九年级上册数学概率初步重点难点题型全覆盖附详细答案
九年级数学概率初步全单元教案及单元试题(附答案)人教版 教案
概率初步全单元教案及试题(附答案)第一课时概率的意义【教学目标】〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入. 提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作. 4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P 140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图. 表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律? 注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动. 想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141表25-3). 表25-3n图25.1-1通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率nm会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习0.000.50 1.001.50191725334149576573818997105113投掷次数1.书上P143.练习.1. 巩固用频率估计概率的方法. 2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题. 五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.第二课时 频率与概率教学目标:在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
九年级数学上册第二十五章概率初步全部重要知识点(带答案)
九年级数学上册第二十五章概率初步全部重要知识点单选题1、有4张分别印有实数0,-0.5,−√2,-2的纸牌,除数字外无其他差异。
从这4张纸牌中随机抽取2张,恰好抽到2张均印有负数的纸牌的概率为( ).A .12B .34C .35D .23答案:A分析:利用画树状图的方法计算即可.解:画树状图如下:一共有12种等可能性,其中同时负数的等可能性由6种,故恰好抽到2张均印有负数的纸牌的概率为612=12,故选:A .小提示:本题考查了概率的计算,熟练掌握画树状图法计算概率是解题的关键.2、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A .15B .14C .13D .12答案:C分析:用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率.解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是39=13,故选:C .小提示:本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键.3、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A .13B .16C .19D .127答案:B分析:根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,结合概率的计算公式可得答案.解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.小提示:本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.4、A 、B 、C 、D 四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档,若A 、B 两人各抽取了一张扑克牌,则两人恰好成为游戏搭档的概率为( )A .16B .13C .12D .34 答案:B分析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.解:根据题意画图如下:共有12种情况,从4张牌中任意摸出2张牌花色相同颜色有4种可能,所以两人恰好成为游戏搭档的概率=412=13. 故选:B小提示:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.6、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a+bB .b aC .a a+bD .ab答案:A分析:根据概率公式直接求解即可.∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是b a+b .故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.7、如图所示,甲乙两个转盘被等分成五个扇形区域,上面分别标有数字,同时自由转动两个转盘,转盘停止后,两个指针同时落在偶数上的概率是( ).A .425B .45C .35D .925 答案:A分析:根据题意列表,然后根据表格即可求得所有等可能的结果数与两个指针同时落在偶数上的情况数,再根据概率公式求解即可求得答案.解:列表得:∴一共有25种等可能的结果,两个指针同时落在偶数上的有4种情况,∴两个指针同时落在偶数上的概率是425. 故选:A .小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A .10B .15C .20D .都不对答案:B分析:由摸到红球的频率稳定在0.25附近,可以得出摸到红球的概率,即可求出白球个数.∵摸到红球的频率稳定在0.25附近,∴摸到红球的概率为0.25,∴总球数:5÷0.25=20(个)∴白球个数:20-5=15(个)所以答案是:B .小提示:本题考查了用频率估计概率、已知概率求数量,得出摸到红球的概率是本题的关键.9、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∵OA =OB =r ,∴△OAB 是等边三角形,∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2, ∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A . 小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.10、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19B .16C .13D .23 答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C ,列表如下:3种,所以两个组恰好抽到同一个小区的概率为39=13.故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.填空题11、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13 分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13. 所以答案是:13. 小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.12、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.答案:518 分析:根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率.设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:1036=518.故答案为5.18小提示:本题考查几何概率,解题的关键是熟练掌握几何概率的求法.13、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.答案:6分析:球的总数乘以红球所占球的总数的比例即为红球的个数.红球个数为:40×15%=6个,所以答案是:6.小提示:本题主要考查频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).答案:公平分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=24=12,P(小亮获胜)=24=12,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.15、为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.答案:2460分析:根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a,b,c的值代入计算即可;设上午黑、白、红摸到的次数分别是a,b,c,则下午摸到黑、白、红的次数是3a,2b,4c,晚上摸到黑、白、红的次数是a,4b,2c,晚上返现金额比上午多840,∴3b×60+c×20=840,∴180b+20c=840,总返现为:500a+420b+140c=5020,根据题意:a,b,c是大于零的正整数,当b=4时满足条件a,b,c为正整数,∴b=4,c=6,a=5,即下午返现的金额为15×100+8×60+24×20=2460元;故答案是2460.小提示:本题主要考查了三元一次方程的应用,理解题意,找准题目间数量关系,准确分析计算是解题的关键.解答题16、据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.答案:(1)200,7.2(2)3360(3)35分析:(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.(1)解:根据题意得:m=40÷20%=200人,∴“非常了解”的人数为200×28%=56人,∴“不太了解”的人数为200−56−100−40=4人,∴“不太了解”所对应扇形的圆心角4200×360°=7.2°,即n=7.2;(2)解:“非常了解”的人数有12000×28%=3360人;(3)解:根据题意,列出表格,如下:∴恰好抽到一男一女的概率为1220=35.小提示:本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.17、盒中装有红球、黄球共10个,每个球除颜色外其余都相同,每次从盒中摸到一个球,摸三次,不放回,请你按要求设计出摸球方案:(1)“摸到三个球都是红球”是不可能事件;(2)“摸到红球”是必然事件;(3)“摸到两个黄球”是随机事件;(4)“摸到两个黄球”是确定事件.答案:(1)盒中装有红球2个、黄球8个(答案不唯一);(2)盒中装有红球8个、黄球2个(答案不唯一);(3)盒中装有红球8个、黄球2个(答案不唯一);(4)盒中装有红球9个、黄球1个(答案不唯一).分析:(1)要使“摸出的3个球都是红球”是不可能事件,只要盒子中的红球数不足3个即可;(2)要使“摸出红球”是必然事件,只要盒子中的黄球数最多为2个,则摸三次,必然会摸到红球;(3)要使“摸出2个黄球”是随机事件,即可能摸出2个黄球,也可能摸不出2个黄球,则黄球最少有2个,才能保证摸出2个黄球,但是最多有8个,否则一定可以摸出2个黄球;(4)确定事件包含不可能事件和必然事件,要使“摸出2个黄球”是必然事件,即一定可以摸出2个黄球,要使“摸出2个黄球”是不可能事件,即一定摸不出2个黄球.(1)解:盒中装有红球2个、黄球8个,则“摸到三个球都是红球”是不可能事件;(2)解:盒中装有红球8个、黄球2个,则“摸到红球”是必然事件;(3)解:盒中装有红球8个、黄球2个,则“摸到两个黄球”是随机事件;(4)解:盒中装有红球9个、黄球1个,则“摸到两个黄球”是不可能事件,属于确定事件.小提示:本题主要考查了随机事件、必然事件以及不可能事件,解答此题要注意:不可能事件的概率为0,必然事件的概率为1,随机事件的概率在0和1之间.18、某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=________度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.答案:(1)①200;②见解析;③54(2)1120(3)16分析:(1)①由B组的人数及其所占百分比可得样本容量;②由总人数减去除C组的人数即可得到C组的人数;③用360°乘以C组人数所占比例即可;(2)用3200乘以D组人数所占比例即可;(3)根据题意列出树状图即可求解(1)解:(1)①50÷25%=200;②C组人数=200−30−50−70−20=30,补全的条形统计图如图所示:③360°×30200=54°;(2)解:3200×70200=1120;(3)解:画树状图如下:从甲、乙、丙、四位学生中随机抽取两人共有12种等可能性的结果,恰好抽中甲、乙两人的所有等可能性结果有2种,因此,P(恰好抽中甲、乙两人)=212=16.小提示:本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。
九年级数学上册第二十五章概率初步重难点归纳(带答案)
九年级数学上册第二十五章概率初步重难点归纳单选题1、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .56答案:C分析:画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=1216=34, 故选:C .小提示:本题考查了列表法与树状图法求概率,解题的关键是熟练掌握等可能事件的概率公式.2、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以组成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .14B .13C .38D .49答案:D分析:根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A 矩形个数,进而利用概率公式求出即可.解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线可以组成9个矩形,其中含点A 矩形4个,∴所选矩形含点A 的概率是49故选:D小提示:本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.3、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.4、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是( )A .14B .13C .12D .34 答案:A分析:根据题意画出树形图,即可求出在这两个路口都直接通过的概率.解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P =14.故选:A小提示:本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.5、下列说法正确的是( )A .口袋中有3个白球,2个黑球,1个红球,它们除颜色外都相同,因为袋中共有3种颜色的球,所以摸到红球的概率是13B .掷一枚硬币两次,可能的结果为两次都是正面,一次正面一次反面,两次都是反面,所以掷出两次都是反面的概率为13C .天气预报“明天降水概率为10%”,是指“明天有10%的时间会下雨”D .随意掷一枚均匀的骰子,偶数点朝上的概率是12答案:D分析:根据概率公式可对A、D进行判断;利用画树状图法求概率可对B进行判断,根据概率的意义可对C 进行判断.解:A、摸到红球的概率=13+2+1=16,所以A选项错误;B、画树状图为:共有4种等可能的结果数,其中掷出两次都是反面的结果数为1,所以掷出两次都是反面的概率=14,故B选项错误;C、天气预报“明天降水概率为10%”,是指有10%的可能性下雨,所以C选项错误;D、随意掷一枚均匀的骰子,偶数点朝上的结果数为2、4、6,所以偶数点朝上的概率=12,故D选项正确.故选:D.小提示:本题考查了概率的意义,概率公式,列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件答案:C分析:直接利用概率的意义以及随机事件的定义分别分析得出答案.A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误,不符合题意;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误,不符合题意;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,符合题意;D、“a是实数,|a|≥0”是必然事件,故此选项错误,不符合题意.故选C.小提示:此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.7、某随机事件A发生的概率P(A)的值不可能是()A.0.0001B.0.5C.0.99D.1答案:D分析:概率取值范围:0⩽p⩽1,随机事件的取值范围是0<p<1.解:概率取值范围:0⩽p⩽1.而必然发生的事件的概率P(A)=1,不可能发生事件的概率P(A)=0,随机事件的取值范围是0<p<1.观察选项,只有选项D符合题意.故选:D.小提示:本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.8、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.A、掷一枚硬币,正面朝上的概率为12=50%,故A选项错误,不符合题意;B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为14=25%,故B选项错误,不符合题意;C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13≈33%,故C选项正确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.9、甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.下列事件中,概率最大的是()A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球答案:D分析:先画出树状图表示所有等可能的结果,再根据概率公式分别计算每种情况的概率,据此解答.解:画树状图如下,所有等可能的结果共6种,摸出2个球颜色相同的概率为:36=1 2;摸出2个球颜色不相同的概率为:36=1 2;摸出2个球中至少有1个红球的概率为:46=2 3;摸出2个球中至少有1个白球的概率为:56;所以概率最大的是摸出2个球中至少有1个白球,故选:D.小提示:本题考查列表法或树状图表示概率,是重要考点,掌握相关知识是解题关键.10、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球答案:C分析:直接利用概率的意义分析得出答案.解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选C.小提示:此题主要考查了概率的意义,正确理解概率的意义是解题关键.填空题11、学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为 __.答案:112分析:根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,.则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.所以答案是:112小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12、如图是康康的健康绿码示意图,用黑白打印机打印于边长为10cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,据此可以估计黑色部分的总面积约为___cm2.答案:65分析:经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,可得点落入黑色部分的概率为0.65,再计算出正方形的面积,进而可以估计黑色部分的总面积.∵经过大量重复实验,发现点落入黑色部分的频率稳定在0.65左右,∴点落入黑色部分的概率为0.65,∵边长为10cm的正方形面积为100cm2,设黑色部分面积为S,则S=0.65,100解得S=65cm2,所以答案是:65.小提示:本题考查了利用频率估计概率,解决本题的关键是掌握概率公式,知道点落入黑色部分的概率为0.65.13、乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.答案:3分析:由于每个球都有被摸到的可能性,故可利用概率公式列出方程,求出a的值即可.解:依题意有:8=0.4,8+9+a解得a=3,经检验,a=3是原方程的解.所以答案是:3.小提示:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m.种结果,那么事件A的概率P(A)=mn14、北京2022年冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”广受大家的喜爱.即将在2022年9月举行的杭州亚运会的吉祥物“宸宸”“踪踪”“莲莲”也引起了大家的关注.现将五张正面分别印有以上5个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上并洗匀,随机翻开一张正好是“冰墩墩”的概率是_________.答案:15分析:根据概率公式即可求得.解:从5张卡片中,随机翻开一张正好是“冰墩墩”的概率是15所以答案是:15小提示:本题考查了概率公式的应用,熟练掌握和运用概率公式是解决本题的关键.15、如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.答案:14分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况,∴两个数字都是正数的概率是416=14,所以答案是:14.小提示:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.解答题16、某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.答案:(1)见解析(2)见解析分析:(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果;(2)根据树状图找出颜色不同的两球和摸出颜色相同的两球的情况,即可得解.(1)解:画树状图如下:由树状图知共有6种情况;(2)解:由(1)知抽到颜色相同的两球共有2种情况,抽到颜色不同的两球共有4种情况,所以抽到颜色相同的两球对应一等奖,抽到颜色不同的两球对应二等奖.小提示:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17、第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.答案:16分析:用列表法表示所有可能出现的结果情况,进而得出两次都是白球的概率即可.解:用列表法表示所有可能出现的结果情况如下:1种,.所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16小提示:本题考查简单事件的概率,正确列表或者画树状图是解题关键.18、某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.解答下列问题:(1)m= ,n= ,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?或者(0.45);(3)中档题.答案:(1)25,20;(2)920分析:(1)根据图表得出得1分的人数,然后进行计算,即可得到m和n的值,再补全条形统计图即可;(2)根据众数的定义得到众数,在根据得分为众数的人数,计算概率即可;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.解:(1)∵被调查的总人数为6÷10%=60(人),∴得1分的人有:60-6-27-12=15(人)∴m %=15÷60=25%n %=12÷60=20%∴m =25,n =20,;(2)众数为2分,有27人,∴概率为2760=920或者(0.45);(3)平均数为6×0+15×1+27×2+12×360=1.75,L =X W =1.753≈0.58,∵0.58在0.4-0.7中间,∴这道题为中档题.小提示:本题考查了条形统计图,扇形统计图,众数的定义和概率的计算,掌握知识点是解题关键.。
九年级数学上册第二十五章概率初步知识点总结全面整理(带答案)
九年级数学上册第二十五章概率初步知识点总结全面整理单选题1、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.2、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x ,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x ,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x 20 , 当事件A 实验次数足够多,即样本足够大时,其频率可作为事件A 发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:x 20=0.35,解得x =7.故选:B .小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.3、有4张分别印有实数0,-0.5,−√2,-2的纸牌,除数字外无其他差异。
九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)
九年级数学上册第二十五章概率初步知识点总结归纳完整版单选题1、小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字答案:D分析:根据利用频率估计概率得到实验的概率在0.2左右,再分别计算出四个选项中的概率,然后进行判断.根据拆线图知:概率在0.2左右,,不符合题意;A:抽出的是“朝”字的概率是720,不符合题意;B:抽出的是“长”字的概率是720,不符合题意;C:抽出的是独体字的概率是920=20%,符合题意,D:抽出的是带“氵”的字的概率为420故选:D.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A .B .C .D .答案:A分析:结合图形求出各个阴影部分所占的比例即为小球落在阴影部分的概率,进行比较即可. 解:A 、小球落在阴影部分的概率为14; B 、小球落在阴影部分的概率为12; C 、小球落在阴影部分的概率为59;D 、小球落在阴影部分的概率为39=13; 小球落在阴影部分的概率最小的是A , 故选:A .小提示:题目主要考查概率的基本计算方法,理解题意,掌握概率的基本计算方法是解题关键.3、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案. 解:画图如下:共有4种情况,而出现高茎的有3种结果, ∴子二代豌豆中含遗传因子D 的概率是34,故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键.4、《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金. 小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为( )A .2B .3C .4D .6答案:D分析:通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可. 解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, P 田忌赢=318=19. 故选:D .小提示:本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.5、某人在做抛掷硬币试验中,抛掷n 次,正面朝上有m 次,若正面朝上的频率是P =mn ,则下列说法正确的是( )A .P 一定等于0.5B .多投一次,P 更接近0.5C .P 一定不等于0.5D .投掷次数逐渐增加,P 稳定在0.5附近 答案:D分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做此事件概率的估计值,从而可得答案.解:根据频率和概率的关系可知,投掷次数逐渐增加,P 稳定在0.5附近, 故选:D .小提示:考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29D .19答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49,故选A .小提示:此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.7、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对 答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形, ∴∠AOB =60°, ∵OA =OB =r ,∴△OAB 是等边三角形, ∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2,∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A .小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.8、如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).A .12B .13C .14D .34答案:C分析:让小灯泡发光的情况数除以总情况数即为发光的概率. 解:共有4个开关,闭合其中一个开关,有4种情况, 只有闭合D 才能使灯泡发光, ∴小灯泡发光的概率=14. 故选:C .小提示:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9、用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为( )A .16B .13C .12D .23答案:C分析:列表得出所有等可能的情况数,找出能配成紫色的情况数,即可求出所求的概率. 解:列表如下:3种, 则P (配成紫色)=36=12, 故选:C .小提示:本题考查的是用列表法或画树状图法求概率,熟练掌握概率=所求情况数与总情况数之比是解题的关键.10、从−√2,0,√4,π,3.5这五个数中,随机抽取1个,则抽到无理数的概率是( )A .15B .25C .35D .45答案:B解:这里的无理数有−√2,π,共2个, ∴P (抽到无理数)=25. 故选:B .小提示:本题主要考查了列举法求概率,解决问题的关键是熟练掌握用列举法求概率的方法. 填空题11、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程x 2−2x +a2=0有实数根,且关于x 的分式方程1−ax x−2+2=12−x有解的概率为______.答案:16分析:根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案.一元二次方程x 2−2x +a2=0有实数根,∴4−4×a2≥0. ∴a ≤2, ∴a =0,1,2, 关于x 的分式方程1−ax x−2+2=12−x的解为:x =22−a,且2−a ≠0且x ≠2, 解得:a ≠2且a ≠1, ∴a =0,∴使得关于x 的一元二次方程,x 2−2x +a2=0有实数根,且关于x 的分式方程1−axx−2+2=12−x 有解的概率为:16. 所以答案是:16小提示:本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.12、盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x和y满足的关系式为 __.答案:y=53x分析:根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴可得关系式xx+y =38,∴x和y满足的关系式为y=53x.所以答案是:y=53x.小提示:此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、口袋里装有红球和白球共10个,这些球除颜色外其余均相同.每次将球搅拌均匀,任意摸出一个球,记下颜色后再放回口袋里,摸了100次,其中发现有69次摸到白球,则白球的个数约为___________个.答案:7分析:利用频率估计概率可估计摸到白球的概率,再用口袋里球的总个数乘以摸到白球的频率即可得出答案.解:∵共摸了100次球,发现有69次摸到白球,∴摸到白球的概率为0.69,∴口袋中白球的个数大约10×0.69≈7(个).所以答案是:7.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.答案:316分析:画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=316.所以答案是:316.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.解答题16、2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出15名同学参加会议相关服务工作,其中9名男生,6名女生.(1)若从这15名同学中随机选取1人作为联络员,求选到男生的概率.(2)若会议的某项服务工作只在A,B两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为1,2,3,6(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于6则选A,否则选B,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.答案:(1)35;(2)该游戏规则合理;理由见解析.分析:(1)直接根据概率公式计算;(2)先画出树状图,展示所有12种等可能的结果数,再找出两个数字之和大于6所占的结果数,计算出选A的概率和选B的概率,然后比较两概率大小判断该游戏规则是否合理.(1)选到男生的概率=915=35;(2)画树状图:共有12种等可能的结果数,其中两个数字之和大于6占6种,所以选A的概率=612=12,则选B的概率=1−12=12,由于选甲的概率等于选乙的概率,所以该游戏规则合理.小提示:本题考查列表法与树状图法,解题的关键是利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;(4)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率.答案:(1)10;(2)180°;(3)18;(4)P(恰好抽到2名男性)=16.分析:(1)用50-4-25-8-3可求出m的值;(2)用360°乘以年龄在“30≤x<40”部分人数所占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“x<20”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.解:(1)m=50-4-25-8-3=10;所以答案是:10;(2)360°×2550=180°;所以答案是:180°;(3)在这50人中女性人数为:4×(1-50%)+10×(1-60%)+25×(1-60%)+8×(1-75%)+3×(1-100%)=2+4+10+2+0=18;所以答案是:18;(4)设两名男性用A1,A2表示,两名女性用B1,B2表示,根据题意:可画出树状图:或列表:2种,故P(恰好抽到2名男性)=212=16.小提示:此题考查了列表法或树状图法求概率以及频数分布表.用到的知识点为:概率=所求情况数与总情况数之比.18、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13.(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。
【期末复习】2019年 九年级数学上册 期末复习 概率初步 知识点+易错题精选(含答案)
2019年九年级数学上册期末复习概率初步知识点+易错题精选概率的概念某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为(1)列表法求概率当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
(2)树状图法求概率当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
利用频率估计概率①利用频率估计概率:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
概率初步 易错题精选一、选择题1.下列成语中描述的事件必然发生的是( )A .水中捞月B .瓮中捉鳖C .守株待兔D .拔苗助长2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C.至少有2个球是黑球 D .至少有2个球是白球3.如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是( )A .41B .83C .85D .214.如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )5.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A .23B .31C .41 D .1 6.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图所示),从中任意一张是数字3的概率是( )A .61B .31C .21D .32 7.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13 B .16 C .518 D .56 8.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )A .23B .15C .0.4D .359.向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为( )A 1-B .16C .1-.1510.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a 、b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是( )A .B .C .D .11.甲、乙、丙三位同学参加一次节日活动,很幸运的是,他们都得到了一件精美的礼物。
部编数学九年级上册25概率(7大题型)2023考点题型精讲(解析版)含答案
25 概率必然事件、不可能事件和随机事件(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.注意:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.题型1:必然事件、不可能事件和随机事件1.“对于二次函数y=(x−1)2+1,当x≥1时,y随x的增大而增大”,这一事件为( )A.必然事件B.随机事件C.不确定事件D.不可能事件【答案】A【解析】【解答】解:由题意知,该二次函数的图象在对称轴直线x=1的右侧,y随x的增大而增大;∴为必然事件故答案为:A.【分析】根据二次函数的性质,当a>0时,在对称轴右侧,y随x的增大而增大,由题意可知,a=1,对称轴直线x=1,故“当x≥1时,y随x的增大而增大”为必然事件.【变式1-1】下列事件中,属于不可能事件的是( )A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯【答案】B【解析】【解答】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故答案为:B.【分析】随机事件是在一定条件下,可能发生也可能不发生的事件;必然事件是在一定条件下,一定发生的事件;不可能事件是在一定条件下,一定不发生的事件;据此判断即可.【变式1-2】事件①:任意画一个多边形,其外角和为360°;事件②:经过一个有交通信号灯的十字路口,遇到红灯;则下列说法正确的是( )A.事件①和②都是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是必然事件D.事件①是必然事件,事件②是随机事件【答案】D【解析】【解答】解:事件①:任意画一个多边形,其外角和为360°,这是必然事件;事件②:经过一个有交通信号灯的十字路口,可能遇见红灯、绿灯或黄灯,所以遇到红灯,这是随机事件;故答案为:D.【分析】在一定条件下,可能发生,也可能不会发生的事件就是随机事件;在一定条件下,一定不会发生的事件就是不可能事件;在一定条件下,一定会发生的事件就是必然事件;从而根据多边形外角和均为360°可判断①;经过一个有交通信号灯的十字路口,可能遇到红灯、黄灯、绿灯,据此判断②.概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率,记为.注意:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.题型2:概率公式及计算2.不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )A.38B.35C.58D.12【答案】A【解析】【解答】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为3 8 .故答案为:A.【分析】利用红球的个数除以球的总数即可得到摸出1个球是红球的概率.【变式2-1】从-2,0,2,3中随机选一个数,是不等式2x−3≥1的解的概率为( )A.13B.14C.12D.23【答案】C【解析】【解答】解:解2x−3≥1得:x≥2,所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是2x−3≥1的解的概率为:24=12,故答案为:C.【分析】先求出满足不等式的数有2和3两个,再求概率即可。
九年级上册数学概率初步重点难点题型全覆盖附详细答案
D. 他这个队必赢
2.下列说法正确的是( ).
①试验条件不会影响某事件出现的频率;
②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;
③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;
④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.
A.
B.
C.
D.
5.某校九年级一班共有学生 50 人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )
A. 至少有两名学生生日相同
B. 不可能有两名学生生日相同
C. 可能有两名学生生日相同,但可能性不大
D. 可能有两名学生生日相同,且可能性很大
6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字
九年级上册数学概率初步重点难点题型全覆盖附详细答案
一、单选题(共 21 题;共 42 分)
1.在一次比赛前,教练预言说:“这场比赛我们队有 60%的机会获胜”,则下列说法中与“有 60%的机会获胜” 的意思接近的是( )
A. 他这个队赢的可能性较大
B. 若这两个队打 10 场,他这个队会赢 6 场
C. 若这两个队打 100 场,他这个队会赢 60 场
秀”,这次测试成绩一定也是“优秀”
二、填空题(共 15 题;共 15 分)
22.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为 1,2,3,其中标号为 1 的小球有 3 个,
标号为 2 的小球 2 个,标号为 3 的小球有 m 个,若随机摸出一个小球,其标号为偶数的概率为 下面有三个推断:
①当投掷次数是 500 时,计算机记录“钉尖向上”的次数是 308,所以“钉尖向上”的概率是 0.616;
2023年初三数学九上概率初步所有知识点总结和常考题型练习题
概率初步知识点一、概率旳概念某种事件在某一条件下也许发生,也也许不发生,但可以懂得它发生旳也许性旳大小,我们把刻划(描述)事件发生旳也许性旳大小旳量叫做概率.2、事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不也许事件:有些事情我们事先肯定它一定不会发生,这些事情称为不也许事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.3、概率旳计算一般地,假如在一次试验中,有n种也许旳成果,并且它们发生旳也许性都相等,事件A包括其中旳m中成果,那么事件A发生旳概率为(1)列表法求概率当一次试验要设计两个原因,并且也许出现旳成果数目较多时,为不重不漏地列出所有也许旳成果,一般采用列表法。
(2)树状图法求概率当一次试验要设计三个或更多旳原因时,用列表法就不以便了,为了不重不漏地列出所有也许旳成果,一般采用树状图法求概率。
4、运用频率估计概率①运用频率估计概率:在同样条件下,做大量旳反复试验,运用一种随机事件发生旳频率逐渐稳定到某个常数,可以估计这个事件发生旳概率。
②在记录学中,常用较为简朴旳试验措施替代实际操作中复杂旳试验来完毕概率估计,这样旳试验称为模拟试验。
③随机数:在随机事件中,需要用大量反复试验产生一串随机旳数据来开展记录工作。
把这些随机产生旳数据称为随机数。
概率初步练习一、选择题1、下列成语所描述旳事件是必然事件旳是( )A .瓮中捉鳖B .拔苗助长C .守株待兔D .水中捞月2、在一种不透明旳口袋中,装有5个红球3个白球,它们除颜色外都相似,从中任意摸出一种球,摸到红球旳概率为( )A .51B .31C .85D .83 3、小伟掷一种质地均匀旳正方体骰子,骰子旳六个面分别刻有1到6旳点数。
则向上旳一面旳点数不小于4旳概率为( )A .61B .31C .21D .32 4、一种十字路口旳交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你昂首看信号灯时,是绿灯旳概率是( )(A )121 (B )31 (C )125 (D )21 5、甲、乙、丙三个同学排成一排摄影,则甲排在中间旳概率是( )(A )61 (B )41 (C )31 (D )21 6、某商店举行有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
《常考题》初中九年级数学上册第二十五章《概率初步》知识点总结(含答案解析)
一、选择题1.甲、乙、丙三个小朋友玩滑梯,他们通过抽签的方式决定玩滑梯的先后顺序,则顺序恰好是甲→乙→丙的概率是()A.13B.14C.15D.162.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程211x a ax x++--=3有正数解,则符合条件的概率是()A.15B.25C.35D.453.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50 B.0.21 C.0.42 D.0.584.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组7.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是()A.12B.13C.23D.148.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球9.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.3810.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.21511.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形12.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.1513.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=12S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.14D.3414.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是()A.12B.14C.34D.115.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为()A.12B.13C.23D.16二、填空题16.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y=ax2+bx+1中a、b的值,恰好使得该二次函数当x>2时,y随x的增大而增大的概率是_____.17.已知一元二次方程23m0x x-+=,从m=-1,1,0,2,3的值中选一个作为m的值,则使该方程无解的m值的概率为_________18.在3*4的正方形网格中,有三块小正方形被涂黑色,其余均为白色(如图),先任选一个白色的小正方形涂黑,使黑色部分所构成的图形是轴对称图形的概率是:_______.19.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.20.有两组牌,每组三张,牌面上的数字分别是1,2,3,且除数字外均相同,若从每组摸出一张牌,那么两张牌面数字和是4的概率是________.21.如图所示的转盘分成8等份,若自由转动转盘一次,停止后,指针落在阴影区域内的概率是_______.22.同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________ 23.若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字2-,1-,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点()P x,y,那么点P落在直线y x1=-+上的概率是____.24.有如图四张卡片,除卡片上的图案不同其余完全相同,现把这些卡片有图案的一面朝下搅匀,随机抽出一张,上面的图案能够围成一个正方体的概率是________.25.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为35,则m=__.26.在一个不透明的袋子中装有除颜色外完全相同的4个红球和2个白球,摇匀后随机摸出一个球,则摸出红球的概率为_____.三、解答题27.有4张分别标有数字1,2-,3-,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机抽取一张不放回,将该卡片上的数字记为m,再随机抽取1张,将卡片上的数字记为n.(1)用列表法或者树状图法中的一种方法,把(),m n所有可能的结果表示出来.(2)求点(),m n落在第一象限或第三象限的概率.28.“十一期间”,美美家电商场举行了买家电进行“翻牌抽奖”的活动其规则为:现准备有4张牌,4张牌分别对应100,200,300,400(单位:元)的现金.(1)如果某位顾客随机翻1张牌,那么这位顾客抽中200元现金的概率为______.(2)如果某位顾客随机翻2张牌,且第一次翻过的牌需放回洗匀后再参加下次翻牌,用列表法或画树状图求该顾客所获现金总额不低于500元的概率.29.我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:等级A(优秀)B(良好)C(合格)D(不合格)人数200400280(2)扇形统计图中“A”部分所对应的圆心角的度数是;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.30.将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)。
九年级数学上册第二十五章概率初步考点大全笔记(带答案)
九年级数学上册第二十五章概率初步考点大全笔记单选题1、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是()A.②B.①③C.②③D.①②③答案:C分析:根据概率公式和图表给出的数据对各项进行判断,即可得出答案.解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.小提示:本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.2、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B .小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.3、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a+bB .b aC .a a+bD .a b答案:A分析:根据概率公式直接求解即可.∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是b a+b .故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1答案:A分析:根据阴影部分的面积所占比例得出概率即可.解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键.5、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是7答案:C分析:分别算出每个选项的概率,再与图中结果对比即可得到答案.解:A 中的概率为0.5,不符合这一结果,故此选项错误;B 中的概率为0.5,不符合这一结果,故此选项错误;C 中的概率为13,符合这一结果,故此选项正确;D 中的概率为16,不符合这一结果,故此选项错误.故选C .小提示:本题考查频率与概率的综合应用,熟练掌握概率与频率的关系、概率的求解是解题关键.6、小丽准备通过爱心热线捐款,她只记得号码的前 5 位,后三位由 5,2,0 这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是( )A .12B .13C .14D .16答案:D分析:首先根据题意可得:可能的结果有:502,520,052,025,250,205;然后利用概率公式求解即可求得答案.解:∵她只记得号码的前5位,后三位由5,0,2,这三个数字组成,∴可能的结果有:502,520,052,025,250,205;∴他第一次就拨通电话的概率是:16.故选:D .小提示:此题考查了列举法求概率的知识.注意概率=所求情况数与总情况数之比.7、掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是( )A .1B .56C .23D .16 答案:D分析:根据概率的意义进行解答即可.解:掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时,不会受前3次的影响,掷第4次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第4次时6点朝上的概率是16,故选:D .小提示:本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.8、下列说法正确的是( )A .口袋中有3个白球,2个黑球,1个红球,它们除颜色外都相同,因为袋中共有3种颜色的球,所以摸到红球的概率是13B .掷一枚硬币两次,可能的结果为两次都是正面,一次正面一次反面,两次都是反面,所以掷出两次都是反面的概率为13C .天气预报“明天降水概率为10%”,是指“明天有10%的时间会下雨”D .随意掷一枚均匀的骰子,偶数点朝上的概率是12 答案:D分析:根据概率公式可对A 、D 进行判断;利用画树状图法求概率可对B 进行判断,根据概率的意义可对C 进行判断.解:A 、摸到红球的概率=13+2+1=16,所以A 选项错误;B 、画树状图为:共有4种等可能的结果数,其中掷出两次都是反面的结果数为1,所以掷出两次都是反面的概率=14,故B 选项错误;C 、天气预报“明天降水概率为10%”,是指有10%的可能性下雨,所以C 选项错误;D 、随意掷一枚均匀的骰子,偶数点朝上的结果数为2、4、6,所以偶数点朝上的概率=12,故D 选项正确. 故选:D .小提示:本题考查了概率的意义,概率公式,列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.9、为做好疫情防控工作,某学校门口设置了A ,B 两条体温快速检测通道,该校同学王明和李强均从A 通道入校的概率是( )A .14B .13C .12D .34答案:A分析:先列表得到所有的等可能的结果数,以及符合条件的结果数,再利用概率公式计算即即可. 解:列表如下:所以该校同学王明和李强均从A 通道入校的概率是14.故选A小提示:本题考查的是利用列表的方法或画树状图的方法求解简单随机事件的概率,掌握“列表的方法求概率”是解本题的关键.10、把分别画有“冰墩墩”、“雪融融”的两张形状、大小相同的图片,全部从中间剪成相同的两段,再把这四张形状相同的小图片混合在一起,从这四张图片中随机抽出两张,则这两张小图片恰好能组成一张完整的“冰墩墩”或“雪融融”图片的概率为( )A .13B .14C .16D .112答案:A分析:用A 、a 表示“冰墩墩”图片被剪成的两半,用B 、b 表示“雪融融”图片被剪成的两半,然后利用树状图展示所有可能的结果数;找出2张图片恰好组成一张完整的“冰墩墩”或“雪融融”图片的结果数,然后根据概率公式求解.解:用A 、a 表示“冰墩墩”图片被剪成的两半,用B 、b 表示“雪融融”图片被剪成的两半,列树状图为:故有12种等可能结果,符合恰好能组成一张完整的“冰墩墩”或“雪融融”图片有4种,∴P =412=13. 故选:A .小提示:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.填空题11、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).答案:公平分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=24=12,P(小亮获胜)=24=12,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.12、如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.答案:2.8分析:求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.∵正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,∴黑色部分的面积占正方形二维码面积的70%,∴黑色部分的面积约为:4×70%=2.8,所以答案是:2.8.小提示:求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.13、经过人民路十字路口红绿灯处的两辆汽车,可能直行,也可能左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.答案:34分析:可以采用列表法或树状图求解.可以得到一共有4种情况,至少有一辆向左转有3种情况,根据概率公式计算可得.解:由题意画出“树状图”如下:∵这两辆汽车行驶方向共有4种可能的结果,其中至少有一辆向左转有3种情况,∴至少有一辆向左转的概率是3.4.所以答案是:34小提示:此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.14、从−1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是___________.答案:23分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=−x+3是y随x增大而减小的,函数y=x+3和y=2x+3都是y随x增大而增大的,所以符合题意的概率为2.3解:当k>0时,一次函数y=kx+3的图象y随x的增大而增大,∴k=1或k=2∴所得一次函数中y随x的增大而增大的概率是2,3所以答案是:23. 小提示:本题考查概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y 随x 的增大而增大.15、科研人员对某玉米种子在相同条件下的发芽情况进行试验,统计结果如下表:0.01).答案:0.95分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,即可估计出这种油菜籽发芽的概率. 解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,所以答案是:0.95.小提示:本题考查利用频率估计概率,从表格中数据确定出这种油菜籽发芽的概率是解题的关键. 解答题16、从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.答案:(1)13;(2)图表见解析,16 分析:(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.(1)13;(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P(选化学、生物)=212=16.答:小明同学选化学、生物的概率是16.小提示:本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率.17、为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.答案:(1)a=17;(2)喜欢“线上答疑”的学生人数为200人;(3)35分析:(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)列表法展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解.(1)解:a=40−(10+5+8)=17;(2)解:最喜欢“线上答疑”的学生人数为1000×840=200(人);(3)解:设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为1220=35.小提示:本题考查统计图、列表法或树状图法:利用列表法或画树状图展示所有等可能的结果,再从中选出符合条件的事件数目,利用概率公式求概率.18、致敬,最美逆行者!病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500):b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:919,997,1045,1068,1101,1159,1179,1194,1195,1262.根据以上信息回答问题:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是,其中医务人员人数超过1000人的省(区、市)共有个.(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1).答案:(1)B;(2)1021人,15;(3)90后”大约有1.2万人分析:(1)根据题意列式计算即可得到正确的选项;(2)根据频数(率)分布直方图中的信息和中位数的定义即可得到结论;(3)根据样本估计总体,可得到“90后”大约有1.2万人.解:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数为38478﹣7381=31097(人),故选B;(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是997+1045=1021(人);其中医务2人员人数超过1000人的省(区、市)共有15(个);所以答案是:1021人,15;(3)42000×404+103+83≈11800(人),1614+338+148答:“90后”大约有1.2万人.小提示:本题考查了频数(率)分布直方图,样本估计总体,熟悉相关性质是解题的关键.。
第3章概率的进一步认识九年级数学上册考试满分全攻略同步备课备考系列(北师大版)[含答案]
第3章概率的进一步认识(核心素养提升+中考能力提升+过关检测)知识点1.利用树状图或表格求概率(重点)(难点)1.树状图:当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.树状图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点归纳:(1)树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用列表法或树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.2.表格法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用表格法.表格法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点归纳:(1)表格法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)表格法适用于涉及两步试验的随机事件发生的概率.知识点2用频率估计概率(重点)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点归纳:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.考点1:两个方法方法1:求随机事件概率的方法【例题1】(24-25九年级上·全国·期中)1.小刚、小强计划利用暑期从A,B,C三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是()A.12B.13C.16D.29【变式1】(24-25九年级上·陕西渭南·期中)2.在一个不透明的盒子中装有30颗黑、白两种颜色的棋子,除颜色外其他都相同,搅匀后从中随机摸出一颗棋子,记下颜色后放回盒子中,记为一次试验,通过大量试验后发现摸到黑色棋子的频率稳定在0.6,则盒子中黑色棋子可能有()A.5颗B.10颗C.18颗D.26颗【变式2】(24-25九年级上·河南平顶山·阶段练习)3.一个不透明的袋子中装有2个红球和3个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球记下颜色后不放回,再从袋子里取出1个球,则两次取出的都是红球的概率是.【变式3】(23-24九年级上·广东惠州·期末)4.为弘扬中华传统文化,“诵读经典,传承文明”,我校近期举办了“国学经典诵读大赛”,诵读的篇目分成四种类型:A.蒙学今诵;B.爱国传承;C.励志劝勉;D.愚公移山,每种类型的篇目数相同,参赛者需从这四种类型中随机抽取一种诵读类型.小新和小远也参加了这次大赛,小新先抽取了一种诵读类型后不放回,小远再从剩余的诵读类型中任意抽取一种,请用画树状图或列表法求他们中有一人抽到“C.励志劝勉”的概率.方法2:用频率估计概率的方法【例题2】(24-25九年级上·广东佛山·阶段练习)5.如图,青田林业局考查一种树苗移植的成活率,将调查数据绘制成统计图,则可估计这种树苗移植成活的概率约是()A.0.95B.0.90C.0.85D.0.80【变式1】(24-25九年级上·辽宁沈阳·阶段练习)6.一个黑色不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同、将球搅匀,每次从中随机摸出一个球,记下颜色后放回,再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计袋子中白球的个数约为个.【变式2】(24-25九年级上·陕西榆林·期中)7.在一个不透明的盒子里装有若干个白球和35个黄球,这些球除颜色不同外其余均相同,每次从盒子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.3左右,请估计盒子里白球的个数.【变式3】(23-24九年级上·辽宁盘锦·期末)8.“强国必须强语,强语助力强国,”为全面落实国家语言文字方针政策,弘扬中华民族优秀传统文化,某学校组织学生参加了“推广普通话,奋进新征程”为主题的朗诵比赛,该校随机抽取部分学生比赛成绩进行统计,将成绩分为四个等级:A(优秀),B(良好),C(一般),D(不合格),并根据结果绘制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:(1)这次调查活动共抽取人:(2)“C”等所在扇形的圆心角的度数为度;(3)请将条形统计图补充完整(要求在条形图上方表明人数);(4)学校要从答题成绩为A 等且表达能力较强的甲、乙、丙、丁四名学生中,随机抽出两名学生做“推广普通话宣传员”,请用列表或画树状图法,求抽出的两名学生恰好是甲和乙的概率.考点2:两种思想思想1:数形结合思想【例题3】(24-25九年级上·陕西西安·阶段练习)9.如图,用圆中两个可以自由转动的转盘做“配紫色”游戏,若其中一个转盘转出红色,另一个转盘转出蓝色就可以配成紫色,则可以配成紫色的概率是( )A .12B .13C .14D .23【变式1】(23-24九年级上·浙江杭州·期中)10.如图,四个转盘分别被分成不同的等份,若让转盘自由转动一次,停止后指针落在阴影区域内的概率最大的转盘是( )A .B .C .D .【变式2】(24-25九年级上·全国·课后作业)11.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处重转),两个转盘指针指向数字之积不超过4的概率是.【变式3】(24-25九年级上·浙江杭州·阶段练习)12.某校九(1)班的余老师和九(3)班的王老师两人在玩转盘游戏时,把转盘A、B分成3等份、4等份,并在每一份内标有数字(如图).游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,余老师胜;指针所在区域的数字之积为偶数时,王老师胜.如果指针恰好在分割线上,则需重新转动转盘.(1)用树状图或列表的方法,求余老师获胜的概率;(2)这个游戏规则对余老师、王老师双方公平吗?请判断并说明理由.思想2:方程思想【例题4】(23-24九年级上·浙江湖州·阶段练习)13.在一个不透明的箱子里装有m个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m的值为()A.8B.12C.15D.20【变式1】(24-25九年级上·浙江温州·阶段练习)14.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有4个,黑球有x个,若随机从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出黑球的频率稳定在0.6附近,则x的值为()A.5B.6C.7D.8【变式2】(24-25九年级上·浙江湖州·阶段练习)15.在一个暗箱里有m个除颜色外完全相同的球,其中红球只有4个,每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回,通过大量的重复试验后发现,摸到红球的频率为0.4,由此可以推算出m约为.【变式3】(24-25九年级上·浙江金华·阶段练习)16.数学老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.2530.25(1)根据上表数据估计从袋中摸出一个球是黑球的概率是_______;(精确到0.01)(2)估算袋中白球的个数.一、单选题(2020·江苏徐州·中考真题)17.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15(2024·内蒙古通辽·中考真题)18.不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.19B.13C.49D.23(2024·山东济南·中考真题)19.3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参加其中一个活动,则她们恰好选到同一个活动的概率是()A.19B.16C.13D.23(2020·辽宁营口·中考真题)20.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A.0.90B.0.82C.0.85D.0.84二、填空题(2023·辽宁鞍山·中考真题)21.在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有个.(2024·山东泰安·中考真题)22.某学校在4月23日世界读书日举行“书香校园,全员阅读”活动.小明和小颖去学校图书室借阅书籍,小明准备从《西游记》、《骆驼祥子》、《水浒传》中随机选择一本,小颍准备从《西游记》、《骆驼祥子》、《朝花夕拾》中随机选择一本,小明和小颖恰好选中书名相同的书的概率是.(2024·内蒙古·中考真题)23.如图,有4张分别印有卡通西游图案的卡片:唐僧、孙悟空、猪八戒、沙悟净.现将这4张卡片(除图案不同外,其余均相同)放在不透明的盒子中,搅匀后从中随机取出1张卡片,然后放回并搅匀,再从中随机取出1张卡片,则两次取到相同图案的卡片的概率为.三、解答题(2024·陕西·中考真题)24.一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________.(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.(2024·西藏·中考真题)25.为了纪念西藏民主改革65周年,弘扬爱国主义精神,学校举办了“感悟历史奇迹,担当时代使命”的历史知识竞赛活动.从七、八年级中各随机抽取了10名学生的竞赛成绩(单位:分)如下:七年级:80968292898473908997八年级:94829594858992799893请根据以上信息,解答下列问题:(1)七年级这10名学生成绩的中位数是________;八年级这10名学生成绩的众数是________;(2)若成绩90分以上(含90分)定为优秀等次,请估计八年级400名学生中有多少名学生能达到优秀等次;(3)根据本次竞赛成绩,七、八年级各推荐了两名学生,学校准备再从这四名学生中随机抽取两人参加市级竞赛,请用列表或画树状图的方法求抽到一名七年级学生和一名八年级学生的概率.(2020·江苏泰州·中考真题)26.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到0.01),由此估出红球有______个.(2)在这次摸球实验中,从袋子中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.一、单选题(24-25九年级上·山西太原·阶段练习)27.在一个不透明的口袋中有红色、黄色和绿色球共80个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有()A.16个B.18个C.21个D.32个(24-25九年级上·陕西榆林·期中)28.某校举行安全系列教育活动主题手抄报的评比活动,学校共设置了“交通安全”“消防安全”“饮食安全”“校园安全”四个主题内容,每位参加活动的同学应从这四个主题中随机选取一个,李明和张佳都参加了本次评比活动,他们两人选取的主题不同的概率是()A.14B.18C.34D.38(24-25九年级上·陕西西安·阶段练习)29.在一个不透明的袋子里有红球、黄球共10个;这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程.小明通过多次试验后发现,摸到红球的频率稳定在0.4左右,则袋子中红球的个数可能是()A.4B.6C.9D.10(24-25九年级上·全国·期中)30.小花同学从初中三个年级上下册共六本数学书中随机抽两本,刚好抽到同一年级数学书的概率是( )A.15B.16C.13D.14(24-25九年级上·浙江杭州·阶段练习)31.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙不是从同一节车厢上车的概率是()A.23B.13C.12D.34(24-25九年级上·浙江温州·期中)32.如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为()A .14B .12C .34D .1(24-25九年级上·全国·期中)33.小王、小李和小张3名都报名参加所在社区的志愿工作,但社区根据实际情况只需要他们中的2人.有人建议他们采用随机抽签的方式确定参加人,则小王和小李同时参加的概率为( )A .19B .16C .29D .13(24-25九年级上·浙江杭州·阶段练习)34.某射击运动员在同一条件下的射击成绩记录如下:射击次数1002004008001000“射中九环以上”的次数87172336679850“射中九环以上”的频率0.870.860.840.850.85根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A .0.84B .0.85C .0.86D .0.87(24-25九年级上·陕西·阶段练习)35.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数/n 粒550100200500100020003000发芽频数m 4459218847695119002850发芽频率mn0.800.900.920.940.9520.9510.950.95根据试验结果,若需要保证的发芽数为2500粒,则以下四个数与需试验的种子数最接近的粒数为()A.2500B.2700C.2800D.3000(24-25九年级上·辽宁沈阳·阶段练习)36.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果0.25的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.挪一枚一元硬币,落地后正面朝上C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.挪一个质地均匀的正六面体骰子,向上的面点数是4二、填空题(24-25九年级上·上海嘉定·阶段练习)37.布袋中有2个红球和1个白球,它们除颜色外其他都一样,如果从布袋中一次摸出两个球,那么一次摸出的两个球都是红球的概率为.(23-24九年级上·内蒙古包头·阶段练习)38.在一个不透明的袋子中装有若干个白球和5个红球,这些球除颜色外都相同.每次从袋子中随机换出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.25近,则袋子中白球约有个(24-25九年级上·山东济南·阶段练习)39.在不透明袋子里装有8个白球和黑球,这些球除颜色外完全相同,每次从袋子里摸出1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.2513.估计袋中黑球有.(24-25九年级上·浙江杭州·阶段练习)40.某学习小组做“用频率估计概率”的试验时,计算了某一结果出现的频率,并绘制了表格,则该结果发生的概率约为(精确到0.01).试验次数100500100020004000频率0.370.320.340.3390.333(24-25九年级上·北京·期中)41.在一次宣传杭州亚运会的有奖竞猜活动中,获奖者从放有只有颜色不同的3个小球(1个黑球,1个白球,1个黄球)的不透明布袋中摸球.若摸到一个黑球奖励一个亚运会吉祥物“宸宸”,摸到一个白球奖励一个“琮琮”,摸到一个黄球奖励一个“莲莲”.一个获奖者先从布袋中任意摸出一球,不放回,再摸出一球,则得到一个“莲莲”和一个“琮琮”的概率 .(24-25九年级上·广东深圳·阶段练习)42.某林业局将一种树苗移植成活的情况绘制成如图所示的折线统计图,由此可估计这种树苗移植1200棵,成活的大约有棵.(24-25九年级上·四川成都·阶段练习)43.如图,在Rt ABC V 中,90ACB Ð=°,8AC =,6BC =,将ABC V 绕点B 按逆时针方向旋转30°后得到11A BC V ,现随机地向该图形内掷一枚小针,则针尖落在阴影部分概率为.(24-25九年级上·重庆·开学考试)44.在一个不透明的盒子中装有三张卡片,分别标有数字1、2、3,这些卡片除数字不同外其余均相同,小明从盒子里随机抽取一张卡片记下数字后放回,洗匀后在随机抽一张卡片,则两次抽取的卡片之积是偶数的概率是.三、解答题(24-25九年级上·浙江杭州·阶段练习)45.一个不透明的布袋里只有2个红球和2个白球(仅颜色不同).(1)若从中任意摸出一个球,是红球的概率为多少?(2)若从中任意摸出一个球,记下颜色后放回,再摸出一个球,两个都是红球的概率为多少?(请用列表或画树状图的方法来表示)(24-25九年级上·陕西渭南·期中)46.2024年巴黎奥运会新增了四个项目:霹雳舞,滑板,冲浪,运动攀岩,依次记为A,B,C,D,体育老师把这四个项目分别写在四张背面完全相同的卡片上,将这四张卡片背面朝上,洗匀放好.(1)体育老师想从这四张卡片中随机抽取一张,去了解该项目在奥运会中的得分标准,恰好抽到是B(滑板)的概率是_____;(2)体育老师想从中选出两个项目,然后做成手抄报给同学们普及一下,他先从这四张卡片中随机抽取一张不放回,再从剩下的三张卡片(洗匀后)中随机抽取一张,请用列表或画树状图的方法,求体育老师抽到的两张卡片恰好是C(冲浪)和D(运动攀岩)的概率.(24-25九年级上·四川达州·阶段练习)47.在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n很大时,摸到白球的概率将会接近(精确到0.01),假如你摸一次,你摸到白球的概率为;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下,如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?(24-25九年级上·浙江杭州·阶段练习)48.有一个圆形转盘,分黑色、白色两个区域.(1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:实验次数n(次)10100200050001000050000100000白色区域次数m(次)334680160034051650033000落在白色区域频率mn0.30.340.340.320.340.330.33请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________.(2)若该圆形转盘白色扇形的圆心角为120°,黑色扇形的圆心角为240°,转动转盘两次,请用画树状图或列表的方法求指针一次落在白色区域,另一次落在黑色区域的概率.(24-25九年级上·山西运城·阶段练习)49.“2024年9月22日,太原举行马拉松比赛”,赛事共有四项:A“马拉松”、B“半程马拉松”、C“迷你马拉松”、D“家庭亲子跑”.小凡、小明和小颖参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到四个项目组.(1)为估算本次赛事参加“迷你马拉松”的人数,小凡对部分参赛选手作如下调查:调查总人数501002005001000参加“迷你马拉松”人数214579200401参加“迷你马拉松”频率0.3600.450______0.4000.401①请填出表中所缺的数据.②请估算本次赛事参加“迷你马拉松”人数的概率______.(精确到0.1)③若本次参赛选手大约有40000人,请你估计参加“迷你马拉松”的人数是多少?(2)利用画树状图或列表的方法,求小明和小颖至少有一人被分配到“迷你马拉松”项目组的概率.(24-25九年级上·浙江嘉兴·阶段练习)50.用频率估计概率需要大量重复试验,当重复试验的次数大量增加时,频率就稳定在相应的概率附近,下图是某项试验示意图.(1)下列事件比较符合该试验的有________(填序号);①掷一次骰子点数大于2;②从2个男生,2个女生中随机挑选2名学生去参加比赛,选中1男1女;③从一副扑克牌中抽一张牌,颜色是红桃;④6个形状相同的球中有2个红球,摸一次摸到红球.(2)这幅图中的频率是不是关于试验次数的函数?请说明理由.(24-25九年级上·浙江温州·期中)51.2024年夏季奥运会在法国巴黎举行,某4档电视台A、B、C、D在同一时间进行了现场直播,直播节目表如下表所示.小夏和小王都是体育迷,他们在各自家里同一时间观看了直播节目.电视台A B C D直播节目乒乓球篮球射击网球(1)小夏收看了乒乓球直播的概率为________;(2)请用列表或画树状图的方法求小夏和小王收看同一个直播节目的概率.(23-24九年级上·四川成都·期中)52.某学校准备开设篮球、足球、排球、游泳等4项体育特色课程,为了解学生的参与情况,该校随机抽取了部分学生的报名情况(每人选报一个项目),小颖根据调查结果绘制了两幅不完整的统计图,请你根据图中信息,解答下列问题:(1)本次抽样调查的总人数为______人.(2)扇形统计图中“排球”对应的圆心角的度数为_______.若该学校共有学生1200名,请估计参加“游泳”的有________人.(3)通过初选有4名优秀同学(两男两女)顺利进入了游泳选拔赛,学校将推荐2名同学参加新一轮比赛.请用画树状图或列表法求出参加新一轮比赛的2名同学恰为一男一女的概率.1.B【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.画出树状图展示所有9种等可能的结果数,找出两人恰好到一处的结果数,然后根据概率公式求解即可.【详解】解:画树状图如图:共有9种等可能的结果数,其中两人恰好到一处的结果数为3,\小刚、小强两人恰好选到一处的概率3193==,故选:B .2.C【分析】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】解:设盒子中黑色棋子可能有x 颗,0.630x=18x =经检验,18x =符合题意.∴盒子中黑色棋子可能有18颗.故选:C .3.110##0.1【分析】本题主要考查了画树状图求概率,正确画出树状图成为解题的关键.先根据题意画出树状图确定所有等可能出现的结果数,其中两次取出的都是红球的情况数,然后用概率公式求解即可.。
2024~2025学年度九年级数学上册第25单元概率初步01讲核心[含答案]
示.
根据试验结果回答下列问题. (1)估计这种玉米种子发芽的概率是______(精确到 0.1). (2)如果该种玉米种子发芽后的成秧率为 90% ,那么在相同条件下种 10000 粒该种玉米种子 大约可得到多少棵玉米秧苗?
试卷第 9 页,共 13 页
【练经典】
27.两个同学在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计 图,符合这一结果的试验可能是( )
摸球试验后,统计发现摸到黄色球的频率稳定在 40% .由此可推测口袋中黄色球的个数为
()
A.15 个
B.20 个
C.21 个
D.24 个
9.小宇为了关注淮安要闻,下载淮安 APP 时,想借助初三阶段学习过的概率相关知识估算
出黑色部分的面积:如图是正方形边长为 5cm 的正方形,在正方形区域内随机投掷 500 个点,
判断事件的类型
1.事件的分类 必然事件:一定会发生
事件 确定事件 不可能事件:一定不会发生 不确定事件:可能发生,也可能不发生
试卷第 2 页,共 13 页
2.依据可能性判断
事件
必然事件 随机事件 不可能事件
事件发生的可能性 P = 1
0< P <1 P =0
【例题】
1.在一个不透明的抽奖盒里装有除颜色外无其他差别的 3 个红球、1个黄球和1个蓝球,从
1.概率表示事件发生的可能性的大小
2.简单概率的计算公式: 一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,那么出现
1 每一种结果的概率都是 .如果事件 A 包括其中的 m 种可能的结果,那么事件 A 发生的概
n 率 P( A) = m .
n
难点解析-人教版九年级数学上册第二十五章概率初步重点解析练习题(含答案解析)
人教版九年级数学上册第二十五章概率初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.562、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于123、小丽准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,2,0这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是()A.12B.13C.14D.164、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.345、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.246、在一个不透明的盒子中装有30个白、黄两种颜色的乒乓球,这些乒乓球除颜色外都相同.班长进行了多次的摸球试验,发现摸到黄色乒乓球的频率稳定在0.3左右,则盒子中的白色乒乓球的个数可能是()A.21个B.15个C.12个D.9个7、下列事件中,属于不可能事件的是( )A.某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在1个标准大气压下,90 ℃的水会沸腾8、在一个不透明的口袋中装有12个白球、16个黄球、24个红球、28个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在0.3左右,则小明做实验时所摸到的球的颜色是()A.白色B.黄色C.红色D.绿色9、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下面四个推断合理的是()A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.10、掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1 B.25C.35D.12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).2、有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.3、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为13,则袋中白球的个数是________.4、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同.从两个箱子中各随机摸出1个球,摸出1红1白的概率是______.5、某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)三、解答题(5小题,每小题10分,共计50分)1、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是____人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为_____度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.2、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A,B,C,D,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有 人,被调查者“不太喜欢”有 人;(2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率.3、2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A 组:7580x ≤<,B 组:8085x ≤<.C 组:8590x ≤<,D 组:9095x ≤<,E 组:95100x ≤≤,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了 名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.4、为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A 、B 、C 、D 表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n ,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A 、D 等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D 等级的概率.5、商场在国庆期间举行部分商品优惠促销活动,顾客只能从以下两种方案中选择一种: 方案一:购物每满200元减66元;方案二:顾客购物达到200元可抽奖一次.具体规则是:在一个箱子内装有四张一样的卡片,四张卡片中有2张写着数字1,2张写着数字5.顾客随机从箱子内抽出两张卡片,两张卡片上的数字和记为w ,w 的值和享受的优惠如表所示.(1)若按方案二的抽奖方式,利用树形图(或列表法)求一次抽奖获得7折优惠的概率;(2)若某顾客的购物金额为a元(200300a<<),请用所学统计与概率的知识,求出选择方案二更优惠时a的取值范围.-参考答案-一、单选题1、C【解析】【详解】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【考点】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2、D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【考点】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义.3、D【解析】【分析】首先根据题意可得:可能的结果有:502,520,052,025,250,205;然后利用概率公式求解即可求得答案.【详解】解:∵她只记得号码的前5位,后三位由5,0,2,这三个数字组成,∴可能的结果有:502,520,052,025,250,205;∴他第一次就拨通电话的概率是:16.故选:D.【考点】此题考查了列举法求概率的知识.注意概率=所求情况数与总情况数之比.4、C【解析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解.【详解】从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是21 42 ,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状图是解题的关键.注意:从中任意摸出一张,放回搅匀后再任意摸出一张.5、B【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【详解】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.【考点】本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.6、A【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有白色乒乓球x个,列出方程求解即可.【详解】解:设袋中有白色乒乓球x个,由题意得3030x=0.3,解得x=21.故选:A.【考点】本题利用了用大量试验得到的频率可以估计事件的概率.关键是利用黄球的概率公式列方程求解得到黄球的个数.7、D【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可判断.【详解】A、是随机事件,故A选项错误;B、是随机事件,故B选项错误;C、是必然事件,故C选项错误;D、是不可能事件,故D选项正确.故选D.【考点】本题考查了不可能事件的定义,解题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【解析】【详解】试题解析:因为白球的概率为:12=0.15 12+16+24+28;因为黄球的概率为:1680=0.2;因为红球的概率为:2480=0.3;因为绿球的概率为:2880=0.35.故选C.9、C【解析】【分析】根据统计表中的数据和各个选项的说法可以判断是否正确,从而可以解答本题.【详解】A、当抽检口罩的数量是10000个时,口罩合格的数量是9213个,这批口罩中“口罩合格”的概率不一定是0.921,故该选项错误;B、由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,这批口罩中“口罩合格”的概率不一定是0.920,故该选项错误;C、随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920,故该选项正确;D、当抽检口罩的数量达到20000个时,“口罩合格”的概率不一定是0.921,故该选项错误.故选:C.【考点】本题考查了利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.10、D【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是:12故选:D.【考点】此题主要考查了概率的意义,正确把握概率的意义是解题关键.二、填空题1、0.9【解析】【分析】由题意根据概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率进行分析即可.【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【考点】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意掌握频率=所求情况数与总情况数之比.2、3 4【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34.故其概率为:34.【考点】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.3、6【解析】【分析】随机摸出一个球是红球的概率是133n=,可以得到球的总个数,进而得出白球的个数. 【详解】解:记摸出一个球是红球为事件A 13()3P A n== 9n ∴= ∴白球有936-=个 故答案为:6.【考点】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.4、59【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【详解】解:列表如下:由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为59,故答案为:59.【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.5、1 3【解析】【分析】根据题意计算中奖概率即可;【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,∴P(从其中一箱中随机抽取1件产品中奖)=21 63 ,故答案为:13.【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键.三、解答题1、 (1)120,见解析(2)90(3)300人(4)见解析,10%【解析】【分析】(1)由B的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)用C的人数除以调查总数再乘以360°即可得到答案;(3)用样本估计总体进行计算即可;(4)列出表格或画出树状图,得到所有可能的结果数,找出符合条件的结果数,再由概率公式求解即可.(1)因为参与B活动的人数为36人,占总人数30%,所以总人数36120 30%==人,则参与E活动的人数为:120303630618----=人;补全统计图如下:故答案为:120;(2)扇形C的圆心角为:3036090 120⨯︒=︒,故答案为:90;(3)最喜爱“测量”项目的学生人数是:301200300120⨯=人; 答:估计其中最喜爱“测量”项目的学生人数是300人;(4)列表如下:或者树状图如下:所以,选中B 、E 这两项活动的概率为:()2100%10%20BE P =⨯=选中. 【考点】 本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2、 (1)50;5(2)见解析(3)3 10【解析】【分析】(1)利用公式“该部分的人数÷部分所占的百分比=总人数”求解即可.(2)先算出B所占的百分比,然后再算出C的百分比及C对应的人数即可作图.(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可.(1)∵15÷30%=50(人),∴50×10%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;故答案为:50;5(2)∵B占总数的百分比为20÷50×100%=40%,∴C占总数的百分比为:1﹣10%﹣30%﹣40%=20%,∴C的人数为:50×20%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2人接受采访的所有可能如下:故:P(所选2人均为男生)63 2010 ==【考点】本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.3、 (1)400 名,D(2)见解析(3)1680人(4)见解析,3 5【解析】【分析】(1)用C组的人数除以C组所占的百分比可得总人数,再用总人数乘以B组所占的百分比,可求出m,从而得到第200位和201位数落在D组,即可求解;(2)求出E租的人数,即可求解;(3)用学校总人数乘以成绩优秀的学生所占的百分比,即可求解;(4)根据题意,画树状图,可得共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,再根据概率公式计算,即可求解.(1)解:9624%400÷=名,所以本次调查一天随机抽取 400 名学生的成绩,频数直方图中40015%60m=⨯=,∴第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D(2)解:E组的人数为40020609614480----=名,补全学生成绩频数直方图如下图:(3)解:该校成绩优秀的学生有1448030001680400+⨯=(人);(4)解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,∴恰好抽中一名男生和一名女生的概率为123205P==.【考点】本题主要考查了频数直方图和扇形统计图,用样本估计总体,利用树状图或列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.4、 (1)100,图形见解析(2)900(3)1 6【解析】【分析】(1)利用抽查的学生总数=A 等级的人数除以对应的百分比计算,求出总人数,即可求D 等级的人数,即可求解;(2)用全校的学生人数乘以每周参加课外兴趣小组活动累计时间不少于4小时的学生所占的百分比,即可求解;(3)设A 等级2人分别用A 1,A 2表示,D 等级2人分别用D 1,D 2表示,画出树状图,即可求解.(1) 解:根据题意得:4010040%n ==; ∴D 等级的人数为100-40-15-10=35(人),补全条形统计图如下:(2)解:学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数为10352000900100+⨯=(人); (3)解:设A 等级2人分别用A 1,A 2表示,D 等级2人分别用D 1,D 2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:一共有12中等可能结果,其中这2人均属D 等级的有2种,∴这2人均属D 等级的概率为21126=. 【考点】本题考查的是条形统计图和扇形统计图的综合运用,以及树状图法和列表法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、 (1)23(2)220300a <<【解析】【分析】(1)列出表格,得到所有的等可能的结果,根据概率公式即可得结果.(2)根据题意分别表示出顾客按方案一、方案二需要支付的金额,然后根据选择方案二更优惠列出不等式,即可求解.(1)解:列表如下:由上表可知共有12种结果,并且他们发生的可能性相等,其中和为6的有8种.∴该顾客选择方案二的抽奖方式获得7折优惠的概率为82123=; (2)解:依题意知200300a <<,所以该顾客可按方案二抽奖一次.选择方案二时,由(1)可知,该顾客获得“8折”优惠的概率为16,获得“7折”优惠的概率为23,获得“6折”优惠的概率为16, ∴方案二的平均打折数为1218767636⨯+⨯+⨯=. 选择方案一时,该顾客需要支付()66a -元.∴依题意可得:660.7a a ->,解得:220a >.∴当220300a <<时,该顾客选择方案二更优惠.【考点】本题主要考查了用树状图或列表法求概率以及概率的应用和一元一次不等式,解题的关键是注意用树状图或列表法列出所有的等可能的结果时,做到不重复、不遗漏,以及熟记求简单等可能性事件的概率=所求情况数与总情况数之比.。