高考数学第一轮复习知识点分类指导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考数学第一轮复习知识点分类指导
一、集合与简易逻辑
1.集合元素具有确定性、无序性和互异性.
(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,
}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8) (2)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____
个(答:7)
2. “极端”情况否忘记∅=A :集合{|10}A x ax =-=,{}
2|320B x x x =-+=,且A
B B =,则实数a =______.(答:10,1,
2
a =) 3.满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。 (答:7)
4.运算性质:设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,
}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =)
5.集合的代表元素:(1)设集合{|M x y ==
,集合N ={}
2|,y y x x M =∈,则
M N =___(答:[4,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,
{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--)
6.补集思想:已知函数12)2(24)(2
2
+----=p p x p x x f 在区间]1,1[-上至少存在一
个实数c ,使0)(>c f ,求实数p 的取值范围。 (答:3(3,)2
-)
7.复合命题真假的判断:在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或q ”为真的充分不必要条件;⑶“p 或q ”为真是“非p ”为假的必要不充分条件;⑷“非p ”为真是“p 且q ”为假的必要不充分条件。其中正确的是____答:⑴⑶)
8.充要条件:(1)给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”
;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 。其中正确命题的序号是_______(答:①④);
(2)设命题p :|43|1x -≤;命题q:0)1()12(2
≤+++-a a x a x 。若┐p 是┐q 的必要
而不充分的条件,则实数a 的取值范围是 (答:1
[0,]2
)
9. 一元一次不等式的解法:已知关于x 的不等式0)32()(<-++b a x b a 的解集为)3
1
,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)
10. 一元二次不等式的解集:解关于x 的不等式:01)1(2
<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a <;当01a <<时,1
1x a
<<;当1
a =时,x ∈∅;当1a >时,1
1x a
<<)
11. 对于方程02
=++c bx ax 有实数解的问题。(1)()()222210a x a x -+--<对一切
R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)若在[0,]2
π
内有两个不等的实
根满足等式cos 221x x k =+,则实数k 的范围是_______.(答:[0,1))
12.一元二次方程根的分布理论。
(1)实系数方程2
20x ax b ++=的一根大于0且小于1,另一根大于1且小于2,则1
2
--a b 的取值范围是_________(答:(
4
1
,1)) (2)不等式2
3210x bx -+≤对[1,2]x ∈-恒成立,则实数b 的取值范围是____(答:∅)。
二、函 数
1.映射f : A →B 的概念。
(1)设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在
N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A );(2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,
A 到
B 的函数有 个(答:81,64,81)
;(4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”
,这样的映射f 有____个(答:12)
2.函数f : A →B 是特殊的映射。若函数422
12
+-=
x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)
3.若解析式相同,值域相同,但其定义域不同的函数,则称这些函数为“天一函数”,那么解析式为2
y x =,值域为{4,1}的“天一函数”共有__个(答:9)
4.研究函数问题时要树立定义域优先的原则): (1)函数
lg 3y x =
-的定义域是____(答:(0,2)(2,3)(3,4));
(2)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤)
(2)复合函数的定义域:(1)若函数)(x f y =的定义域为⎥⎦
⎤⎢⎣⎡2,21,则)(log 2x f 的定义
域为__________(答:{}
42|≤≤x x );(2)若函数2
(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]).
5.求函数值域(最值)的方法:
(1)配方法―(1)当]2,0(∈x 时,函数3)1(4)(2
-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:2
1
-
≥a );