杨可桢《机械设计基础》修订版考研笔记和考研真题
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(齿轮传动)
圣才电子书
(2)齿面点蚀
十万种考研考证电子书、题库视频学习平台
①产生原因
a.疲劳点蚀首先出现在齿根表面靠近节线处;
b.在该处同时啮合的齿数较少,接触应力较大;
c.在该区域齿面相对运动速度低,难于形成油膜润滑,故所受的摩擦力较大;
d.在摩擦力和接触应力作用下,容易产生点蚀现象。
6 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
④传递动力的齿轮,其模数不宜小于 1.5mm。 ⑤对于开式传动,考虑到齿面磨损,可将算得的 m 值加大 10%~15%。
2.计算载荷
计算齿轮强度时,通常用计算载荷 KFn 代替名义载荷 Fn ,其中 K 为载荷系数。
五、直齿圆柱齿轮传动的齿面接触强度计算 齿面接触疲劳强度校核公式为
设计公式为
式中,“+”用于外啮合,“-”用于内啮合; ZE ——弹性系数; ZH ——区域系数,对于标准齿轮, ZH 2.5 。
H 应取配对齿轮中的较小的接触应力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 11 章 齿轮传动
11.1 复习笔记
一、轮齿的失效形式和设计计算准则 1.轮齿的失效形式 轮齿的主要失效形式有 5 种:轮齿折断、齿面点蚀、齿面胶合、齿面磨损和齿面塑性 变形。 (1)轮齿折断 ①产生原因 轮齿折断一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中。 ②主要类型 a.过载折断 轮齿因短时意外的严重过载而引起的突然折断,称为过载折断。 b.疲劳折断 在载荷的多次重复作用下,弯曲应力超过弯曲疲劳极限时,齿根部分将产生疲劳裂纹, 裂纹的逐渐扩展最终将引起轮齿折断,这种折断称为疲劳折断。 ③单(双)侧工作 a.若轮齿单侧工作,就任一侧而言,其应力都是按脉动循环变化。 b.若轮齿双侧工作,则弯曲应力可按对称循环变化作近似计算。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-平面连杆机构【圣才出品】
第2章平面连杆机构2.1复习笔记【通关提要】本章主要介绍了平面四杆机构的基本类型、基本特性和设计方法。
学习时需要掌握铰链四杆机构有整转副的条件、急回特性的应用和计算、压力角与传动角以及死点位置的分析等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、平面四杆机构的基本类型及其应用(见表2-1-1)表2-1-1平面四杆机构的基本类型及其应用二、平面四杆机构的基本特性(见表2-1-2)表2-1-2平面四杆机构的基本特性图2-1-1图2-1-2连杆机构的压力角和传动角2.2课后习题详解2-1试根据图2-2-1所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。
图2-2-1答:(a)40+110=150<70+90=160满足杆长条件,且最短杆为机架,因此是双曲柄机构。
(b)45+120=165<100+70=170满足杆长条件,且最短杆的邻边为机架,因此是曲柄摇杆机构。
(c)60+100=160>70+62=132不满足杆长条件,因此是双摇杆机构。
(d)50+100=150<100+90=190满足杆长条件,且最短杆的对边为机架,因此是双摇杆机构。
2-2试运用铰链四杆机构有整转副的结论,推导图2-2-2所示偏置导杆机构成为转动导杆机构的条件(提示:转动导杆机构可视为双曲柄机构)。
图2-2-2答:根据铰链四杆机构有整转副的结论,则A、B均为整转副。
(1)当A为整转副时,要求AF能通过两次与机架共线的位置。
如图2-2-3中位置ABC′F′和ABC′′F′′。
在Rt△BF′C′中,因为直角边小于斜边,所以l AB +e<l BC。
同理,在Rt△BF′′C′′中,有l AB-e<l BC(极限情况取等号)。
综上,得l AB+e<l BC。
(2)当B为整转副时,要求BC能通过两次与机架共线的位置。
如图2-2-3中位置ABC1F1和ABC2F2。
(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)
【解析】①两构件组成转动副时,在转动副的中心位置的相对速度为 0,即转动副的中心是其瞬心;
②当两构件组成移动副时,所有重合点的相对速度方向都平行于移动方 向,其瞬心位于导路垂线的无穷远处;
③当两构件组成滑动兼滚动的高副时,接触点的速度沿切线方向,其瞬 心应位于过接触点的公法线上。Leabharlann 1-2-25由图中可测量出
,
,
滑块的速度:
由
得,连杆的角速度:
1-18.图1-2-26所示平底摆动从动件凸轮机构,已知凸轮l为半径 r=20mm的圆盘,圆盘中心C与凸轮回转中心的距离lAC=15mm,
lAB=90mm, =10rad/s,求θ=0°和θ=180°时,从动件角速度 的数值 和方向。
10.3 名校考研真题详解 第11章 齿轮传动
11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解 第12章 蜗杆传动 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解 第13章 带传动和链传动
13.1 复习笔记 13.2 课后习题详解 13.3 名校考研真题详解 第14章 轴 14.1 复习笔记 14.2 课后习题详解 14.3 名校考研真题详解 第15章 滑动轴承 15.1 复习笔记 15.2 课后习题详解
目 录
第1章 平面机构的自由度和速度分析 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第2章 平面连杆机构 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第3章 凸轮机构
3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 齿轮机构 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 轮 系 5.1 复习笔记 5.2 课后习题详解
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-滚动轴承【圣才出品】
第16章滚动轴承16.1复习笔记【通关提要】本章主要介绍了滚动轴承的类型及其代号、失效形式、寿命计算、当量动载荷的计算以及派生轴向力。
学习时需要重点掌握以上内容。
其中,滚动轴承的类型及其代号、失效形式,多以选择题、填空题和简答题的形式出现,其余内容以计算题为主,尤其派生轴向力,几乎每年都考一道计算题。
复习本章时,考生需以计算为主,理解记忆细节内容。
【重点难点归纳】一、滚动轴承的基本类型和特点1.滚动轴承的分类(见表16-1-1)表16-1-1滚动轴承的分类2.使用性能(见表16-1-2)表16-1-2滚动轴承的使用性能3.机械中常用滚动轴承的类型和性能特点机械中常用滚动轴承的类型和性能特点查看教材表16-2。
二、滚动轴承的代号(见表16-1-3)表16-1-3滚动轴承的代号三、滚动轴承的选择计算1.失效形式(1)疲劳破坏;(2)永久变形;(3)磨损、胶合、内外圈和保持架破损。
2.轴承寿命(1)轴承的寿命轴承的滚动体或套圈首次出现疲劳点蚀之前,轴承的转数或相应的运转小时数。
(2)轴承寿命的可靠度R一组相同的轴承能达到或超过规定寿命的百分率。
(3)基本额定寿命具有90%可靠度时轴承的寿命,以L 10表示。
(4)基本额定动载荷当一套轴承进入运转并且基本额定寿命为106r 时,轴承所能承受的载荷。
(5)寿命计算公式L=(C/P)ɛ或L h =(C/P)ɛ·106/(60n)式中,ɛ为寿命指数,对于球轴承ɛ=3,对于滚子轴承ɛ=10/3;C 为基本额定动载荷,对向心轴承为C r ,对推力轴承为C a ;n 为轴的转速;P 为当量动载荷。
修正后的寿命计算公式为610(60t h p f C L n f Pε=或1660()10p h t f P n C L f ε=⋅式中,f t 为温度系数,f t ≤1;f P 为载荷系数。
3.当量动载荷的计算对于既承受径向载荷F r 又承受轴向载荷F a 的轴承,其当量动载荷的计算公式为P=XF r +YF a式中,X、Y 分别为径向动载荷系数及轴向动载荷系数。
杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(第1~4章)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
从动件是指机构中随原动件运动而运动的其余活动构件。其中输出预期运动的从动件称 为输出构件,其他从动件则起传递运动的作用。
三、平面机构的自由度 活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以 F 表示。 1.平面机构自由度计算公式
四、速度瞬心及其在机构速度分析上的应用
3 / 103
圣才电子书
1.速度瞬心及其求法
十万种考研考证电子书、题库视频学习平台
(1)速度瞬心
①定义
两刚体上绝对速度相同的重合点称为瞬心。
a.若两构件都是运动的,其瞬心称为相对瞬心;
b.若两构件中有一个是静止的,其瞬心称为绝对瞬心。
图 1-1-1 平面运动副的表示方法 2.构件的表示方法 构件的表示方法如图 1-1-2 所示。
图 1-1-2 构件的表示方法 3.机构中构件的分类 (1)机架(固定构件) 机架是用来支承活动构件的构件。 (2)主动件(原动件) 主动件是运动规律已知的活动构件,其运动是由外界输入的,又称输入构件。 (3)从动件
F 3n 2PL PH 3 8 2 11 0 2
(5)图 1-2-13 所示机构的自由度为
8 / 103
圣才电子书 十万种考研考证电子书、题库视频学习平台
F 3n 2PL PH 3 6 2 8 1 1
(6)图 1-2-14 中,滚子 1 处有一个局部自由度,则该机构的自由度为
d.当两构件组成滑动兼滚动的高副时,接触点的速度沿切线方向,其瞬心应位于过接
触点的公法线上。
②根据三心定理确定
三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(轴)
第14章轴14.1 复习笔记一、轴的功用和类型轴是机器中的重要零件之一,用来支持旋转的机械零件和传递转矩。
1.按承受载荷的不同分类(1)转轴既传递转矩又承受弯矩的轴。
(2)传动轴只传递转矩而不承受弯矩或弯矩很小的轴。
(3)心轴只承受弯矩而不传递转矩的轴。
2.按轴线的形状不同分类按轴线的形状可分为直轴、曲轴、挠性钢丝轴。
二、轴的材料轴的材料常采用碳钢和合金钢。
1.碳钢45号钢应用最为广泛,为了改善其力学性能,应进行正火或调制处理。
不重要或受力较小的轴,则可采用Q235、Q275等碳素结构钢。
2.合金钢合金钢具有较高的力学性能与较好的热处理性能,但价格高。
三、轴的结构设计1.制造安装要求(1)为便于轴上零件的装拆,常将轴做成阶梯形;(2)对于一般剖分式箱体中的轴,其直径从轴端逐渐向中间增大;(3)为使轴上零件易于安装,轴端及各轴段的端部应有倒角;(4)轴上磨削的轴端,应有砂轮越程槽;(5)车制螺纹的轴端,应有螺纹退刀槽;(6)在满足使用要求的情况下,轴的形状和尺寸应力求简单,以便于加工。
2.轴上零件的定位安装在轴上的零件,必须有确定的轴向定位。
阶梯轴上的截面尺寸变化处称为轴肩,可起到轴向定位的作用。
3.轴上零件的固定(1)轴上零件的轴向固定零件轴向固定的方法主要有轴肩、套筒、螺母或轴端挡圈等。
①当无法采用套筒或套筒太长时,可采用圆螺母加以固定。
②为保证轴上零件紧靠轴肩,轴肩的圆角半径r必须小于相配零件的倒角C1或圆角半径R,轴肩高h必须大于C1或R。
③轴向力较小时,零件在轴上的固定可采用弹性挡圈或紧定螺钉。
(2)轴上零件的周向固定轴上零件的周向固定,大多采用键、花键或过盈配合等连接形式。
采用键连接时,为加工方便,各轴段的键槽宜设计在同一加工直线上,并应尽可能采用同一规格的键槽截面尺寸。
4.轴的各段直径和长度的确定(1)轴径的确定①有配合要求的轴段应尽量采用标准直径;②安装有标准件的轴径,应符合各标准件内径系列的规定;③套筒内径应与相配的轴径相同,并采用过渡配合。
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(弹 簧)
(3)Ⅲ类
受变载荷的作用次数在 103 以下的,即基本上受静载荷的弹簧。
四、圆柱螺旋拉伸、压缩弹簧的设计 1.结构尺寸和特性曲线
4 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)压缩弹簧的结构尺寸
图 18-1-1 弹簧的几何参数
如图 18-1-1 所示为圆柱螺旋压缩弹簧的结构,其主要尺寸及其计算公式如下:
①总圈数: n1 n (1.5 ~ 2.5) ;
②节距:t d ;
③间距: 2 ; 0.8n
④螺旋升角:
arctan
t D
;
⑤弹簧丝展开长度: L
D n1 cos
;
⑥自由高度:
a.对于两端并紧不磨平的结构,其自由高度: H0 n (n1 1)d ;
b.对于两端并紧磨平的结构,其自由高度: H0 n (n1 0.5)d 。 (2)压缩弹簧的特性曲线
弹簧特性曲线是指用来描述圆柱螺旋压缩弹簧的载荷与变形关系的曲线。
对于等节距的圆柱螺旋弹簧,变形l 和载荷成正比,有
5 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
式中, i 为在工作载荷 Fi 作用时弹簧的变形量。
(3)拉伸弹簧的结构特点 ①为增加弹簧的刚性,多数拉伸弹簧在制成后具有一定的初应力,并且其端部做有挂钩, 以便安装和加载。常用的挂钩形式有半圆钩环型和圆钩环型; ②在计算时应注意拉伸弹簧的间距 0 ,计算弹簧丝展开长度 L 和自由高度 H0 时应把 挂钩部分的尺寸计入。 2.设计计算步骤 (1)设计弹簧应满足的要求 ①有足够的强度; ②符合载荷-变形特性曲线的要求(即刚度条件); ③不侧弯。 (2)设计计算步骤 ①首先根据工作条件选择合宜的弹簧材料及结构形式; ②运用求应力、变形的公式确定弹簧的主要参数 d、D、n; ③最后求出弹簧的其他结构尺寸 t、α、H0 及弹簧丝展开长度等。
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(齿轮机构)
一对外啮合齿轮的中心距恒等于两节圆半径之和,角速比恒等于两节圆半径的反比。
三、渐开线齿廓 1.渐开线的形成和特性 (1)渐开线的形成
3 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台
当一条动直线沿半径为 rb 的圆周作纯滚动时(如图 4-1-3 所示),此直线上的任意一 点轨迹称为该圆的渐开线,这个圆称为渐开线的基圆,该直线称为发生线。
角也为标准值。这个圆称为分度圆,其直径以 d 表示。 (2)模数 ①定义
分度圆上的齿距 p 对 的比值称为模数,用 m 表示,单位 mm, 即 m p 。
②特点 齿轮的主要几何尺寸都与模数成正比,m 越大,p 越大,轮齿也越大,轮齿抗弯能力 也越强,所以模数 m 又是轮齿抗弯能力的重要标志。 (3)尺寸计算公式 渐开线标准齿轮的各部分几何尺寸计算公式如表 4-1-1 所示。
6 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平台
da2 d2 2ha m z2 2ha*
齿根圆直径 d f
d f 1 d1 2hf m z1 2ha* 2c* d f 2 d2 2hf m z2 2ha* 2c*
分度圆齿距 p
相等、方向相反,即一个为左旋,另一个为右旋。即
mn1 mn2 m ,n1 n2 1 2 (外啮合取负,内啮合取正) (3)一对直齿锥齿轮正确啮合条件
两轮大端模数必须相等,压力角必须相等。除此以外,两轮的外锥距还必须相等。
m1 m2 m ,1 2
一对齿轮的传动比可表示为
7 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平台
i12
1 2
d2 d1
db2 db1
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-第10~13章【圣才出品】
第10章连接10.1复习笔记【通关提要】本章介绍了零件连接形式:螺纹连接、键连接和销连接,主要阐述了螺纹的类型和几何参数、螺纹连接的基本类型、螺栓连接的受力分析和强度计算、螺旋传动、键连接的类型和强度计算以及销连接。
学习时需要重点掌握螺栓连接的受力分析和强度计算、键连接的强度计算,此处多以计算题的形式出现;熟练掌握螺纹和螺纹连接的类型和应用、提高螺纹连接强度的措施、键连接的类型、应用及布置等内容,多以选择题、填空题、判断题和简答题的形式出现。
复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、螺纹参数(见表10-1-1)表10-1-1螺纹的分类和几何参数二、螺旋副的受力分析、效率和自锁(见表10-1-2)表10-1-2螺旋副的受力分析、效率和自锁三、机械制造常用螺纹(见表10-1-3)表10-1-3机械制造常用螺纹四、螺纹连接的基本类型及螺纹紧固件(见表10-1-4)表10-1-4螺纹连接的基本类型及螺纹紧固件五、螺纹连接的预紧和防松1.拧紧力矩(见表10-1-5)表10-1-5拧紧力矩2.螺纹连接的防松(见表10-1-6)表10-1-6螺纹连接的防松六、螺栓连接的强度计算(见表10-1-7)表10-1-7螺栓连接的强度计算七、螺栓的材料和许用应力1.材料螺栓的常用材料为低碳钢和中碳钢,重要和特殊用途的螺纹连接件可采用力学性能较高的合金钢。
2.许用应力及安全系数许用应力及安全系数可见教材表10-7和表10-8。
八、提高螺栓连接强度的措施(见表10-1-8)表10-1-8提高螺栓连接强度的措施九、螺旋传动螺旋传动主要用来把回转运动变为直线运动,其主要失效是螺纹磨损。
按使用要求的不同可分为传力螺旋、传导螺旋和调整螺旋。
1.耐磨性计算(1)通常是限制螺纹接触处的压强p,其校核公式为p=F a/(πd2hz)≤[p]式中,F a为轴向力;z为参加接触的螺纹圈数;h为螺纹工作高度;[p]为许用压强。
(2)确定螺纹中径d2的设计公式①梯形螺纹d≥2②锯齿形螺纹2d≥其中,φ=H/d2,z=H/P,H为螺母高度;梯形螺纹的工作高度h=0.5P;锯齿形螺纹的工作高度h=0.75P。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-带传动和链传动【圣才出品】
第13章带传动和链传动13.1复习笔记【通关提要】本章详细介绍了带传动的受力分析和应力分析、带的弹性滑动和打滑、V带传动的设计计算、张紧轮的布置、滚子链传动的受力分析和设计计算以及链传动的布置等。
学习时需要重点掌握以上内容。
关于带传动和链传动的受力分析及计算,多以选择题和计算题的形式出现;关于带的弹性滑动和打滑,多以选择题和简答题的形式出现;关于V带传动的设计计算及张紧轮的布置,多以选择题和填空题的形式出现;关于链传动的多边形效应,多以选择题、填空题和简答题的形式出现。
复习时需重点理解记忆。
【重点难点归纳】一、带传动的类型和应用1.带传动的类型(见图13-1-1)图13-1-1带传动的分类结构图2.带传动的参数和特点(见表13-1-1)表13-1-1带传动的参数和特点二、带传动的受力分析(见表13-1-2)表13-1-2带传动的受力分析三、带的应力分析(见表13-1-3)表13-1-3带的应力分析四、带传动的弹性滑动、传动比和打滑现象(见表13-1-4)表13-1-4带传动的弹性滑动、传动比和打滑现象五、V带传动的计算1.V带的规格和单根普通V带的许用功率(见表13-1-5)表13-1-5V带的规格和单根普通V带的许用功率2.带的型号和根数的确定(见表13-1-6)表13-1-6带的型号和根数的确定3.主要参数的选择(1)带轮直径和带速①小轮的基准直径应等于或大于d min;②大带轮的基准直径为i=d2=n1d1(1-ε)/n2;③带速为ν=πd1n1/(60×1000)。
对于普通V带,一般应使ν在5~30m/s的范围内。
(2)中心距、带长和包角①初步确定中心距,即0.7(d1+d2)<a0<2(d1+d2);②计算初定的V带基准长度L0=2a0+π(d1+d2)/2+(d2-d1)2/(4a0);③根据以上计算结果以及带型选取最相近的带的基准长度L d;④确定中心距a=a0+(L d-L0)/2;⑤中心距变动范围(a-0.015L d)~(a+0.03L d)。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-回转件的平衡【圣才出品】
第8章回转件的平衡8.1复习笔记【通关提要】本章主要介绍回转件的静平衡和动平衡特点和要求。
简单介绍了回转件的平衡试验。
学习时需要重点掌握静平衡和动平衡的不同点和相关性以及两者的平衡质量计算方法等内容。
本章主要以选择题、判断题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、回转件平衡的目的(见表8-1-1)表8-1-1回转件平衡的目的二、回转件的平衡计算(见表8-1-2)表8-1-2回转件的平衡计算三、回转件的平衡实验(见表8-1-3)表8-1-3回转件的平衡实验8.2课后习题详解8-1某汽轮机转子质量为1t,由于材质不匀及叶片安装误差致使质心偏离回转轴线0.5mm,当该转子以5000r/min的转速转动时,其离心力有多大?离心力是它本身重力的几倍?解:由F=mω2r,其中角速度ω=2πn/60=500π/3rad/s,可得离心力为F=1000×(500π/3)2×0.5×10-3N=136939N自身重力:W=mg=1000×9.8N=9.8×103N。
则F/W=136939/9.8×103=14,即离心力大约是其自身重量的14倍。
8-2待平衡转子在静平衡架上滚动至停止时,其质心理论上应处于最低位置。
但实际上由于存在滚动摩擦阻力,质心不会到达最低位置,因而导致试验误差。
试问用什么方法进行静平衡试验可以消除该项误差?答:为了消除该项误差,可采用以下方法:(1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方。
(2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。
静止后,在转子上画过轴心的铅垂线1。
(3)将转子逆时针转过一个小角度,然后放开,转子缓慢回摆。
静止后画过轴心的铅垂线2。
(4)作线1和线2所夹角的角平分线,重心就在这条直线上。
8-3如前章所述,主轴作周期性速度波动时会使机座产生振动,而本章说明回转体不平衡时也会使机座产生振动。
杨可桢《机械设计基础》(第6版)复习笔记和课后习题(含考研真题)详解(7-9章)【圣才出品】
二、飞轮设计的近似方法
1.机械运转的平均速度和不均匀系数
(1)平均速度 m
一个运动周期内角速度的实际平均值,即
m
=
1 T
T
dt
0
工程计算中常采用算术平均值代替实际平均值,即
m
=
max
+ min 2
式中,max 为最大角速度;min 为最小角速度。
(2)速度不均匀系数 δ
机械运转速度波动的相对值用机械运转速度不均匀系数 δ 表示,即
图 7-2-3
影响零件的强度和寿命,降低机械的精度和工艺性能,使产品质定义
当机械动能做周期性变化时,机械主轴的角速度也作周期性变化,机械的这种有规律的、
周期性的速度变化称为周期性速度波动。
(2)特征
在一个整周期中,驱动力所作的输入功与阻力所作的输出功是相等的;但在周期中的某
段时间内,输入功与输出功不相等,因而出现速度的波动。
Woa =
a (M − M)d =
0
a 0
M
(y −
y)dx
=
M [A1]
②参数表示
a.[A1]为 oa 区间 M '− 与 M ''− 曲线之间的面积,mm2; b.Woa 为 oa 区间的盈亏功,以绝对值表示。
③正负号
a.oa 区间阻力矩大于驱动力矩,出现亏功,机器动能减小,故标注负号;
b.ab 区间驱动力矩大于阻力矩,出现盈功,机器动能增加,故标注正号。
先根据图 7-2-1 作出能量指示图,如图 7-2-2 所示,知在 cf 区间出现最大盈亏功,其
绝对值为
Wmax = A Acf = A (−Acd + Ade − Aef ) = 1(−520 +190 − 390) = 720N m
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-凸轮机构【圣才出品】
第3章凸轮机构3.1复习笔记【通关提要】本章主要介绍了凸轮机构的常用运动规律、凸轮压力角以及图解法设计凸轮轮廓。
学习时需要掌握不同运动规律的特点、凸轮压力角与凸轮作用力和凸轮尺寸的关系以及图解法设计凸轮轮廓等内容。
本章主要以选择题、填空题、简答题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、凸轮机构的应用和类型(见表3-1-1)表3-1-1凸轮机构的应用和类型二、从动件的运动规律1.基本概念(见表3-1-2)表3-1-2从动件运动规律的基本概念图3-1-1凸轮轮廓与从动件位移线图2.推杆的运动规律(见表3-1-3)表3-1-3推杆的运动规律三、凸轮机构的压力角压力角指作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角。
对于高副机构,压力角即接触轮廓法线与从动件速度方向所夹的锐角,如图3-1-2所示。
1.压力角与作用力的关系F′′=F′tanα式中,F′′为有害分力;F′为有用分力。
图3-1-2凸轮机构的压力角对于直动从动件凸轮机构,建议取许用压力角[α]=30°;对于摆动从动件凸轮机构,建议取许用压力角[α]=45°。
2.压力角与凸轮机构尺寸的关系如图3-1-2所示,直动从动件盘形凸轮机构的压力角计算公式为tan α=式中,s 为对应凸轮转角φ的从动件的位移;r 0为基圆半径;e 为从动件导路偏离凸轮回转中心的距离,称为偏距。
注:①导路与瞬心P 在凸轮轴心O 点同侧,取“-”号,此时可使推程压力角α减小;②导路与瞬心P 在凸轮轴心O 点异侧,取“+”号,此时可使推程压力角α增大。
四、图解法和解析法设计凸轮轮廓(见表3-1-4)表3-1-4图解法和解析法设计凸轮轮廓图3-1-3滚子直动从动件盘形凸轮轮廓图3-1-4平底直动从动件盘形凸轮——极坐标3.2课后习题详解3-1图3-2-1所示为一偏置直动从动件盘形凸轮机构。
已知AB段为凸轮的推程轮廓线,试在图上标注推程运动角Φ。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-第5~9章【圣才出品】
11 / 93
图 5-2-8
解:取其中一组作分析,齿轮 3、4 为中心轮,齿轮 2 为行星轮,构件 1 为行星架。这
里行星轮 2 是惰轮,因此它的齿数 z2 与传动比大小无关,可自由选取。可得
i3H4
n3 n4
nH nH
z4 z3
由图 5-2-8 可知 n4=0。又十字架 1 回转时挖叉却始终保持一定的方向,有 n3=0,则
二、定轴轮系及其传动比(见表 5-1-2) 表 5-1-2 定轴轮系及其传动比
1 / 93
三、周转轮系及其传动比(见表 5-1-3)
表 5-1-3 周转轮系及其传动比
2 / 93
四、复合轮系及其传动比 1.传动比求解思路 (1)区分基本周转轮系和定轴轮系; (2)根据各基本轮系之间的关系,联立方程式求解。
8 / 93
图 5-2-5
解:由题意可得
i1H3
n1H n3H
n1 nH n3 nH
z3 z1
又因为 n3=0,故
i1H
n1 nH
1 i1H3
1
z3 z1
4
当手柄转过 90°时,转盘 H 转过的角度为 90°/4=22.5°,方向与手柄方向相同。
5-5 在图 5-2-6 所示手动葫芦中,S 为手动链轮,H 为起重链轮。已知 z1=12,z2 =28,z2′=14,z3=54,求传动比 iSH。
齿数应满足条件 z4=z3,且与 z2 无关。
2.找基本周转轮系的一般方法 (1)先找出行星轮,即找出那些几何轴线绕另一个齿轮的几何轴线转动的齿轮; (2)再找行星架,支持行星轮运动的构件就是行星架; (3)最后找中心轮,几何轴线与行星架的回转轴线相重合,且直接与行星轮相啮合的 定轴齿轮就是中心轮。 (4)区分出各个基本周转轮系以后,剩下的就是定轴轮系。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-第六章至第七章【圣才出品】
第6章间歇运动机构6.1复习笔记【通关提要】本章主要介绍了棘轮机构、槽轮机构、不完全齿轮机构和凸轮间歇运动机构这四种间歇运动机构的基本原理和特点。
学习时需要牢记特点和相关计算公式。
本章多以判断题和简答题的形式出现,但是在考研中本章出现的几率较小,复习时需酌情删减内容,重点记忆。
【重点难点归纳】一、棘轮机构、槽轮机构、不完全齿轮机构三种间歇运动机构原理比较(见表6-1-1)表6-1-1三种间歇运动机构原理比较二、棘轮机构(见表6-1-2)表6-1-2棘轮机构图6-1-1棘爪受力分析三、槽轮机构(见表6-1-3)表6-1-3槽轮机构四、不完全齿轮机构(见表6-1-4)表6-1-4不完全齿轮机构五、凸轮间歇运动机构1.形式凸轮间歇运动机构通常有两种形式:圆柱形凸轮间歇运动机构和蜗杆形凸轮间歇运动机构。
2.优点运转可靠、传动平稳、定位精度高,适用于高速传动,转盘可以实现任何运动规律,转盘转动与停歇时间的比值可以通过改变凸轮推程运动角来得到。
6.2课后习题详解6-1已知一棘轮机构,棘轮模数m=5mm,齿数z=12,试确定机构的几何尺寸并画出棘轮的齿形。
解:顶圆直径D=m z=5×12mm=60mm齿高h=0.75m=0.75×5mm=3.75mm齿顶厚a=m=5mm齿槽夹角θ=60°棘爪长度L=2πm=2π×5mm=31.4mm棘轮的齿形如图6-2-1所示。
图6-2-16-2已知槽轮的槽数z=6,拨盘的圆销数K=1,转速n1=60r/min,求槽轮的运动时间t m和静止时间t s。
解:槽轮机构的运动特性系数:τ=t m/t=2φ1/(2π)=(z-2)/(2z)=1/3。
拨盘转速n1=60r/min,故拨盘转1转所用的时间为1s。
槽轮的运动时间:t m=τt=1/3s。
槽轮的静止时间:t s=t-t m=2/3s。
6-3在转塔车床上六角刀架转位用的槽轮机构中,已知槽数z=6,槽轮静止时间t s =5/6s,运动时间t m=2ts,求槽轮机构的运动特性系数τ及所需的圆销数K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨可桢《机械设计基础》修订版考研笔记和考研真题第1章平面机构的自由度和速度分析
1.1 复习笔记
【通关提要】
本章是本书的基础章节之一,主要介绍了平面机构自由度的计算和平面机构的速度分析。
学习时需要掌握平面机构运动简图的绘制、自由度的计算和速度瞬心的应用等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】
一、运动副及其分类(见表1-1-1)
表1-1-1 运动副及其分类
二、平面机构运动简图
机构运动简图指用简单线条和符号来表示构件和运动副,并按比例定出各运动副的位置,来表明机构间相对运动关系的简化图形。
1机构中运动副表示方法
机构运动简图中的运动副的表示方法如图1-1-1所示。
图1-1-1 平面运动副的表示方法
2构件的表示方法
构件的表示方法如图1-1-2所示。
图1-1-2 构件的表示方法
3机构中构件的分类(见表1-1-2)
表1-1-2 机构中构件的分类
三、平面机构的自由度
活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以F表示。
1平面机构自由度计算公式
F=3n-2P L-P H
式中,n为机构中活动构件的数目;P L为低副的个数;P H为高副的个数。
机构具有确定运动的条件是:机构的自由度F>0且F等于原动件数目。
2计算平面机构自由度的注意事项(见表1-1-3)
表1-1-3 计算平面机构自由度的注意事项
四、速度瞬心及其在机构速度分析上的应用(见表1-1-4)
表1-1-4 速度瞬心及其应用
本书是杨可桢《机械设计基础》(第6版)教材的学习辅导书,主要包括以下内容:
1.整理名校笔记,浓缩内容精华。
在参考了国内外名校名师讲授该教材的课堂笔记基础上,复习笔记部分对该章的重难点进行了整理,因此,本书的内容几乎浓缩了该教材的知识精华。
2.解析课后习题,提供详尽答案。
本书参考了该教材的国内外配套资料和其他教材的相关知识对该教材的课(章)后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
3.挑选考研真题,总结出题思路。
本书挑选了部分名校的相关考研真题,总结出题思路,有利于强化对重要知识点的理解。
本书提供电子书及纸质书,方便对照复习。