹桥Fig. 1.1.1 Original 1915 Cologne-Deutz Bridge in Germany1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥(图1.1.1)。

这座科隆-迪兹桥主跨185m,用临时木脚手架支撑钢梁直到主缆就位。

在它建成后的15年里影响了其它桥梁的设计,这种创新的设计思想得到了美国和日本等世界各国工程师们的关注。

美国宾夕法尼亚州匹兹堡跨越阿勒格尼河的3座桥,日本东京的清洲桥都与科隆-迪兹桥外型非常相似。

科隆-迪兹桥在1945年被毁,而原来桥台上的钢箱梁仍保存至今。

匹兹堡的三座悬索桥虽然比科隆-迪兹桥的跨径小,但施工技术有了很大的进步,并且采用了悬臂施工的新方法。

德国莱茵河上科隆-迪兹桥建成后25年间又修建了4座悬索桥,最著名的是1929年建成的科隆-米尔海姆桥,主跨315m,虽然该桥在1945年被毁,但它将自锚式悬索桥跨径的记录保持到21世纪。

自锚式悬索桥吊索张拉计算和有限元分析研究

自锚式悬索桥吊索张拉计算和有限元分析研究

因此,本次演示旨在深入探讨大跨度自锚式斜拉悬索桥的分析方法与性能研 究,以期为相关工程实践提供有益的参考。
分析方法
1、几何分析
几何分析是大跨度自锚式斜拉悬索桥分析的重要环节。该方法主要考虑桥梁 的几何非线性效应,通过模拟桥梁的刚度与变形关系,以及结构在荷载作用下的 位移分布情况,为后续的静力分析和动力分析提供基础数据。在进行几何分析时, 一般采用有限元方法建立结构模型,并利用非线性方程求解几何形状和位移。
2、边界条件根据实际桥梁的情况,对模型施加相应的边界条件。例如,对 于自锚式悬索桥,可以约束主塔底部的位移和转角,以及主梁两端的位移和转角。
3、材料模型根据实际材料的属性,选择适当的材料模型进行模拟。例如, 对于混凝土材料,可以采用ANSYS中的Solid185单元进行模拟;对于钢材,可以 采用Shell185单元进行模拟。
自锚式悬索桥的研究现状自锚式悬索桥以其优美的造型和独特的设计理念, 逐渐成为了现代桥梁工程的代表之一。近年来,随着计算机技术和数值计算方法 的不断发展,自锚式悬索桥的有限元建模和分析取得了长足进步。然而,目前的 研究仍存在以下不足之处: (1)有限元模型的准确性有待进一步提高; (2) 自锚式悬索桥的地震响应分析尚不完善; (3)缺乏统一的评估标准和规范,导 致设计缺乏依据。
综合本次演示的研究成果和发现,可以得出以下结论:
1、自锚式悬索桥作为一种具有独特特点的桥梁结构形式,在力学性能和行 为表现方面具有显著优势。
2、通过建立详细的力学模型、采用有限元方法和优化计算过程,可以实现 对自锚式悬索桥各构件内力和变形的准确计算。
3、实验研究结果表明,本次演示所采用的计算分析方法具有较高的精度和 可靠性,可以为相关工程实践提供有效的参考和依据。

悬索桥施工、计算与自锚式悬索桥简介

悬索桥施工、计算与自锚式悬索桥简介

➢ 19世纪后半叶,奥地利工程师约瑟夫·朗金和 美国工程师查理斯·本德分别独立地构思出自锚式 悬索桥的造型,朗金在1859 年写出了这种构想, 本德于1867年申请了专利。 ➢ 1870年,朗金在波兰设计建造了世界上首座小 型铁路自锚式悬索桥。 ➢ 1915年, 德国设计师在科隆的莱茵河上建造了主 跨达185m的科隆-迪兹自锚式悬索桥,采用临时 木脚手架支撑钢梁直到主缆就位。该方案的选择主 要是因为其外形美观,而地质条件又不允许修建锚 碇。主缆采用了眼杆结构,因而能方便地锚固在加 劲梁上。科隆-迪兹桥1945年被毁,但原来桥台上 的钢箱梁仍保存至今。
1.2 挠度理论 1862年有学者提出了无加劲悬索桥的挠度理
论,1888年,奥地利J.Melan教授发表了有加劲悬 索桥的挠度理论并于1906年进行了改进。1908年, L.S.Moiseiff在设计纽约Manhattan大桥时首次 采用挠度理论并显示出该理论的优越性。此后,巴 西的Florianpolis桥,美国的华盛顿桥、金门桥, 英国的福斯桥、塞文桥等大量悬索桥都采用了挠度 理论,并在实践中对理论进行了一些修正和发展。
立面图
桥名 布鲁克林桥 曼哈顿桥
悬索桥
国家 主跨
美国
486
美国
448
华盛顿桥
美国 1067
金门大桥 奥克兰海湾大桥
韦拉扎诺桥 塞文桥
博斯普鲁斯大桥 虎门大桥
大贝尔特东桥 明石海峡桥 青马大桥
江阴长江大桥 润扬大桥
美国 美国 美国 英国 土耳其 中国 丹麦 日本 中国 中国 中国
1280 704 1298 987.6 1074 888 1624 1991 1377 1385 1490
2. 悬索桥的结构体系
地锚式:单跨、三跨简支加劲梁、三跨双跨

自锚式悬索桥的力学特性分析

自锚式悬索桥的力学特性分析

自锚式悬索桥的力学特性分析自锚式悬索桥是一种重要的桥梁结构,它具有轻巧的桥墩、优良的抗震性能、通高、高过行限制车辆的受限空间,以及在工况等方面具有良好的可行性,在各种地质环境中具有广泛的应用前景。

然而,自锚式悬索桥本身具有复杂的力学结构,研究其力学特性分析对于它的研究和应用具有重要意义。

一、自锚式悬索桥的结构特征自锚式悬索桥的结构主要包括桥面系统、桥墩系统和支撑系统,其结构特征是桥面只有两条悬索索绳,桥墩只有两个大型节点和几个小型节点,而支撑系统可以表示为支撑桁架。

桥墩由双T型混凝土壁板组成,桁架由钢柱、钢架、橡胶弹簧和其他配件组成,两条悬索索绳分别由桥墩上固定的支撑系统把桥面拉起,使它得以实现。

二、自锚式悬索桥的力学特性分析1.桁架的振动特性桥墩的支撑系统是自锚式悬索桥的关键,它们是结构的支撑点,支撑系统的振动特性是自锚式悬索桥力学特性分析的基础。

因此,桁架的振动特性是自锚式悬索桥安全性的重要指标,它可以从两个方面进行分析,一是桥梁自身振动,即桁架因结构自身强度不足而引起的结构局部振动;二是桁架对其他结构的影响,即桁架影响其他结构的振动,从而影响桥梁的安全性。

2.悬索索绳的受力特性悬索索绳是自锚式悬索桥的重要结构构件,其受力特性是悬索桥力学特性分析的重要指标。

索绳的受力特性不仅受桥梁的荷载影响,还受线材质量、设计参数等因素的影响,因此对索绳的受力特性进行全面分析,是研究自锚式悬索桥力学特性的重要环节。

三、自锚式悬索桥的力学性能分析1.线杆弯曲变形分析悬索桥的支撑系统不仅需要承受自身重量和桥面荷载,还要承受索绳的力,悬索桥的支撑系统受线杆弯曲变形是比较明显的。

当桁架受压时,会出现弯曲变形,这种变形可以分解为两个部分:一是支撑系统的位移变形,即线杆本身的弯曲变形;二是桁架自身的变形,即桁架体系在整体受力作用下产生的变形。

2.悬索索绳的应力分析悬索索绳是自锚式悬索桥的重要结构构件,它的受力状况直接影响着桥梁的安全性。

自锚式悬索桥计算报告完整版

自锚式悬索桥计算报告完整版

目录4.2.4.1.结构总体静力计算分析 (1)(1)主要构件材料及性能 (1)①混凝土 (1)②结构钢材 (1)③主缆用钢材 (1)④吊索用钢材 (1)(2)全桥成桥状态计算 (2)①计算方法及模型 (2)②计算荷载及组合 (3)③刚度计算结果 (3)④强度计算结果 (4)4.2.4.2.结构稳定计算分析 (6)(1)计算模型及方法 (6)(2)荷载及组合 (6)(3)计算结果 (6)4.2.4.3.结构动力特性计算分析 (7)(1)计算模型及方法 (7)(2)计算结果 (7)4.2.4.4.结构抗震计算分析 (8)(1)结构抗震设防标准 (8)(2)计算参数选取 (8)①下水平向地震动参数 (8)②竖向地震动参数 (8)③结构阻尼比的取值 (9)(3)地震组合 (9)(4)计算模型 (9)(5)计算结果 (9)4.2.4.5.结构抗风计算分析 (9)(1)设计风速确定 (9)(2)颤振稳定性计算分析 (10)①颤振临界风速确定 (10)②颤振稳定性分析 (11)(3)静风稳定性计算分析 (11)①二维静风扭转发散分析 (11)②二维横向屈曲发散分析 (12)(4)静风荷载计算分析 (13)4.2.4 自锚式悬索桥结构计算分析4.2.4.1.结构总体静力计算分析(1)主要构件材料及性能①混凝土索塔采用C50混凝土,边墩采用C40混凝土,承台及桩基采用C30混凝土,各种标号混凝土主要力学性能见下表。

混凝土标号C50 C40 C30应用结构索塔及塔上横梁过渡墩承台力学性能弹性模量E(MPa) 34500 32500 30000剪切模量G(MPa) 13800 13000 12000 泊松比γ0.2 0.2 0.2 轴心抗压设计强度(MPa) 22.4 18.4 13.8抗拉设计强度(MPa) 1.83 1.65 1.39热膨胀系数(℃) 0.000010 0.000010 0.000010 主梁及桥塔横梁采用Q345qD 钢材。

自锚式悬索桥的综述

自锚式悬索桥的综述

自锚式悬索桥的综述一、悬索桥的介绍悬索桥是一种结构独特、形式美观的桥梁,常见于峡谷、河流、海湾等地形复杂的地区。

基本的构造是利用主悬索和辅助悬索的组合,使桥梁跨越河谷、山峰或凹地,形成一条能够承载车辆和行人交通的道路。

目前悬索桥已成为桥梁工程领域的代表性建筑之一。

悬索桥根据其支撑方式的不同可以分为自锚式、钢管式、混凝土箱形等多种类型。

本文主要介绍自锚式悬索桥。

二、自锚式悬索桥的特点自锚式悬索桥是一种挂设在位置固定的桥墩上的悬索桥,其特点主要在于下部构件可以直接以锚固方式固定在河床、桥墩或其他位置。

因此,自锚式悬索桥不需要准备大型基础或钢管桩,也不用使用复杂的鼓型钢管。

此外,自锚式悬索桥的上部构件比较柔软,可以在桥梁发生大量变形时进行适当调整,从而保证桥梁的整体稳定性。

自锚式悬索桥不仅具有良好的适应性和稳定性,而且建设难度低,非常受到人们的欢迎。

三、自锚式悬索桥的结构自锚式悬索桥的主悬索是由一系列高强度细钢线构成的。

主悬索的锚固点通常设置在桥墩处,下级锚固点则悬挂在主悬索两端的墩柱上。

桥梁的其他部分包括主梁、侧拱、横梁、悬索和牵引索等。

自锚式悬索桥的主梁通常是钢箱梁,侧拱作为主梁的辅助结构,与横梁相连。

悬索的作用是保持桥梁的平衡和稳定,而牵引索则是将桥梁的水平力传递给桥墩。

四、自锚式悬索桥的优缺点自锚式悬索桥具有以下优点:1.建设成本低:自锚式悬索桥的基础建设相对较少,结构简单且容易锚固,因此建设成本比其他悬索桥更低;2.适应性强:自锚式悬索桥的地基要求不高,建设灵活,适应性较强,能够适应复杂的地形地貌和环境条件;3.稳定性高:自锚式悬索桥的主悬索锚固点设置在固定的地基上,增加了桥梁的稳定性。

自锚式悬索桥的缺点包括:1.桥塔高度限制:自锚式悬索桥需要固定在桥塔上,而桥塔的高度存在一定的限制,因此自锚式悬索桥的跨径也受到限制。

2.自锚式悬索桥的支承方式:由于自锚式悬索桥有一部分结构是悬挂在桥塔上,因此其支承方式受到限制,无法承受较大的水平荷载。

自锚式悬索桥的综述

自锚式悬索桥的综述

自锚式悬索桥的综述【摘要】自锚式悬索桥是一种具有独特结构特点的桥梁形式,其重要性在于可以跨越大跨度的河流或峡谷,提高交通效率。

本文首先介绍了自锚式悬索桥的背景和发展历史,接着分析了其结构特点、优缺点、设计原则以及建造工艺。

还探讨了自锚式悬索桥在不同应用领域的具体运用情况。

结合现有研究成果,展望了自锚式悬索桥未来的发展方向和发展前景。

该文章对了解自锚式悬索桥的技术特点、利用价值和未来发展趋势具有一定的参考意义。

【关键词】自锚式悬索桥,结构特点,优点,缺点,设计原则,建造工艺,应用领域,发展历史,未来发展方向,影响和意义,发展前景。

1. 引言1.1 介绍自锚式悬索桥的背景自锚式悬索桥是一种悬索桥的变种,其特点是悬索索塔由桥面而非地面支持。

这种独特的结构设计使得自锚式悬索桥在工程施工和桥梁设计上具有独特的优势和特点。

自锚式悬索桥的背景可以追溯到20世纪70年代,当时人们开始意识到传统的悬索桥设计存在一些局限性,例如在地震和风力等极端环境条件下的表现不佳。

自锚式悬索桥的设计理念是将悬索索塔直接连接到桥面结构,使得整个桥梁系统更加稳定和灵活。

这种设计方案不仅可以降低施工难度和成本,还可以提高桥梁的整体性能和抗震性能。

自锚式悬索桥的背景正是在这样的背景下逐渐兴起,成为桥梁工程领域中备受关注的研究方向。

随着科学技术的不断发展和桥梁工程的不断完善,自锚式悬索桥在国内外得到了广泛的应用和推广。

它不仅可以解决传统悬索桥存在的问题,还可以为世界各地的桥梁工程提供全新的设计思路和解决方案。

介绍自锚式悬索桥的背景将有助于我们更好地理解这种桥梁结构在现代工程领域中的重要性和价值。

1.2 阐明自锚式悬索桥的重要性自锚式悬索桥的广泛应用,可以有效地促进城市的建设和经济的发展。

在城市交通建设中,自锚式悬索桥可以作为重要的交通枢纽,连接两岸,缓解交通压力,提高通行效率。

自锚式悬索桥的美观性和艺术性也可以增强城市的形象和吸引力,成为城市的标志性建筑物,吸引游客和投资。

自锚式悬索桥吊索索力测试与计算方法

自锚式悬索桥吊索索力测试与计算方法

自锚式悬索桥吊索索力测试与计算方法
自锚式悬索桥是一种采用悬索和主塔之间均匀分布自锚式索杆的桥梁结构。


设计和建造自锚式悬索桥时,必须进行吊索索力测试和计算。

这一过程是确保悬索桥的结构安全性和稳定性的重要步骤。

吊索索力测试是通过施加不同的荷载并测量相应的吊索反力来确定悬索桥的索
力分布。

测试时,需要使用专业的测力仪器和设备进行测量,以获得准确的结果。

吊索索力计算是基于桥梁的几何形状、悬索材料的特性和外部荷载等因素,通
过理论计算来确定吊索的索力分布。

常用的计算方法包括静力学平衡法和有限元分析法。

静力学平衡法是一种基于平衡原理的计算方法,通过将桥梁视为整体系统,将
外部荷载与吊索索力之间的关系纳入计算。

该方法需要考虑桥梁的刚度和几何形状等因素,以得出合理的计算结果。

有限元分析法是一种基于数值模拟的计算方法,通过将桥梁划分为许多小单元,并考虑各个单元之间的相互作用来进行计算。

该方法可以更准确地模拟悬索桥的力学行为,但也需要更复杂的计算程序和专业软件的支持。

在进行吊索索力测试和计算时,需要考虑到悬索桥的实际使用情况、荷载情况
以及材料的力学特性等因素。

合理的测试和计算可以帮助工程师们确保悬索桥的结构安全,并为桥梁的设计和施工提供指导。

总结起来,吊索索力测试和计算方法是设计和建造自锚式悬索桥时不可或缺的
步骤。

通过科学合理的测试和计算,可以保障悬索桥的安全性和稳定性,为桥梁的使用和维护提供依据。

自锚式悬索桥的力学特性分析

自锚式悬索桥的力学特性分析

自锚式悬索桥的力学特性分析自锚式悬索桥是一种利用悬挂和锚固联合原理,利用钢丝绳、球墨
铸铁结构件悬挂桥梁来形成的桥梁形式。

它具有安装简便、自重轻、
抗震性能优良、维护维修方便、适应性强等优点,经常用于山谷和山
地地形较复杂地区建设的小型临河索道或者公路桥梁结构。

自锚式悬索桥的力学特性由悬索桥的基本机构获得,悬索桥的主
要组成部分包括悬挂组件、节点部件、立柱、悬索架及桥型等,悬挂
组件是桥梁主要构件,节点部件是桥梁接受和施加荷载、转移荷载的
环节,立柱是悬索桥的坚固支撑,而悬索架则是节点部件的垂直支撑,同时也是荷载的垂直传递手段。

悬索桥的主体结构中,节点部件的组合及悬索架的拉力对悬索桥
的力学性能有重要的影响,尤其是悬挂部分的扭转荷载和锚固部分的
轴力的拉力影响更为明显,因此,考虑悬挂部分的内力和轴力荷载以
及悬索架、立柱等结构件的抗力,进行结构整体力学分析,以确定桥
梁的受力特性,以明确桥梁的荷载性能、抗震能力等特点。

自锚式悬索桥要求工作时无外力作用,否则它的运动学参数将会
发生变化,影响到桥梁的稳定性,发生破坏。

因此,应该分析悬挂组
件的拉力及其整体效应,以确保桥的可使用性;同时,应考虑桥架位
变影响的结构框架的受力变化以及桥梁横向偏移对悬挂和锚固结构的
影响。

此外,需考虑自身的重量和气温变化对悬索架施加的拉力变化,
要及时检修,以确保构件健康状态,避免严重影响桥梁受力性能,以
及维持悬挂架及其锚固处的拉力分布均匀,确保桥梁的稳定和安全性。

综上所述,自锚式悬索桥的力学特性是桥梁的重要性能指标,它
的抗力能力的优劣关系到桥梁的设计、施工质量及使用寿命等重要性
能因素。

自锚式悬索桥缆索分析计算

自锚式悬索桥缆索分析计算

自锚式悬索桥缆索分析计算摘要:对于自锚式悬索桥结构来讲,主要承重构件是两根主缆。

由于主缆是不可更换构件,所以当主缆架设完毕以后,其空缆和成桥状态下的线形和无应力长度是不可调整的,或者说调整量甚微。

因此在施工过程中,必须准确的计算缆索系统的各项参数,以指导现场施工。

关键词:自锚式悬索桥;主缆;线形;无应力长度;缆索系统;参数Abstract: For the self-anchored suspension bridge, the main load-bearing components are two main cables. As the main cable can not be replaced, so after the main cable is built, the linear and non-stress length under empety and bridge formed is not adjusted, or the adjust is minimal. Therefore, in the construction process, the various parameters of cable system must be accurate calculated to guide the site construction.Key words: self-anchored suspension bridge; the main cable; linear; non-stress length; cable system; parameters1 工程概况江阴新沟河大桥起止桩号为K17+006.18~K17+763.22,全桥长757.04m,跨径组合为3×30+4×30+(30+40+100+40+30)+4×30+2×(3×30)m,其中主桥为混凝土自锚式悬索桥,东西引桥为混凝土连续箱梁。

自锚式悬索桥抗震计算及减隔振措施

自锚式悬索桥抗震计算及减隔振措施

自锚式悬索桥抗震理论及减振措施1.自锚式悬索桥简介1.1 悬索桥的适用范围自锚式悬索桥作为一种独特的柔性悬吊组合体系,有其自身的受力特点,其优点为:(1)不需要修建大体积的锚碇,所以特别适用于地质条件较差的地区;(2)受地形限制小,可结合地形灵活布置;(3)保留悬索桥美观,错落有致的线性,特别适合景观要求较高的城市桥梁;(4)钢筋混凝土的加劲梁在轴向压力下刚度有很大的提高,且后期养护较钢梁有很大的优势。

自锚式悬索桥也有其不足之处:(1)在较大轴压作用下,梁需要加大截面,会引起自重增大,限制了跨度;(2)施工步骤受到影响。

必须先制造主塔、加劲梁在安装主缆和吊杆,需要搭建大量的临时支架来建造加劲梁;(3)锚固区局部受力复杂;(4)受到主缆非线性影响,吊杆的张拉时施工控制困难;(5)加劲梁属于压弯构件,需提高刚度来保证稳定。

1.2 自锚式悬索桥的分类自锚式悬索桥的结构形式主要有三种:美式自锚式悬索桥、英式自锚式悬索桥及其他类型自锚式悬索桥。

(1)美式自锚式悬索桥美式自锚式悬索桥的基本特征为采用竖直吊杆。

采用钢桁架的自锚式悬索桥的加劲梁是连续的,以承受主缆传递的压力。

加劲梁可做成双层公铁两用。

可以调整钢桁架的高度来提高加劲梁的刚度以保证桥梁有足够的刚度。

此类自锚悬索桥的典型代表为韩国的永宗大桥。

(2)英式自锚式悬索桥此类悬索桥的基本特征是采用三角形的斜吊杆和刚度较小的流线形扁平翼状钢箱梁作为加劲梁,用钢筋混凝土塔代替钢塔,有的还将主缆和加劲梁在跨中固结。

其优点是钢箱梁可减轻恒荷载,因而减小了主缆截面,降低了用钢量。

钢箱梁抗扭刚度大,受到横向的风力较小,有利于抗风,并大大减小了桥塔所承受的横向力,缺点是三角形斜吊杆在吊点处的结构复杂。

此类自锚式悬索桥的典型代表为日本的此花大桥。

(3)其他类型的自锚式悬索桥其他类型的自锚式悬索桥采用了竖直吊杆和流线形钢箱梁作为加劲梁,加劲梁的材料可采用钢材或钢筋混凝土材料。

自锚式悬索桥施工技术指南

自锚式悬索桥施工技术指南

自锚式悬索桥施工技术指南1. 概述
1.1 自锚式悬索桥的定义及特点
1.2 自锚式悬索桥的适用范围
2. 设计准备
2.1 地质勘察与场地评估
2.2 荷载计算与结构分析
2.3 材料选择与规范要求
3. 基础施工
3.1 锚锭基础施工
3.2 墩柱基础施工
3.3 防护与排水措施
4. 主塔施工
4.1 主塔形式及结构设计
4.2 主塔施工工艺及控制
4.3 主塔质量检测与验收
5. 索面系统施工
5.1 索股制作与安装
5.2 索夹及附属装置安装
5.3 索面张拉与调整
6. 桥面系统施工
6.1 预制梁段制作与运输
6.2 桥面系统拼装与安装
6.3 伸缩缝及附属设施安装
7. 质量控制与安全管理
7.1 材料质量控制
7.2 施工质量控制
7.3 安全风险评估与管理
8. 维护与检测
8.1 日常维护与检修
8.2 定期检测与评估
8.3 加固与维修方案
9. 案例分析
9.1 国内外典型自锚式悬索桥工程案例 9.2 施工难点及解决方案
10. 发展前景与趋势
10.1 自锚式悬索桥的发展历程
10.2 未来发展趋势与展望。

自锚式悬索桥的综述

自锚式悬索桥的综述

自锚式悬索桥的综述构建拥有一定规模的桥梁工程是城市化进程中的必要组成部分,而自锚式悬索桥,在工程技术上具备了一定的发展前景。

因此,本文将从建筑专家的角度,对自锚式悬索桥进行综述。

本文将从以下五个方面进行分析:一、自锚式悬索桥的概述自锚式悬索桥属于现代化悬索桥的一种类型,建造时可以脱离传统锚具的使用。

它是一种连结两边大陆的现代桥梁工程,主跨向形为悬索,以悬挂索的方式连接于下放缆,并由自锚装置和主塔的承载力共同支撑,支撑物的内容质调配要求较高。

自锚式悬索桥是一种跨度较长的桥梁,其制造需要更高的技术和材料。

由于其结构特性,使得该类桥梁能够承受较大的荷载,并且在不牺牲桥梁的整体强度情况下,可以达到优秀的流畅性和结构简单性。

二、自锚式悬索桥的优点自锚式悬索桥具有以下优点:1. 结构简单通常自锚式悬索桥只有一至两个塔,整体结构简单明了,操作简洁,维护也方便;2.纤维混凝土是一种有效的材料,不仅强度和韧性都很高,并且可以使悬索桥的跨度实现大规模的变化;3. 确保桥梁强度,减少维护成本;4. 具有良好的自锚定能力,降低了工期,省去了锚具的使用,减少了成本;5. 对于环境遮挡物的压力较强,在自锚式悬索桥的支撑下,协同优化来使对气象条件的自适应性更强;三、自锚式悬索桥的缺点1. 建造难度大,需要高精度的制造过程;2. 需要高质量材料,建造成本较高;3. 需要对环境条件进行严格的考虑和设计,如风、雨、地震等灾害;四、自锚式悬索桥的工程实例分析1. 汉江大桥(中华人民共和国第一长跨钢斜拉桥),主跨1104米,总长1670米,建于1993-1995年间,位于中国河南省郑州市新郑市汝河之下。

2. 宝华山双塔拱桥,是中国目前仅存的悬索桥桁架结构的一座大跨度悬索桥,主跨660米,总长1299.5米,位于四川省巴中市南江县。

3. 大澳大桥,位于香港新界西贡区,是一座容纳行人、自行车和车辆的悬索桥,主跨180米,总长610米,建于1997年。

自锚式悬索桥的特点与计算

自锚式悬索桥的特点与计算
而中、 小跨 径采用 正 交 异性 板 钢 桥 面 时 , 对 的活 载 相 比例 大 , 即重力 刚度小 , 桥面 的变形 挠度 过大 , 也是不 合理 的 。
式 中 K一 一 结构 刚度矩 阵

节点 位移 向量
( )主缆最 大拉 力亦 随跨径 的加大 而增 大 , 2 它不 能采 用悬 索桥 的计算公 式来 简单计 算 , 要采 用非线 需
收稿 日期 :0 10 —0 修改 日期 :0 11 —8 2 1—93 ; 2 1—00 作者简介: 杨大海 ( 92 , , 18 一)男 安徽阜阳人 , 硕士 , 安徽省交通规划设计研究 院工程师
性结 构 , 索桥 一般 跨 径 较 大 , 以在 对 其 进行 分 析 悬 所
《 工程与建设》 2 1 年第 2 卷第 6 01 5 期 7 1 3
索桥 , 但其 设计 理论 和施 工 方法 的研 究 还不 够 全 面 , 因此 , 自锚 式 悬 索 桥 的 设 计 理 论 进 行 研 究 十 分 对
必要 。
自 锚式悬索桥不同于一般 的悬索桥, 它的主缆直
接 锚 固在加 劲 梁 的梁 端 , 由主梁直 接承 受 主缆 中的水 平 拉 力 , 需要 庞 大 的锚 碇 , 不 节省 了大 量投 资 , 给 中 这
固 端采 用 钢 板 焊板 锚 箱 并 采 用 扁 担 梁 传 力 ; 种 桥 这 型 结构 新 颖 , 型 美 观 , 构 轻 巧 , 件 受 力 合 理 , 造 结 构 用 材经 济 , 一 种 在 中小 跨 径 内 非 常 具 有 竞 争 力 的 是
桥型 。
表 1 主要的 自锚式悬索桥
梁 的梁端外 , 其余分构造都采用 了和现代悬索桥相
似 的形 式 。 蚌 埠 市 大 庆 路 自锚 式 悬 索 桥 充 分 利 用 自锚 式 悬 索桥 的受 力 特 性 , 鉴 了 同 类 桥 梁 的一 些 优 点 , 借

自锚式悬索桥的特点与计算

自锚式悬索桥的特点与计算
3、计算程序:
线性平面杆系程序。
计算材料弹性模量:复合钢管砼Ec=43000Mpa
碳素钢丝Ey=200000 ቤተ መጻሕፍቲ ባይዱpa
温度:升温T=30°C
4、计算成果:
为了摸索自锚式悬索桥的内力变化规律和特点,作了较多跨径指标的计算。为了简化计算工作,便于对内力变化规律的认识,加劲梁的刚度未作变化,故对少数跨径指标并不适合。计算的成果也反映出了自锚式悬索桥的内力变化规律,证明了它独具的特点。对不同桥宽的计算结果,都折算成相同荷载的单主缆和加劲梁内力,以便相互对比。
3、加劲梁是主缆通过吊杆弹性的平衡稳定支承着,桥面的轴向压力对预拱度和挠度不产生附加偏心弯矩,因为附加偏心弯矩被加劲梁和桥面的巨大重量所平衡,这和一般无平衡稳定支承的自由状态情况不同。
4、自锚式悬索桥采用有限单元程序计算方便,当跨径小于150米左右时,按线性有限单元程序计算。当跨径大于150米左右时,则按非线性有限单元程序计算。也可采用座标修正的办法,用线性有限单元程序再进行计算,作为非线性有限单元程序的近似计算。这种非线性有限单元程序的活载计算内力,比线性有限单元程序的活载计算内力小,相差在20%以上,随跨径和结构特点不同而变化。采用近似非线性有限单元程序计算的挠度较小,为按线性有限单元程序计算挠度的60%左右,也就是说近似非线性有限单元程序计算中,已经扣除了按线性有限单元程序计算挠度的40%左右。对于恒载施工的加载阶段或方案设计的预估计算,可以采用弹性阶段主缆拉力的公式计算,比较方便。
自锚式悬索桥的内力计算复杂,应采用非线性有限单元法来计算。对于几何可变的缆索单元,需作加大弹性模量的应力刚化处理。悬索作为几何可变体系,活载作用的变形影响很大,是非线性变形影响的主要因素。本文采用线性有限单元法作简化计算的方法,是先按线性程序计算出活载撓度,修正活载撓度的座标以后,再用线性有限单元法作迭代计算。即采用拖动座标法计算,是非线性有限单元法计算的简化近似计算,方法较简便。

文稿-自锚式悬索桥

文稿-自锚式悬索桥

目录自锚式悬索桥施工 (1)一、前言 (1)1.概况: (1)2.自锚式悬索桥结构受力及施工特点概述 (1)3.发展历程: (3)二、施工工艺方法及其重点 (6)1.主塔施工: (6)2.鞍部施工: (6)3.加劲梁施工: (7)4.锚跨/锚块施工 (10)5.主缆施工: (10)6.主缆吊杆施工 (11)三、监理质量控制重点及措施 (13)1.悬索桥锚跨/锚碇施工 (14)2.悬索桥塔柱施工监理要点 (15)3.悬索桥钢箱梁的制作 (17)4.悬索桥钢箱梁的安装 (21)5.悬索桥主缆系统制作安装 (26)6.大跨度自锚式悬索桥施工监测监控和吊杆的加载控制 (33)7. 自锚式悬索桥施工质量标准 (36)自锚式悬索桥施工一、前言悬索桥的桥面支承在悬吊的主缆上,而主缆则一般锚固于巨大的地下锚碇。

相对地锚式悬索桥而言,如果将主缆直接锚固在加劲梁端部,从而取消了庞大的锚碇,就成为自锚式悬索桥。

对于地基基础很差的地区可采用自锚式体系代替地锚式体系建造悬索桥。

1.概况:自锚式悬索桥的加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥等。

我国近十年发展很快,2000年来我国已相继建成二十余座风格各异的自锚式悬索桥,加劲梁分别采用钢桁梁、钢箱梁和混凝土梁。

例如广东佛山平胜大桥,2006年10月建成,独塔单跨四索面自锚式悬索桥,主跨350米跨径为同类型桥梁世界第一,钢箱加劲梁采用顶推施工;河南桃花峪黄河大桥主跨达406m,2010年3月开工,预计2013年6月建成,钢箱加劲梁、边锚固跨采用混凝土,后改为钢锚梁;在建的哈尔滨松花江大桥和即将开工的武汉市江汉六桥则为钢-混凝土组合梁。

中国大连金石滩金湾桥是世界上第一座钢筋混凝土加劲梁的自锚式悬索桥,于2002年7月建成,此后吉林、辽宁、浙江又有多座钢筋混凝土自锚式悬索桥相继设计和建造。

2.自锚式悬索桥结构受力及施工特点概述自锚式悬索桥结构是主缆通过自身结构体系的锚梁和加劲梁锚固并承受和分布主缆反力的悬索桥结构。

自锚式悬索桥结构可靠性研究

自锚式悬索桥结构可靠性研究

尽管本次演示在自锚式悬索桥的计算分析方面取得了一定的成果和进展,但 仍存在一些不足之处,需要进一步研究和探讨:
1、在实验研究中,虽然已经尽可能地模拟了实际工程情况,但仍可能存在 一定误差和不足。因此,需要进一步改进实验方案和完善测试内容,以提高实验 数据的准确性和可靠性。
2、在计算分析中,虽然已经采用了较为先进的有限元方法和优化计算过程, 但仍然可能存在计算误差和边界条件的简化。因此,需要进一步探讨更精确的分 析方法和模型,以提高计算精度和可靠性。
参考内容
自锚式悬索桥作为一种具有独特特点的桥梁结构形式,在近年来得到了广泛 的应用和发展。本次演示旨在对自锚式悬索桥的计算分析进行研究,通过理论建 模和实验验证,探讨其力学性能和行为表现,为相关工程实践提供参考和依据。
在自锚式悬索桥的发展过程中,其设计理念和施工技术的不断更新和完善, 使得这种桥梁结构在跨越能力、承载力和景观效果等方面具有显著优势。然而, 随着自锚式悬索桥的不断增多,也出现了一些问题和挑战,如悬索的非线性、桥 塔的稳定性、车致振动等,这些问题都需要通过深入的计算分析进行研究。
引言
混凝土自锚式悬索桥是一种具有独特优势和特点的桥梁结构,其结合了混凝 土材料的强度高、耐久性好以及悬索桥跨度大、自重轻等优点。在现代化的桥梁 建设中,混凝土自锚式悬索桥已成为一种重要的选择。本次演示将围绕混凝土自 锚式悬索桥设计理论展开研究,旨在为进一步提高其设计质量提供参考。
关键词:混凝土、自锚式悬索桥、 设计理论
自锚式悬索桥,一种具有特殊构造和优异性能的大型桥梁结构,已成为现代 城市交通基础设施的重要组成部分。自锚式悬索桥以其高强钢构、优美造型和高 效承载性能等特点,逐渐成为城市桥梁设计的首选方案。本次演示将从自锚式悬 索桥的历史发展、结构特点、设计理念和未来发展趋势等方面进行综述。

自锚式悬索桥毕业设计计算书.pdf

自锚式悬索桥毕业设计计算书.pdf

哈尔滨工业大学毕业设计(论文)摘要自锚式悬索桥作为一种特殊悬索桥桥型,在沉寂了多年之后,现在又重新引起工程界的兴趣。

它保留了传统的悬索桥桥型,以其优美的外形受到工程师们的青睐。

但此种桥型结构复杂,国内外对其研究的资料和成果也很少。

本文主要是对一座中等跨度的正在施工中的混凝土自锚式悬索桥—抚顺万新桥进行设计和计算分析。

1. 理想索力的计算。

悬索桥一般要求恒载作用下索力均匀,这样弯矩和剪力就分布均匀。

此桥主塔采用滑动索鞍以及有一定的预偏量,所以桥塔在恒载作用下不受弯,调索时只需控制主梁的弯矩。

使主梁弯矩尽量上下均匀,可得吊索的理想索力。

2. 主梁的计算。

自锚式悬索桥是将主缆直接锚固于加劲梁的两端,所以求得的主梁的轴力很大,主梁的纵向只需配置普通钢筋。

3. 桥面板的计算。

桥面板为双向板,按双向板求内力配筋。

关键词混凝土,自锚式,悬索桥,设计- I -哈尔滨工业大学毕业设计(论文)AbstractAs a particular kind of suspension bridge, self-anchored suspension bridge has made an appearance in field of engineering after years’ dreariness. Preserving shape of traditional suspension bridge, it causes the engineer’s favor by its elegant figure. Howener, due to complexity of its structure, there are little research data or achievement at home and abroad. This paper has put emphasis on design and computational analysis to a middle-span concrete self-anchored suspension bridge in construction—Fu Shun Wan Xin Bridge are done.1. Calculation of the reasonal force of cable.The suspension bridge is commonly required the force of cable are uniformity when the dead load acted on the bridge. Then the shear and bending moment will distribute uniformly. The tower of this bridge adopts a sliping saddle and there are some declinations. Therefore the bridge tower doesn’t has bending moment when the dead load acted on the bridge.When we adjust the force of the cable, we just need control the bending moment of the girder. If the distribution of the girder bending moment is uniformly,the force of the cable is the reasonal force of cable.2. Calculation of girder. self-anchored suspension bridge, the cable anchored at the two ends of the girder directly, so the axial-force of the girder is very great Therefore the girder only need ordinary reinforcing bar.3. Calculation of deck slab. The deck slab is two-way slab, wo need calculate the deck slab according to the two-way slab.Keywords concrete, self-anchored, suspension bridge, design- II -哈尔滨工业大学毕业设计(论文)目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.1.1自锚式悬索桥的发展概况 (1)1.1.2 自锚式悬索桥的特点 (2)1.1.3设计的主要内容 (3)第2章总体设计和构造形式的选择 (4)2.1大桥概况 (4)2.2总体设计及构造形式的选择 (4)2.2.1 结构体系 (4)2.2.2 构造形式 (4)2.3主桥施工方法 (5)第3章 理想索力的计算 (6)3.1 恒载集度计算 (6)3.2吊索的理想索力计算 (6)3.3索力调整的分析 (7)3.3.1静载作用下索力调整的分析 (7)3.3.2考虑活载作用索力调整的分析 (9)第4章主梁内力计算 (11)4.1恒载内力计算 (11)4.2 活载内力计算 (15)4.2.1横向分布系数计算 (23)4.2.2活载内力计算 (24)4.3温度内力计算 (28)4.4收缩、徐变 (29)4.5荷载组合画内力包络图 (29)第5章主梁配筋计算 (36)5.1 本章小结 (36)5.2 截面配筋 (36)- III -哈尔滨工业大学毕业设计(论文)5.3截面验算 (41)5.3.1垂直于弯矩作用平面内的截面复核 (41)5.3.2弯矩作用平面内的截面复核 (42)5.4应力验算 (44)5.5挠度验算 (50)第6章横梁及桥面板计算 (51)6.1 横梁计算 (51)6.1.1 预应力损失计算 (52)6.1.2 应力验算 (55)6.1.3 截面强度验算 (59)6.2 桥面板计算 (60)结论 (66)致谢 (67)参考文献 (68)附录1 (69)附录2 (76)- IV -哈尔滨工业大学毕业设计(论文)第1章绪论1.1课题背景1.1.1自锚式悬索桥的发展概况1.1.1.1前言 自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆直接锚固到桥面板或加劲梁的两端,由它们来承担主缆中的水平力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、有边跨的自锚式悬索桥,边跨长度为中跨长度的1/3左右,可通过边跨垂跨比值的调整,使边跨与中跨的主缆拉力达到平衡。边跨形状相似半个中跨,活载作用下的反对称变形很小,边跨的相对挠度比中跨小。采用边跨形式的单跨自锚式悬索桥较好,它的活载变形很小。自锚式悬索桥的反对称变形很小,随跨径的增大而增加。它的跨中预拱度设置,仍应该按线性有限单元程序计算的最大挠度值考虑,因为计算座标的修改值要考虑。预拱度的设置应考虑温度的影响,温度的影响随跨径的增大而增大,避免出现过大和过小的情况。
式中:简支梁的活载弯矩M,悬索座标y,活载引起的水平拉力h。
(2)变位理论:
考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加,这种竖向变位与悬索的水平拉力所作的功,将减小桥面加劲梁的弯矩。加劲梁的弯矩:
变位理论M=M-h*y-(H-h)*v式中:活载产生的撓度v
二、自锚式悬索桥计算原理
11、自锚式悬索桥加劲梁塔架支点处的负弯矩较大,故它适宜采用变刚度形式,即变截面梁,也有利于减小跨中活载挠度。自锚式悬索桥的加劲梁,也可以不在塔架处设竖向支座,成为悬浮体系,以减少加劲梁的负弯矩,而采用等截面的加劲梁,可以减少加工难度。
12、自锚式悬索桥的主缆集中锚固在加劲梁端,主缆适宜采用预应力的锚固方式,对于这一特点要加以处理。为了把集中的锚固力分配到加劲梁和桥面上,桥面两端应设置刚度强大的加劲横梁,使加劲梁和桥面所受的轴向压力基本同步,避免加劲梁和桥面出现剪力滞后的现象。
2、桥面共同承受主缆传来的巨大水平压力,是加劲梁获得的免费预应力,提高了加劲梁的抗
弯刚度,能减小活载挠度,整体和稳定性都好。采用复合钢管砼加劲梁和钢筋砼桥面,解决
和方便了主缆的架设与锚固,也解决了钢加劲梁和桥面的防护问题,加大了桥面的重力刚度和稳定性,减小了桥面的活载挠度。它们是逐步加重和加强,施工安全和方便,造价经济合理,大大降低了悬索桥的造价,对自锚式悬索桥的发展有推动作用。
(1)主缆水平拉力:
主缆水平拉力随跨径的加大而增大,即使是跨径500米,采用复合(即组合或结合)钢管砼和钢管砼加劲梁配合钢筋砼桥面都是可以平衡的,而跨径300米左右是比较容易实现和经济合理的。采用复合钢管砼、钢管砼、加劲钢管配合正交异性板钢桥面时,大、中跨径都是可用的,对大跨径特别适合,钢筋砼桥面比正交异性板钢桥面的主缆拉力大一倍左右。大跨径采用钢筋砼桥面的主索拉力过大,是不合理的。而中、小跨径采用正交异性板钢桥面时,相对的活载比例大,由于桥面自重小,主缆拉力比较小,即重力刚度小,桥面的变形挠度过大,也是不合理的。(图八)
悬索最大拉力Tmax=H/COSα=H*SECα
2、活载内力:
在集中荷载作用时,悬索的变形很大,为满足行车需要,需要通过桥面加劲梁来分布荷载,弯矩由桥面加劲梁来承担,悬索的变形与桥面加劲梁相同。桥面加劲梁为弹性支承连续梁,它不便手工计算,采用有限单元法计算则方便。
(1)弹性理论:
不考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加。加劲梁的弯矩:弹性理论M=M-h*y
五、结语
自锚式悬索桥的优点是明显的,复合钢管砼解决了自锚式悬索桥的施工问题,结构加以改进也是经久耐用的,其经济合理性具有较强的竞争力。采用有限单元法计算是方便的,进一步作仿真分析则更加全面。由于它是处于发展阶段中,许多方面都有待于进一步的改进和完善。目前还不为大家所熟悉和了解,有必要进行研讨和宣传。自锚式悬索桥外形美观,它函盖了大小不同的跨径,适应性很广,是很有发展前景的。超长跨径的悬索桥适合用于特殊的环境需要,它的造价很高,也是唯一的选择办法。有人说“与其追求大跨径,还不如化为较小的跨径”,采用自锚式悬索桥也较适合。这是解决长大桥梁的较好办法,可以方便施工,减少基础工程,降低工程造价。现在各种大跨径桥型都有一定的局限性,拱桥的施工架设麻烦,斜张桥的造价高,刚构的自重大,自锚式悬索桥则较好解决了施工困难、材料用量和经济性能之间的矛盾,是桥型选择的一条新思路。
自锚式悬索桥的内力计算复杂,应采用非线性有限单元法来计算。对于几何可变的缆索单元,需作加大弹性模量的应力刚化处理。悬索作为几何可变体系,活载作用的变形影响很大,是非线性变形影响的主要因素。本文采用线性有限单元法作简化计算的方法,是先按线性程序计算出活载撓度,修正活载撓度的座标以后,再用线性有限单元法作迭代计算。即采用拖动座标法计算,是非线性有限单元法计算的简化近似计算,方法较简便。
(6)加劲梁的活载内力:
加劲梁的轴向压力是不均匀的,在加劲梁端和跨中最小,而塔架处最大,差值随跨径的加大而增大。同斜张桥有相似之处,压力的大小变化也随跨径的加大而增大,不像斜张桥压力变化那样大,这也是自锚式悬索桥的主要特点之一。加劲梁在跨中的正弯矩最大,是随跨径的加大而增大。加劲梁在塔架处的负弯矩最大,刚度相近的加劲梁,也随跨径的加大而增大;并有较大的正弯矩。(图十三、十四)
3、加劲梁是主缆通过吊杆弹性的平衡稳定支承着,桥面的轴向压力对预拱度和挠度不产生附加偏心弯矩,因为附加偏心弯矩被加劲梁和桥面的巨大重量所平衡,这和一般无平衡稳定支承的自由状态情况不同。
4、自锚式悬索桥采用有限单元程序计算方便,当跨径小于150米左右时,按线性有限单元程序计算。当跨径大于150米左右时,则按非线性有限单元程序计算。也可采用座标修正的办法,用线性有限单元程序再进行计算,作为非线性有限单元程序的近似计算。这种非线性有限单元程序的活载计算内力,比线性有限单元程序的活载计算内力小,相差在20%以上,随跨径和结构特点不同而变化。采用近似非线性有限单元程序计算的挠度较小,为按线性有限单元程序计算挠度的60%左右,也就是说近似非线性有限单元程序计算中,已经扣除了按线性有限单元程序计算挠度的40%左右。对于恒载施工的加载阶段或方案设计的预估计算,可以采用弹性阶段主缆拉力的公式计算,比较方便。
(7)挠度:
加劲梁的挠度值比悬索桥小很多,是随跨径的加大而增大。主要为向下的正挠度,向上的负挠度值很小,这是自锚式悬索桥的主要特点之一。自锚式悬索桥的相对挠度值小,是随跨径的加大而减小,比悬索桥的相对挠度值小得多。钢筋砼桥面的自重大,平衡变形的重力刚度大,加劲梁的挠度值小。正交异性板钢桥面的重量轻,活载所佔的比例大,加劲梁的挠度值大。加劲梁的刚度大,其变形小。加劲钢管桁架梁的刚度小,钢自身平衡体系,结构工作效率高,像连续梁一样工作,跨中和塔架支承处的正、负弯矩最大,与斜张桥有异曲同工之理。管砼加劲桁架梁的刚度较大,复合钢管砼加劲桁架梁的刚度很大。钢
(2)主缆最大拉力:
主缆最大拉力亦随跨径的加大而增大,它不能采用悬索桥的计算公式来简单计算,需要采用非线性有限单元程序来计算。因为加劲梁的轴向压力与吊杆拉力之斜向合力,起到了斜张桥斜拉索的作用。所以它的数值比采用悬索桥公式计算的值大,这是自锚式悬索桥的主要特点之一。(图九)
(3)钢管轴向压力:
钢管加劲梁的轴向压力随跨径的加大而增大,它可以采用悬索桥的水平拉力计算公式来作简单近似计算。钢管加劲梁能够承受和平衡主缆的水平拉力,实现主缆自锚的目的。钢管的承压能力,可以灵活的进行加劲调整。(图十)
八、自锚式悬索桥的特点与计算
吴清明伍佳玉
一、悬索桥计算原理
1、恒载内力:
柔性的悬索在均布荷载作用下,为抛物线形。悬索的承载原理,功能等价于同等跨径的简支梁。简支梁的跨中弯矩M=QL²/8
悬索拉力作功M=H*F
悬索水平拉力H=QL²/(8*F)
悬索座标Y=4*(F/L²)*X*(L-X)
悬索垂度F悬索斜率tgα=4*(F/L)*(L-X)
8、悬索桥的架设是靠桥面重量加载,对主缆进行张拉成型的,桥面和加劲梁后完成。而自锚式悬索桥的架设是用桥面重量,靠吊杆的调整张拉对主缆进行加载张拉,加劲梁和桥面先完成。吊杆的调节长度较大,需要作多次调整。吊杠杆采用8 m、10 m的间距合理,内力基本均匀,便于钢筋砼和正交异性板桥面的设计,桁架结构也较合理。
3、计算程序:
线性平面杆系程序。
计算材料弹性模量:复合钢管砼Ec=43000Mpa
碳素钢丝Ey=200000 Mpa
温度:升温T=30°C
4、计算成果:
为了摸索自锚式悬索桥的内力变化规律和特点,作了较多跨径指标的计算。为了简化计算工作,便于对内力变化规律的认识,加劲梁的刚度未作变化,故对少数跨径指标并不适合。计算的成果也反映出了自锚式悬索桥的内力变化规律,证明了它独具的特点。对不同桥宽的计算结果,都折算成相同荷载的单主缆和加劲梁内力,以便相互对比。
加劲桁架梁并不适合于中、小跨径,只适合用于大跨径,桁架高度大,造价较高。(图十五、十六)
(8)温度:
温度对自锚式悬索桥内力的影响不大,对变形的影响较大,是随跨径的加大而增大。
四、自锚式悬索桥的特点
1、自锚式悬索桥省去了锚碇,主缆锚固于加劲梁两端,悬索受拉,加劲梁受压,形成内部自身平衡体系,结构工作效率高,像连续梁一样工作,跨中和塔架支承处的正、负弯矩最大,与斜张桥有异曲同工之理。
5、自锚式悬索桥的挠度要求是控制因素,它的垂跨比值较大,塔架也较高。不同于悬索桥的1/8--1/12垂跨比值,垂跨比值为1/6较适合,能满足正交异性板钢桥面挠度的规范要求。原因是加劲梁的刚度大,加劲梁的巨大压力与吊杆拉力之斜向合力,起了一定斜张桥斜拉索的作用,使得活载挠度减小。
6、自锚式悬索桥具有斜张桥功用,加劲梁的轴向压力是不钧匀的,在塔架处最大,在跨中较小,为主缆的水平拉力,与斜张桥有明显的区别。
4、3.5m空腹板桁梁(正交异性板钢桥面):L=180、200、250、300M
5、5.5m板桁梁(正交异性板钢桥面):L=300、350、400、450、480M
2、吊杆距离:
1、ΔL=8M:L=80、100、120、150、180、200、250、300M
ΔL=10M:L=300、350、400、450、480M
9、为了增加桥面的抗风稳定性,可在1/4左右跨径处加设斜缆,拉直的斜缆变形小,有助于消除主缆的反对称变形,斜缆的向上分力能减小1/4跨径点的挠度。对斜缆的内力计算,采用有限元程序计算简单。
相关文档
最新文档