乘法公式专项练习题

合集下载

乘法公式练习题

乘法公式练习题

乘法公式练习题1. 计算下列乘法公式的结果:- (a + b)(a - b)- (a + 2b)(a - 2b)- (3a - b)(3a + b)2. 将下列表达式展开并简化:- (2x + 3y)(2x - 3y)- (x - 4)(x + 4)- (5a + 2b)(5a - 2b)3. 利用乘法公式计算下列多项式的乘积:- (x + y)(x^2 - xy + y^2)- (2x - 3)(4x^2 + 6x + 9)- (a + b + c)(a - b + c)4. 验证下列等式是否成立,并说明理由:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- (a + b)(a - b) = a^2 - b^25. 完成下列乘法公式的填空题:- (x + y)(x - y) = x^2 - ____- (2x + 3)(2x - 3) = 4x^2 - ___- (a + b)(a^2 - ab + b^2) = a^3 + __ + b^36. 利用乘法公式解决实际问题:- 一个长方形的长是 (x + 3) 厘米,宽是 (x - 3) 厘米,求面积的表达式。

- 一个正方形的边长是 (2x + 1) 厘米,求面积的表达式。

- 一个三角形的底是 (a + b) 厘米,高是 (a - b) 厘米,求面积的表达式。

7. 推导并证明下列乘法公式:- (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc- (a - b + c)(a + b - c) = a^2 - b^2 + c^2 - 2bc8. 给出下列乘法公式的逆运算:- 如果 (a + b)(a - b) = a^2 - b^2,那么 a^2 - b^2 可以分解为两个因式的乘积是什么?- 如果 (a + 2b)(a - 2b) = a^2 - 4b^2,那么 a^2 - 4b^2 可以分解为两个因式的乘积是什么?9. 利用乘法公式解决下列问题:- 一个数的平方减去另一个数的平方等于 25,如果这两个数分别是 (x + 1) 和 (x - 1),求 x 的值。

乘法公式计算练习题初二

乘法公式计算练习题初二

乘法公式计算练习题初二在初二阶段,乘法公式的掌握是数学学习中的重要一步。

通过多次的练习,我们能够更好地理解和应用乘法公式,进一步提高自己的计算能力。

下面,我将为大家提供一些乘法公式计算练习题,希望能够帮助大家巩固乘法公式的运用。

1. 计算以下乘法公式:a) (2x + 3)(3x - 4)b) (x - 5)(x + 7)c) (3x + 4)(2x + 9)d) (4x - 2)(2x - 3)2. 计算以下乘法公式的值:a) (3 + 4)(2 - 1)b) (5 - 2)(9 + 1)c) (7 - 3)(4 - 2)d) (6 + 2)(10 - 5)3. 解下列表达式中的括号并计算:a) 2(3x + 4y) - 5(2x - y)b) 4(x + 3y) - 3(2x + 5y)c) 5(2x - 3y) + 2(4x + y)d) 3(5x + 2y) - 2(7x - 4y)4. 解下列乘法公式,并计算得出结果:a) (3 + 4 + 5)(2 - 1)b) (2 - 1)(5 - 3)(4 + 2)c) (2 + 3 - 1)(4 + 5 - 2)(6 - 3)d) (6 - 3)(5 - 2)(4 + 2)5. 通过乘法公式计算下列表达式的值:a) 2x(3x - 4y)b) 3(2x - 5y)(7 - x)c) (4x + 3y)(2x - 5y) - (7x - 2y)(3x + y)d) 5(3x - 2y)(4x + y) + 2(x - 3y)(5x + 2y)在解答以上题目时,我们可以按照乘法公式的优先级来计算,即先计算括号内的式子,再进行乘法运算。

在乘法运算中,我们需要熟练掌握乘法运算规则,如同符号相乘得正,异符号相乘得负等。

通过反复练习,相信大家能够更加熟练地使用乘法公式解决问题,并能够在日常生活和数学学习中灵活运用。

无论是解决实际问题,还是完成数学题目,乘法公式都扮演着重要的角色。

《乘法公式》习题精选

《乘法公式》习题精选

15.2乘法公式 习题精选一、选择题:1.下列式子能成立的是( )A .(a −b)2= a 2−ab+b2B .(a+3b)2= a 2+9b 2C .(a+b)2= a 2+2ab+b2 D .(x+3)(x −3) = x 2−x −92.下列多项式乘法中,可以用平方差公式计算的是( )A .( 2m −3n)(3n − 2m)B .(−5xy+4z)(−4z −5xy)C .(−21a −31b)( 31b+21a)D .(b+c −a)(a −b −c) 3.下列计算正确的是( ) A .( 2a+b)( 2a −b) = 2a 2−b 2B .(0.3x+0.2)(0.3x −0.2) = 0.9x 2−0.4C .(a 2+3b 3)(3b 3−a 2) = a 4−9b 6D .( 3a −bc)(−bc − 3a) = − 9a 2+b 2c 24.计算(−2y −x)2的结果是( ) A .x 2−4xy+4y2B .−x 2−4xy −4y2C .x 2+4xy+4y 2D .−x 2+4xy −4y 25.下列各式中,不能用平方差公式计算的是( )A .(−2b −5)(2b −5)B .(b 2+2x 2)(2x 2−b 2) C .(−1− 4a)(1− 4a) D .(−m 2n+2)(m 2n −2)6.下列各式中,能够成立的等式是( ) A .(x+y)2= x 2+y2B .(a −b)2 = (b −a)2C .(x −2y)2= x 2−2xy+y2D .(21a −b)2 =41a 2+ab+b 2二、解答题: 1.计算:(1)( 31x+32y 2)( 31x −32y 2);(2)(a+2b −c)(a −2b+c); (3)(m −2n)(m 2+4n 2)(m+2n); (4)(a+2b)( 3a −6b)(a 2+4b 2); (5)(m+3n)2(m −3n)2;(6)( 2a+3b)2−2( 2a+3b)(a −2b)+(−a+2b)2.2.利用乘法公式进行简便运算: ①20042; ②999.82;③(2+1)(22+1)(24+1)(28+1)(216+1)+1参考答案一选择题1. 答案:C说明:利用完全平方公式(a −b)2 = a 2−2ab+b 2,A 错;(a+3b)2 = a 2+ 2a(3b)+(3b)2 = a 2+6ab+9b 2,B 错;(a+b)2 = a 2+2ab+b 2,C 正确;利用平方差公式(x+3)(x −3) = x 2−9,D 错;所以答案为C .2. 答案:B说明:选项B ,(−5xy+4z)(−4z −5xy) = (−5xy+4z)(−5xy −4z),符合平方差公式的形式,可以用平方差公式计算;而选项A 、C 、D 中的多项式乘法都不符合平方差公式的形式,不能用平方差公式计算,所以答案为B .3. 答案:D说明:( 2a+b)( 2a −b) = ( 2a)2−b 2 = 4a 2−b 2,A 错;(0.3x+0.2)(0.3x −0.2) = (0.3x)2−0.22 = 0.09x 2−0.04,B 错;(a 2+3b 3)(3b 3−a 2) = (3b 3)2−(a 2)2 = 9b 6−a 4,C 错;( 3a −bc)(−bc − 3a) = (−bc)2−( 3a)2 = b 2c 2− 9a 2 = − 9a 2+b 2c 2,D 正确;所以答案为D .4. 答案:C说明:利用完全平方公式(−2y −x)2 = (−2y)2+2(−2y)(−x)+(−x)2 = 4y 2+4xy+x 2,所以答案为C .5. 答案:D说明:选项D ,两个多项式中−m 2n 与m 2n 互为相反数,2与−2也互为相反数,因此,不符合平方差公式的形式,不能用平方差公式计算,而其它三个选项中的多项式乘法都可以用平方差公式计算,答案为D .答案:B说明:利用完全平方公式(x+y)2 = x 2+2xy+y 2,A 错;(x −2y)2 = x 2−2x(2y)+(2y)2 = x 2−4xy+4y 2,C 错;(21a −b)2 =(21a)2−2(21a)b+b 2 =41a 2−ab+b 2,D 错;只有B 中的式子是成立的,答案为B .二、解答题1. 解:(1)(31x+32y 2)(31x −32y 2) = (31x)2−(32y 2)2 =91x 2−94y 4.(2) (a+2b −c)(a −2b+c)= [a+(2b −c)][a −(2b −c)]= a2−(2b−c)2= a2−(4b2−4bc+c2)= a2−4b2+4bc−c2(3)(m−2n)(m2+4n2)(m+2n)= (m−2n)(m+2n)(m2+4n2)= (m2−4n2)(m2+4n2)= m4−16n4(4)(a+2b)( 3a−6b)(a2+4b2)= (a+2b)•3•(a−2b)(a2+4b2)= 3(a2−4b2)(a2+4b2)= 3(a4−16b4)= 3a4−48b4(5) 解1:(m+3n)2(m−3n)2= (m2+6mn+9n2)(m2−6mn+9n2)= [(m2+9n2)+6mn][(m2+9n2)−6mn] = (m2+9n2)2−(6mn)2= m4+ 18m2n2+81n4− 36m2n2= m4− 18m2n2+81n4解2:(m+3n)2(m−3n)2= [(m+3n)(m−3n)]2= [m2−(3n)2]2= (m2−9n2)2= m4− 18m2n2+81n4(6)解1:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2= 4a2+12ab+9b2−2( 2a2+3ab−4ab−6b2)+a2−4ab+4b2 = 4a2+12ab+9b2− 4a2−6ab+8ab+12b2+a2−4ab+4b2= a2+10ab+25b2解2:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2= ( 2a+3b)2−2( 2a+3b)(a−2b)+(a−2b)2= [( 2a+3b)−(a−2b)]2= (a+5b)2= a2+10ab+25b22. 解:①20042= (2000+4)2= 20002+2•2000•4+42= 4000000+16000+16= 4016016②999.82= (1000−0.2)2= (1000)2−2×1000×0.2+(0.2)2= 1000000−400+0.04= 999600.04③(2+1)(22+1)(24+1)(28+1)(216+1)+1= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1= (22−1)(22+1)(24+1)(28+1)(216+1)+1= (24−1)(24+1)(28+1)(216+1)+1= (28−1)(28+1)(216+1)+1 = (216−1)(216+1)+1= 232−1+1= 232.。

乘法公式练习题及答案

乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。

(完整版)乘法公式练习含答案

(完整版)乘法公式练习含答案

乘法公式牢固专练一、填空题1.直接写出结果:(1)(x + 2)(x - 2)= _______;(2)(2x +5y)(2x - 5y)= ______;(3)(x - ab)(x+ ab)= _______;(4)(12+ b2)(b2- 12)= ______.2.直接写出结果:(1)(x + 5)2= _______; (2)(3m +2n)2= _______;(3)(x - 3y) 2= _______; (4) (2a b)2=_______;3(5)(- x+ y)2= ______; (6)( - x- y)2= ______.3.先观察、再计算:(1)(x + y)(x - y)= ______;(2)(y + x)(x - y)=______;(3)(y - x)(y + x)= ______;(4)(x + y)(- y+ x)= ______;(5)(x - y)(- x- y)=______ ;(6)( - x-y)(- x+ y)= ______.4.若 9x2+4y2= (3x + 2y) 2+ M ,则 M = ______.二、选择题1.以下各多项式相乘,能够用平方差公式的有().①(- 2ab+ 5x)(5x + 2ab) ②(ax-y)( - ax- y)③(- ab- c)(ab- c) ④ (m +n)( - m- n)(A)4 个(B)3 个(C)2 个(D)1 个2.若 x+ y= 6,x- y= 5,则 x2- y2等于 ( ).(A)11 (B)15 (C)30 (D)60 3.以下计算正确的选项是 ( ).(A)(5 - m)(5 + m)= m2- 25 (B)(1 - 3m)(1+ 3m)= 1- 3m2(C)( - 4-3n)( -4+ 3n)=- 9n2+16 (D)(2ab - n)(2ab+ n)= 4ab2- n24.以下多项式不是完满平方式的是().(A)x 2- 4x- 4 (B) 1m 2 m 4(C)9a2+ 6ab+ b2 (D)4t 2+ 12t+ 95.以低等式能够成立的是( ).(A)(a - b)2= (- a-b) 2 (B)(x - y)2= x2- y2(C)(m - n)2= (n- m)2 (D)(x - y)(x + y)= (- x- y)(x - y) 6.以低等式不能够恒成立的(A)(3x - y)2=9x 2- 6xy + y2(C) (1m n)2 1 m2 mn n 2 2 4三、计算题1.(3a2b)(3a2b).2 23.(2m3n )( 3n 2m ).3 4 4 3(B)(a + b- c)2= (c- a- b)2(D)(x - y)(x + y)(x 2- y2)= x4- y42. (x n- 2)(x n+ 2).4.2x 3y . 3 y 2x2 3x y x y6. (- m2n+ 2)( - m2n- 2).5.( )(4 ).4 2 27.(3x 2 y) 2. 8. (3mn- 5ab)2.4 39. (5a2- b4)2.10. (- 3x2+5y) 2.11. (- 4x3- 7y2 )2.12. (y- 3)2- 2(y+ 2)(y- 2).四、解答题1.应用公式计算: (1)103 97×;(2)1.02 0×.98;1 6 (3) 10 97 72.当 x= 1, y= 2 时,求 (2x- y)(2x + y)- (x+ 2y)(2y - x)的值.3.用合适方法计算: (1) (401)2;(2)299 2.24.若 a+ b= 17,ab= 60,求 (a- b)2和 a2+ b2的值.提升精练一、填空题a a1.( 3)(3 ) =_______.2 22. (- 3x- 5y)( - 3x+ 5y)= ______.3.在括号中填上合适的整式:(1)(x+ 5)(______) = x2- 25;(2)( m- n)(______) = n2-m2;(3)( - 1- 3x)(______) =1- 9x2;(4)( a+ 2b)(______) = 4b2- a2.4. (1)x2- 10x+ ______= ( -5)2:(2)x2+ ______+ 16= (______- 4)2;(3)x2- x+ ______= (x- ______)2;(4)4x2+ ______+ 9= (______+ 3)2.5.多项式 x2- 8x+ k 是一个完满平方式,则k= ______.6.若 x2+ 2ax+ 16 是一个完满平方式,则a= ______.二、选择题1.以下各式中能使用平方差公式的是( ).A 、 (x2- y2)( y2+ x2)B、 ( 1m2 1 n3)( 1 m2 1 n3) 2 5 2 5C、 (- 2x- 3y)(2x+ 3y)D、 (4x- 3y)(- 3y+4x)2.下面计算 (- 7+a+ b)(- 7- a-b)正确的选项是 ().A 、原式= (- 7+ a+ b)[ -7- (a+ b)] =- 72- (a+ b)2B、原式= (- 7+ a+ b)[ - 7- (a+ b)] = 72+ (a+ b)2C、原式= [- (7- a- b)][ - (7+ a+ b)] = 72- (a+b)2D、原式= [- (7+ a)+ b][ - (7+ a)- b]= (7+ a)2- b23. (a+ 3)(a2+ 9)(a- 3)的计算结果是 ( ).A 、 a4+ 81 B、- a4- 81 C、a4- 81 D、 81- a4 4.以下式子不能够成立的有 ()个.①( x- y)2= (y- x)2② (a-2b)2=a2-4b2③ (a-b)3=(b-a)(a-b)2④( x+ y)(x- y)= (- x- y)( - x+y) ⑤1- (1+ x)2=- x2- 2xA 、 1 B、 2 C、3 D、 45.计算(a b)2的结果与下面计算结果相同的是().2 2A 、1(a b) 2 B 、1( a b)2 ab 2 2C、1( a b)2 ab D、1( a b)2 ab 4 4三、计算题1. ( 3a 21b2 )( 1 b2 3a 2 ). 2. (x+ 1)(x2+ 1)(x- 1)( x4+ 1).2 23. (m- 2n)(2n+ m)- (- 3m-4n)(4n- 3m) .4. (2a+ 1)2(2a- 1)2.5.( x- 2y) 2+ 2(x+2y)( x- 2y) + (x+2y)2.6. (a+ b+2c)(a+b- 2c).7. (x+ 2y- z)(x- 2y+ z).8. (a+ b+c)2.9.( x 2y 1)2.3四、解答题1.一长方形场所内要修建一个正方形花坛,预计花坛边长比场所的长少8米、宽少6米,且场所面积比花坛面积大 104 平方米,求长方形的长和宽.2.回答以下问题:(1) 填空: x2 1 ( x 1 )2 ______=( x 1 )2 ______.x2 x x(2) 若 a 1 5 ,则 a2 1 的值是多少 ?a a2(3) 若 a2- 3a+ 1= 0,则a 2 1a 2的值是多少 ?超越导练1 1 1 1 11.巧算: (1) (1 )(1 2 )(12 4 )(1 8)15;2 2 2 26(2)(3+ 1)(3 2+ 1)(34+ 1)(38+ 1) ⋯(32n+1) .2.已知: x, y 正整数,且4x2- 9y2= 31,你能求出x, y 的 ?一.3.若 x2- 2x+ 10+ y2+ 6y= 0,求 (2x-y)2的.4.若 a4+b4+a2b2=5, ab=2,求 a2+ b2的.5.若△ABC 三边 a, b, c 满足 a2+ b2+ c2= ab+bc+ ca,试问△ ABC乘法公式参照答案牢固专练一、填空题1. (1) x2-4;(2)4 x2-25y2;(3) x2- a2b2;(4) b4-144.2. (1) x +10x+25;(2)9 m+12mn+4n ;(3) x -6xy+9y ;(4) 4a22 2 2 2 2 的三边有何关系?4ab b239(5)x2-2xy+ y2;(6) x2+2xy+ y2.2222222222223. (1) x - y ; (2) x -y ; (3) y -x ; (4) x - y ; (5) y - x ;(6) x - y . 二、 选择题1. B 2 . C 3 . C 4 . A 5 .C 6 .D 三、 计算题1. 9a 4b22 .x 2n-4. 3 .46. mn - 4 7 .9 x + xy +4y .4 22216 94 m 29n 2. 4 . 2x 23 y 2 .5 . y 2 x 29 16324 168 .9 2 2- 30 + 252 2.mn mnab a b 9. 25a 4 -10a 2b 4+ b 8. 10 . 9x 4- 30x 2y + 25y 2. 11 . 16x 6+ 56x 3y 2+ 49y 4.12.- y 2- 6y + 17. 四、 解答题1. (1)9991 ;;(3)48 2.- 15.99493. (1) 1640 1; (2)89401 .4. 49;169.4提升精练一、 填空题1.a 2 9.2.9x 2-25y 2. 3.(1) x - 5. (2) - m -n . (3)3x - 1. (4)2b - a .41 1 5. 16.6.± 4.4. (1)25; x ; (2)- 8x ; x ; (3); (4)12 x ; 2x .4 2二、 选择题1. A 2 . C 3 . C 4 . B 5 .D 三、 计算题1. 1 b49a 42.x 8- 13.- 8m 2+12n 24.16a 4- 8a 2+ 15. 4x 2.46. a 2+ 2ab + b 2- 4c 2 7.x 2 -4y 2- z 2+4yz 8.a 2 +b 2 +c 2 +2ab + 2bc + 2ac9. x 24xy 4 y 22 x4 y 133 9四、 解答题1.长 12 米,宽 10 米. 2. (1)2; 2; (2)23; (3)7.超越导练1. (1)2. (2) 132n 11 2. x = 8; y = 53. 254. 3 5.相等.22。

乘法公式的认识练习题

乘法公式的认识练习题

乘法公式的认识练习题一、选择题1. 下列哪个选项不是乘法公式?A. (a+b)(a-b)=a²-b²B. (a-b)(a+b)=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²2. 计算下列表达式的结果是:(2x+3)(2x-3)A. 4x²-9B. 4x²+9C. 9-4x²D. 9+4x²3. 以下哪个表达式是正确的完全平方公式?A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²4. 根据平方差公式,下列哪个等式是正确的?A. (x-y)(x+y)=x²-y²B. (x+y)(x-y)=y²-x²C. (x-y)(x+y)=y²-x²D. (x+y)(x-y)=x²+y²5. 计算下列表达式的结果是:(3x-2)²A. 9x²-12x+4B. 9x²+12x+4C. 9x²-12x-4D. 9x²+6x+4二、填空题6. 根据完全平方公式,(2a+3)²的展开式是________。

7. 利用平方差公式,(x-2y)(x+2y)的结果是________。

8. 计算下列表达式:(4a-5b)²,其结果是________。

9. 如果(3m+n)²=9m²+6mn+n²,那么(3m-n)²的结果是________。

10. 根据完全平方公式,(2x-1)²的展开式是________。

乘法公式加减法练习题(打印版)

乘法公式加减法练习题(打印版)

乘法公式加减法练习题(打印版)### 乘法公式加减法练习题(打印版)#### 一、乘法公式练习题1. 计算下列乘法公式:- (a + b)²- (a - b)²- (a + b)(a - b)2. 应用乘法公式解决以下问题:- 如果 \( a = 3 \) 和 \( b = 4 \),求 \( (a + b)(a - b) \) 的值。

- 已知 \( x = 2 \) 和 \( y = 5 \),求 \( (x + y)² \) 的值。

3. 完成以下乘法公式的展开:- \( (2x + 3y)² \)- \( (3x - 2y)(2x + 3y) \)4. 判断下列表达式是否正确,并给出正确答案:- 表达式:\( (a + b)² = a² + b² \)- 表达式:\( (a - b)² = a² - 2ab + b² \)5. 利用乘法公式简化下列表达式:- \( 4x² - 9y² \)- \( 9x² - 4y² \)#### 二、加减法练习题1. 完成以下加减法运算:- \( 5 + 7 - 2 \)- \( 12 - 7 + 3 \)2. 解决以下问题:- 如果你有 15 个苹果,给了朋友 3 个,然后买了 5 个,现在你有多少个苹果?- 从图书馆借了 8 本书,还了 3 本,又借了 4 本,现在你有多少本书?3. 应用加减法解决实际问题:- 一个班级有 40 名学生,其中 15 名是男生,其余是女生。

这个班级有多少名女生?- 一个商店原来有 100 件商品,卖出了 30 件,又进了 20 件新的商品,现在商店里有多少件商品?4. 完成以下加减法混合运算:- \( 34 + (8 - 5) \)- \( 45 - (15 + 3) \)5. 判断下列加减法运算是否正确,并给出正确答案:- 运算:\( 7 + 8 - 3 = 12 \)- 运算:\( 9 - 5 + 2 = 6 \)#### 三、综合练习题1. 利用乘法公式和加减法解决以下问题:- 如果 \( a = 2 \) 和 \( b = 5 \),求 \( (a + b)² - (a - b)² \) 的值。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

初二上册数学乘法公式练习题

初二上册数学乘法公式练习题

初二上册数学乘法公式练习题在初二上册的数学学习中,乘法公式是一个重要的内容。

乘法公式是指将两个或多个数相乘时使用的特定公式。

通过掌握乘法公式,我们能够更快、更准确地进行乘法计算。

本文将为大家提供一些乘法公式的练习题,帮助大家巩固乘法公式的运用。

练习题一:单项乘法公式运算1. 52 * 7 = ____。

答案:364。

2. 63 * 9 = ____。

答案:567。

3. 85 * 6 = ____。

答案:510。

4. 97 * 4 = ____。

答案:388。

5. 34 * 12 = ____。

答案:408。

练习题二:多项乘法公式运算1. (6 + 9) * 4 = ____。

答案:60。

2. (5 - 3) * (8 + 2) = ____。

答案:20。

3. (7 + 2) * (6 - 3) = ____。

答案:27。

4. (8 - 4) * (10 + 2) = ____。

答案:48。

5. (9 + 3) * (7 - 2) = ____。

答案:60。

练习题三:应用乘法公式解决实际问题1. 某书店每天卖出50本书,如果连续卖出7天,共卖出多少本书?答案:350本。

2. 某超市原价为每袋4.5元的大米进行促销,打8折后售价为多少?答案:3.6元。

3. 一包纸巾共有8包,每包纸巾有36张,共有多少张纸巾?答案:288张。

4. 一直线上有10个点,每两个点之间都有一段直线连接,共有多少段直线?答案:45段。

5. 小明在一周内每天早上跑步,每天跑5公里,共跑了多少公里?答案:35公里。

通过以上练习题,我们可以巩固数学乘法公式的运用。

通过反复练习,大家可以更加熟练地应用乘法公式解决实际问题。

希望大家能善于运用乘法公式,提高数学计算的准确性和效率。

乘法公式专项练习题

乘法公式专项练习题

乘法公式专项练习题乘法是数学中非常重要的运算之一,掌握乘法公式对于解决各种数学问题至关重要。

在这份文档中,我们将提供一系列乘法公式的专项练习题,帮助您巩固和加深对乘法公式的理解和应用。

练习题1:计算下列乘积:1) (2x)(-3x)2) (4a)(-5b)3) (-6)(2x^2)练习题2:简化下列乘积表达式:1) 3x^2 * 5x^32) -4a^2 * 2a^43) -6x^3 * -2x^2练习题3:计算下列表达式的值:1) (4 + 2)(6 - 3)2) (5 - 3)^23) (2x + 3)(4x - 5)练习题4:计算下列表达式的值:1) (2 + 3) + (4 - 1)2) (5 - 2) * 33) (2x + 5) - (3x - 4)练习题5:利用分配律计算下列表达式的值:1) 2(3x + 4)2) -5(2a - 3)3) -x(2x^2 - 3x + 1)练习题6:计算下列乘积并简化结果:1) (3a + 2b)(3a - 2b)2) (-4x - 5y)(4x + 5y)3) (2x^2 + 3xy - 5y^2)(2x^2 - 3xy + 5y^2)练习题7:计算下列表达式的值:1) (-2)^32) 3^2 * 2^43) (-5)^2 * (-3)^3练习题8:计算下列乘积:1) -2 * (-3)2) 0 * 53) 7 * (-4)练习题9:计算下列乘积并用科学计数法表示结果:1) 2.5 * 10^4 * 1.2 * 10^32) 6.8 * 10^5 * 3.2 * 10^23) 5.2 * 10^7 * 7.6 * 10^1练习题10:计算下列乘积并用适当的单位表示结果:1) 5 km * 2 h2) 3 m * 4 s3) 10 g * 5 cm^3以上是乘法公式的专项练习题,通过解答这些题目,您将更加熟悉和掌握乘法公式的运用。

如果您遇到了困难或有任何疑问,建议您向老师寻求帮助,他们将为您提供更详细的解答和指导。

完整版)乘法公式专项练习题

完整版)乘法公式专项练习题

完整版)乘法公式专项练习题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()。

答案:D。

以上都可以。

2.下列多项式的乘法中,可以用平方差公式计算的是()。

答案:B。

(-a+b)(a-b)3.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()。

答案:C。

14.计算[(a-b)(a+b)]等于()。

答案:A。

a2-b25.已知(a+b)2=11,ab=2,则(a-b)2的值是()。

答案:B。

36.若x2-7xy+M是一个完全平方式,那么M是()。

答案:D。

49y27.若x,y互为不等于的相反数,n为正整数,你认为正确的是()。

答案:B。

xn、XXX一定是互为相反数。

8.下列计算中,错误的有()。

答案:D。

4个。

①(3a+4)(3a-4)=9a2-16;②(2a2-b)(2a2+b)=4a4-b2;③(3-x)(x+3)=-x2+9;④(-x+y)·(x+y)=-x2+y2.9.若x2-y2=30,且x-y=-5,则x+y的值是()。

答案:A。

5.10.已知a1996x1995,b1996x1996,c1996x1997,那么a2b2c2ab bc ca的值为()。

答案:C。

3.11.已知x0,且M(x22x1)(x22x1),N(x2x1)(x2x1),则M与N的大小关系为()。

答案:A。

XXX。

12.设a、b、c是不全相等的任意有理数。

若x a2bc,y b2ca,z c2ab,则x、y、z()。

答案:D。

至少有一个大于0,至少有一个小于0.1.$(-2x+y)(-2x-y)=4x^2-y^2$,$(-3x^2+2y^2)(3x^2+2y^2)=9x^4-4y^4$。

2.$(a+b-1)(a-b+1)=a^2+b^2-2b$,$(a+b-1)^2-(a-b+1)^2=4ab-2a$。

3.差为$(5-2)^2-(5-4)^2=9$。

4.$a^2+b^2-2a+2b+2=0$,$a^{2004}+b^{2005}=a^2+b^2-ab(a-b)^2=(a-b)^2$。

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。

整式乘法公式练习题

整式乘法公式练习题

整式乘法公式练习题整式乘法公式专项过关训练一、用乘法公式计算1) $(-m+5n)(-m-5n)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:m+5n)(-m-5n)=(-m)^2-(5n)^2=m^2-25n^2$ 2) $(3x-1)(3x+1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:3x-1)(3x+1)=(3x)^2-(1)^2=9x^2-1$3) $(y-5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:y-5)^2=y^2-10y+25$4) $(-2x+5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x+5)^2=(-2x)^2-2(-2x)(5)+5^2=4x^2-20x+25$ 5) $(3^2x-y)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:3^2x-y)^2=(9x)^2-2(9x)(y)+y^2=81x^2-18xy+y^2$ 6) $(y+3x)(3x-y)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:y+3x)(3x-y)=3x^2-y^2$7) $(-2+ab)(2+ab)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2+ab)(2+ab)=-4+a^2b^2$8) $(2x-3)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x-3)^2=4x^2-12x+9$9) $(-2x+3y)(-2x-3y)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2x+3y)(-2x-3y)=12x^2-9y^2$10) $(m-3)(m+3)$解:使用公式$(a-b)(a+b)=a^2-b^2$,得到:m-3)(m+3)=m^2-9$11) $(x+6y)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:x+6y)^2=x^2+12xy+36y^2$13) $(x+1)(x-3)-(x+2)^2+(x+2)(x-2)$解:先按照乘法公式计算:x+1)(x-3)=x^2-2x-3$x+2)^2=x^2+4x+4$x+2)(x-2)=x^2-4$代入原式得:x+1)(x-3)-(x+2)^2+(x+2)(x-2)=x^2-2x-3-x^2-4x-4+x^2-4=x^2-6x-11$14) $(a+2b-1)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:a+2b-1)^2=a^2+4ab-2a+4b^2-4b+1$15) $(2x+y+z)(2x-y-z)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:2x+y+z)(2x-y-z)=4x^2-y^2-z^2$16) $(2x-1)(x+2)-(x-2)^2-(x+2)^2$解:先按照乘法公式计算:2x-1)(x+2)=2x^2+3x-2$x-2)^2=x^2-4x+4$x+2)^2=x^2+4x+4$代入原式得:2x-1)(x+2)-(x-2)^2-(x+2)^2=2x^2+3x-2-x^2+4x-4-x^2-4x-4=-2x^2-5$17) $12^2-12\cdot2\cdot4$解:使用公式$a^2-b^2=(a+b)(a-b)$,得到:12^2-12\cdot2\cdot4=(12+8)(12-8)=20\cdot4=80$18) $(2x+3)(2x-3)-(2x-1)^2$解:先按照乘法公式计算:2x+3)(2x-3)=4x^2-9$2x-1)^2=4x^2-4x+1$代入原式得:2x+3)(2x-3)-(2x-1)^2=4x^2-9-(4x^2-4x+1)=-9+4x$ 19) $(2x+y+1)(2x+y-1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:2x+y+1)(2x+y-1)=(2x+y)^2-1=4x^2+4xy+y^2-1$ 20) $(2x-1)(x-3)$解:使用公式$(a-b)(c-d)=ac-ad-bc+bd$,得到:2x-1)(x-3)=2x^2-7x+3$二、判断正误:对的画“√”,错的画“×”.1) $(a-b)(a+b)=a^2-b^2$ √2) $(b+a)(a-b)=a^2-b^2$ ×3) $(b+a)(-b+a)=a^2-b^2$ √4) $(b-a)(a+b)=a^2-b^2$ √5) $(a-b)(a-b)=a^2-b^2$ ×6) $(a+b)^2=a^2+b^2$ ×7) $(a-b)^2=a^2-b^2$ ×8) $(a-b)^2=(b-a)^2$ √三、填空题1.$(2x+5y)^2=4x^2+20xy+25y^2$2.$(2x+3y)(3x-y)=6x^2+5xy-3y^2$3.$(2x-3y)(3x-2y)=6x^2-13xy+6y^2$4.$(4x+6y)(2x-3y)=8x^2-6xy+18y^2$5.$(x-2y)^2=x^2-4xy+4y^2$6.$(x-3)(x+3)(x^2+9)=x^4-9$7.$(2x+1)(2x-1)+1=4x^2$8.$(x+2)(x-2)=x^2-4$9.$(2x-1)^2-(x+2)^2=x^2-6x-3$10.$(x+1)(x-2)-(x-3)(x+3)=2x-7$11.将(2x+ )( -y) = 4x^2 - y^2中的空格填上4x和y,得到(2x+4x)(y -y) = 4x^2 - y^2.小幅度改写为:将(2x+ )( -y) = 4x^2 - y^2转化为(2x+4x)(y -y) = 4x^2 - y^2.12.(1+x)(1-x)(1+x^2)(a+x^4)中间没有等号,无法求解,删除该段。

乘法公式练习题

乘法公式练习题

乘法公式练习题乘法是数学中一种基本的运算方式,它是将两个或多个数相乘的操作。

在解决实际问题和数学计算中,乘法是一个常用的运算。

为了提高乘法运算的技巧和熟练度,我们需要进行大量的练习。

本文将为大家提供一些乘法公式练习题,帮助大家巩固和提高自己的乘法运算能力。

练习一:简单的乘法计算1. 2乘以3等于几?2. 5乘以6等于几?3. 8乘以4等于几?答案:1. 2乘以3等于6。

2. 5乘以6等于30。

3. 8乘以4等于32。

练习二:带有括号的乘法计算2. (5-2)乘以6等于几?3. (8-4)乘以(2+2)等于几?答案:1. (2+3)乘以4等于20。

2. (5-2)乘以6等于18。

3. (8-4)乘以(2+2)等于16。

练习三:多位数的乘法计算1. 12乘以5等于几?2. 45乘以6等于几?3. 78乘以9等于几?答案:1. 12乘以5等于60。

2. 45乘以6等于270。

练习四:乘法交换律的应用1. 3乘以7等于几?7乘以3等于几?是不是两次得到的结果相同?2. 8乘以9等于几?9乘以8等于几?是不是两次得到的结果相同?3. 6乘以4等于几?4乘以6等于几?是不是两次得到的结果相同?答案:1. 3乘以7等于21,7乘以3等于21,是的,两次得到的结果相同。

2. 8乘以9等于72,9乘以8等于72,是的,两次得到的结果相同。

3. 6乘以4等于24,4乘以6等于24,是的,两次得到的结果相同。

练习五:乘法分配律的应用1. 5乘以(2+3)等于几?2. (4+6)乘以8等于几?3. (7-2)乘以(9-5)等于几?答案:1. 5乘以(2+3)等于25。

2. (4+6)乘以8等于80。

3. (7-2)乘以(9-5)等于20。

通过以上练习题,我们可以加深对乘法公式以及乘法运算规律的理解和掌握。

在实际问题中,乘法运算常常被广泛应用。

通过大量练习,我们能够快速准确地进行乘法计算,提高自己的数学运算能力。

希望通过这些乘法练习题,大家能够更好地理解和应用乘法公式,为解决实际问题提供帮助。

七年级数学-乘法公式专项练习(含答案解析)

七年级数学-乘法公式专项练习(含答案解析)

1. 已知(x+y)2=49,(x-y)2=25,则xy=七年级数学 乘法公式专项练习(含答案解析)( )A .-6B .6C .12D .242. 已知x-y=3,xy=2,则x 2+y 2的值为( )A .5B .7C .11D .133. 设a=x-2020,b=x-2022,c=x-2021,若a 2+b 2=56,则c 2=( )A .27B .24C .22D .204. 若16x 2+1加上一个单项式能成为一个完全平方式(是个多项式),这个单项式是 .5.6. (2022春•金水区期中【)知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b 的四个相同的长方形拼成的一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a+b)2、(a-b)2、ab 三者之间的等量关系式: ;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a 3+b 3+3ab(a+b).利用上面所得的结论解答下列问题:⑴已知x+y=6,xy=411,求(x-y)2的值;⑵已知a+b=6,ab=7,求a 3+b 3的值.1.解:因为(x+y)2-(x-y)2=4xy=49-25=24,所以xy=6,故选:B .2. 解:将x-y=3两边平方得:(x-y)2=x 2+y 2-2xy=9,∴a=c+1,b=c-1,∵a 2+b 2=56,∴(c+1)2+(c-1)2=56,∴c 2=27将xy=2代入得:x 2+y 2-2×2=9,即x 2+y 2=13,故选:D .3. 解:∵a=x-2020,b=x-2022,c=x-2021,.故选:A .4. 解:8x 或-8x 或64x 4.5. a-b)26. 解:【知识生成】(a+b)2=4ab+(, 故答案为:(a+b)2=4ab+(a-b)2;【知识迁移】⑴∵x+y=6,xy=411, ∴(x-y)2=(x+y)2-4xy=36-11=25;⑵∵a+b=6,ab=7,∴a 3+b 3=(a+b)3-3ab (a+b)=216-3×7×6=216-126=90.。

八年级上册《乘法公式》专项练习.doc

八年级上册《乘法公式》专项练习.doc

乘法公式专项练习一、两数和乘以它们的差1、填空题(1) (b + a)(b—a) =, (x—2) (x + 2) =;⑵(3a + b) (3a-b)=, (2x2-3) (—2x^—3) =;2 12 1 , ,⑶(§ + a")(§ 一a“)=,(+ 3》)(一3b) -4a2-9b2(4)(x + y) (—x + y) =, (—7m— 1 In) (1 In—7m) =;(5)(2y — x)(—x — 2y) =,(Q —2)(Q2+4)(Q + 2) =2、计算题(写过程)(1)(〃犷 + 5〃)(5〃一〃仃) (2) (0.2x + 2y)(2y — 0.2x) (3) (1 - xy~)(-xy -1)(4) (-3a/+ 2a%)(3aZ/+ 2。

2力)(5) (a-!)((? +l)(tz2 +1) (6) (2x -3y - l)(2.r + 3y+1)3、用简便方法计算(写过程)1 2(3)38.5? -36.52⑷ 20032 -20012 (1) 92X88 ⑵ 60-x59-3 34、计算(3 +1)(32 +1)(34 +1)(38 +1)(316 +1)(3) (3a — 2们(3a + 2b)(9a 2 + 4/)(4) (2x—l)(2x + l) —2(x—2)(x + 2)(2) (a + b—c)(a—b + c)二、两数和乘以它们的差一、选择题⑴下列可以用平方差公式计算的是()A、(x—y)(x + y)B、(x-y) (y-x)C、(x—y)(—y + x)D、(x—y)(—x + y)⑵下列各式中,运算结果是9。

2-16》2 的是()A、(—3。

+ 4Z?)(—3Q— 4Z?)B、(—4。

+ 3Q)(—4Z? — 3。

)C、(4/?+3Q)(4Z? - 3。

)D、(3Q+2Z?)(3Q— 8Z?)⑶若(-7子-5y)( __________ ) = 49x4--25y2,括号内应填代数式()A、 7%2 + 5yB、— 7%2— 5yC、— 7%2 +5yD、 7%2— 5y(4)(3a + :)2(3a一:)2 等于()A、9a---B、81a4 a i 914 16 2 16 2二、计算题⑴ x(9x-5)-(3x+ l)(3x-l)三、应用题学校警署有一块边长为(2a+ b)米的正方形草坪,经统一规划后,南北向要缩短3米,而东西向要加长3米, 问改造后的长方形草坪的面积是多少?4、解不等式(y + 2)2—(3+y)(y — 3)<l(3) 13.42-2X13.4 + 3.42一、填空题(1) (x + y)2=,(X —y)2=; (2) (3a -bV=, (—2a + Z?)2= 1 ,1 (3) (x ――)-=JC+- 2 4⑷(3x +)2=+ 12x +;⑸(a + b)2 = (a _ b)2 +,(-x - 2y)2= ⑹ 安一2)2_安 + 2)2=; 二、计算题(写过程) (D (jx--y )2(2)(2Q + 8)2+0 — 2Q )2(3) (〃? + l)(/n -1)(〃? 2—1)(4) (2m + n)2(2m — n)2⑸(2X + 3)2 — (3X + 2)2(6) (x-2y+ 3z)2三、用简便方法计算(写过程) ⑴ 982⑵ 2003?4^ 已知 x + y = a , xy = b ,求(x — y) 2 , x 2+ y 2, x 2—xy + y25、已矢n x(x +1) - (x~ + y) = -3 ,求xy 的值(3) (Q + b —C)(Q — /? + c) 0 — 2)2(尸+4)2 0 + 2)2一、判断题(l)(2x-3y)2= 4x2 -6xy + 9y2( )⑵(3a2 + 2b)2 = 9a4 + 4b2( )⑶(一0.2〃/ 一〃?〃)2 = 0.04〃?4 +0.6〃?3〃 + ( )⑷(一a + b)(a—b)= —(a—b)(a—b)= -a2-2ab + b2 ( )二、选择题⑴]-m + 2n)2的运算结果是( )A^ m2 + 4-inn + 4-n2B、~m~ - 4-inn + 4-n2 C^ m~ -4-inn + 4-n2D、m~ - 2mn + 4-n2⑵运算结果为l-2x2 + 4x4的是( )A、(—1 +『)2B、(1 + x2)2C、(-1-[2)2D、(1 —x)2⑶已知a- - Nab + 64b2是一个完全平方式,则N等于( )A、8B、+8C、+16D、+32⑷如果(x —y)?+M = (x +y)?,那么M等于( )A、2xyB、— 2xyC、4xyD、— 4xy三、计算题⑴(x —y)2(x + y)2 ⑵(5x —3y)2+(5x + 3y)24、已知(a + b)2=3, (a—bV=2 ,分别求 a2 + b2, ab 的值。

乘法公式计算练习含答案

乘法公式计算练习含答案

乘法公式计算练习一.完全平方公式(共30小题)1.计算:(1)(﹣2x)3﹣4x(x﹣2x2);(2)(a﹣b)2+b(a﹣b).2.计算:(2x+1)2﹣(x+2)2.3.计算:(2a﹣3b)2﹣(3a﹣2b)2.4.计算:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2].5.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.6.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.7.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.8.运算:(x+2)29.已知:a m•a n=a5,(a m)n=a2(a≠0).(1)填空:m+n=,mn=;(2)求m2+n2的值;(3)求(m﹣n)2的值.10.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.11.已知x﹣y=1,x2+y2=9,求xy的值.12.计算:(1)9992.(2)计算()2﹣()2.13.若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x4+y4;(3)x﹣y.14.(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知a﹣b=4,ab=3求a2﹣5ab+b2的值.15.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.16.化简:(a+1)2﹣a(a+1)﹣1.17.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.18.若x+y=3,xy=2,求x2﹣xy+y2的值.19.已知x=2y﹣6,求﹣3x2+12xy﹣12y2的值.20.已知x+y=4,x2+y2=10.(1)求xy的值;(2)求(x﹣y)2﹣3的值.21.23.142﹣23.14×6.28+3.142.22.(a﹣3b)(3b﹣a).23.(3a﹣b)2.24.计算(2a﹣1)2+2(2a﹣1)+3.25.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).26.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.27.已知(a+b)2=13,(a﹣b)2=7,求下列各式的值:(1)a2+b2;(2)ab.28.若(4x﹣y)2=9,(4x+y)2=81,求xy的值.29.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.30.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.二.平方差公式(共14小题)31.计算:(a+5b)(a﹣5b)﹣(a+2b)2.32.(a+1)(a2﹣1)(a﹣1).33.利用乘法公式进行简算:(1)2019×2021﹣20202;(2)972+6×97+9.34.(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.35.计算:(x+y+z)(x+y﹣z)﹣(x+y+z)2.36.计算:(x+3)(x﹣3)﹣(2﹣x)2.37.计算(1)(2a+b)2(2)(5x+y)(5x﹣y)38.运用适当的公式计算:(1)(﹣1+3x)(﹣3x﹣1);(2)(x+1)2﹣(1﹣3x)(1+3x).39.利用整式乘法公式计算下列各题:(1)201×199(2)101240.计算:(2x+3y)(2x﹣3y).41.计算:3(2x﹣1)2﹣(﹣3x﹣4)(3x﹣4).42.化简:b(a+b)+(a+b)(a﹣b).43.(﹣2x+3y﹣1)(﹣2x﹣3y+1).44.(1﹣a)(a+1)(a2+1)(a4+1).秋季第十讲——乘法公式计算练习参考答案与试题解析一.完全平方公式(共30小题)1.计算:(1)(﹣2x)3﹣4x(x﹣2x2);(2)(a﹣b)2+b(a﹣b).【分析】(1)根据幂的乘方与积的乘方运算法则以及单项式乘多项式的运算法则计算即可;(2)根据完全平方公式以及单项式乘多项式的运算法则计算即可.【解答】解:(1)(﹣2x)3﹣4x(x﹣2x2)=﹣8x3﹣4x2+8x3=﹣4x2;(2)(a﹣b)2+b(a﹣b)=a2﹣2ab+b2+ab﹣b2=a2﹣ab.【点评】本题主要考查了整式的混合运算,熟记完全平方公式以及单项式乘多项式的运算法则是解答本题的关键.2.计算:(2x+1)2﹣(x+2)2.【分析】根据完全平方公式展开后,再合并同类项即可.【解答】解:(2x+1)2﹣(x+2)2=4x2+4x+1﹣x2﹣4x﹣4=3x2﹣3.【点评】本题主要考查了整式的混合运算,熟记完全平方公式是解答本题的关键.(a±b)2=a2±2ab+b2.3.计算:(2a﹣3b)2﹣(3a﹣2b)2.【分析】利用完全平方公式将其展开,然后合并同类项.【解答】解:原式=4a2﹣12ab+9b2﹣9a2+12ab﹣4b2=﹣5a2+5b2.【点评】本题主要考查了完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.4.计算:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2].【分析】根据平方差公式以及单项式乘以多项式的运算把括号展开,再合并同类项,最后运用平方差公式计算即可.【解答】解:(2a+b)2[(a﹣b)2+2a(a﹣b)+a2]=(2a+b)2(a2﹣2ab+b2+2a2﹣2ab+a2)=(2a+b)2(4a2﹣4ab+b2)=(2a+b)2(2a﹣b)2=(4a2﹣b2)2.【点评】此题主要考查了整式的乘法,熟练掌握忒覅覅买基金解答此题的关键.5.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.【分析】先根据完全平方公式得出(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47),再求出即可.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键,注意:(a+b)2=a2+2ab+b26.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.【分析】①先根据完全平方公式得出x2+5xy+y2=(x+y)2+3xy,再代入求出即可;②先根据完全平方公式求出x2+y2=(x+y)2﹣2xy=19,再根据完全平方公式得出x4+y4=(x2+y2)2﹣2x2y2,代入求出即可.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=343.【点评】本题考查了完全平方公式,能正确根据完全平方公式进行变形是解此题的关键,注意:(a+b)2=a2+2ab+b2.7.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第二步开始出错,其错误原因是去括号时没有变号;(2)请你帮助他写出正确的简化过程.【分析】(1)解答过程从第2步开始算错,根据去括号法则,括号前面是“﹣”号的,去括号和它前面“﹣”号,括号里面的每项都变号.第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)正确化简过程为:a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.【点评】本题考查整式的加减,整式加减实际是去括号、合并同类项的过程.8.运算:(x+2)2【分析】根据完全平方公式求出即可.【解答】解:(x+2)2=x2+4x+4.【点评】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键.9.已知:a m•a n=a5,(a m)n=a2(a≠0).(1)填空:m+n=5,mn=2;(2)求m2+n2的值;(3)求(m﹣n)2的值.【分析】(1)利用同底数幂的乘方和幂的乘方得到m+n和mn的值;(2)利用完全平方公式得到m2+n2=(m+n)2﹣2mn,然后利用整体代入的方法计算;(3)利用完全平方公式得到(m﹣n)2=m2+n2﹣2mn,然后利用整体代入的方法计算.【解答】解:(1)∵a m•a n=a5,(a m)n=a2,∴a m+n=a5,a mn=2,∴m+n=5,mn=2,故答案为5,2;(2)m2+n2=(m+n)2﹣2mn=52﹣2×2=21;(3)(m﹣n)2=m2+n2﹣2mn=21﹣2×2=17.【点评】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.也考查了积的乘方与幂的乘方.10.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.【分析】(1)把201化为200+1,然后利用完全平方公式计算;(2)把1998化为1999﹣1,2000化为1999+1,然后利用平方差公式计算.【解答】解:(1)原式=(200+1)2=2002+2×200×1+12=40401;(2)原式=19992﹣(1999﹣1)(1999+1)=19992﹣19992+1=1.【点评】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.也考查了平方差公式.11.已知x﹣y=1,x2+y2=9,求xy的值.【分析】把x﹣y=1两边平方,然后代入数据计算即可求出xy的值.【解答】解:因为x﹣y=1,所以(x﹣y)2=1,即x2+y2﹣2xy=1;因为x2+y2=9,所以2xy=9﹣1,解得xy=4,即xy的值是4.【点评】本题考查了完全平方公式.解题的关键是掌握完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.12.计算:(1)9992.(2)计算()2﹣()2.【分析】(1)把999化为1000﹣1,然后利用完全平方公式计算;(2)利用完全平方公式展开,然后去括号后合并即可.【解答】解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.【点评】本题考查了完全平方公式:灵活运用完全平方公式.完全平方公式为(a±b)2=a2±2ab+b2.13.若x,y满足x2+y2=8,xy=2,求下列各式的值.(1)(x+y)2;(2)x4+y4;(3)x﹣y.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先根据完全平方公式进行变形,再代入求出即可;(3)先求出(x﹣y)2的值,再根据完全平方公式求出即可.【解答】解:(1)∵x2+y2=8,xy=2,∴(x+y)2=x2+y2+2xy=8+2×2=12;(2)∵x2+y2=8,xy=2,∴x4+y4=(x2+y2)2﹣2x2y2=82﹣2×22=64﹣8=56;(3)∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣2×2=4,∴x﹣y=±2.【点评】本题考查了完全平方公式,能熟记完全平方公式的内容是解此题的关键,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.14.(1)已知a m=2,a n=3,求a3m+2n的值;(2)已知a﹣b=4,ab=3求a2﹣5ab+b2的值.【分析】(1)由a3m+2n=a3m•a2n=(a m)3•(a n)2,即可求得答案;(2)先根据完全平方公式进行变形,再代入求出即可.【解答】解:(1)∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=72;(2)∵a﹣b=4,ab=3,∴a2﹣5ab+b2=(a﹣b)2﹣3ab=42﹣3×3=16﹣9=7.【点评】此题考查了同底数幂的乘法与幂的乘方,完全平方公式.此题难度适中,注意掌握整式的运算法则和乘法公式是解题的关键.15.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.【点评】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练运用完全平方公式和多项式乘多项式的运算法则,本题属于基础题型.16.化简:(a+1)2﹣a(a+1)﹣1.【分析】利用完全平方公式以及整式的乘法运算法则计算得出答案.【解答】解:原式=a2+2a+1﹣a2﹣a﹣1=a.【点评】此题主要考查了单项式乘以多项式、完全平方公式,正确掌握相关运算法则是解题的关键.17.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.【分析】(1)利用(a+b)2=(a﹣b)2+4ab,变形整式后整体代入求值;(2)先因式分解整式,再利用a2+b2=(a﹣b)2+2ab变形整式后代入求值.【解答】解:(1)原式=(a﹣b)2+4ab=52+4=29;(2)原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=1×(25+2)=27.【点评】本题考查了整式的恒等变形和整体代入的思想方法,掌握和熟练运用完全平方公式的几个变形,是解决本题的关键.18.若x+y=3,xy=2,求x2﹣xy+y2的值.【分析】把x+y=3两边平方,利用完全平方公式化简,将xy=2代入计算求出x2+y2的值,即可求出所求.【解答】解:把x+y=3两边平方得:(x+y)2=9,即x2+2xy+y2=9,将xy=2代入得:x2+4+y2=9,即x2+y2=5,则原式=5﹣2=3.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.已知x=2y﹣6,求﹣3x2+12xy﹣12y2的值.【分析】由x=2y﹣6可得x﹣2y=﹣6,再把所求式子利用提公因式法以及完全平方公式因式分解即可解答.【解答】解:由x=2y﹣6得x﹣2y=﹣6,∴﹣3x2+12xy﹣12y2=﹣3(x2﹣4xy+4y2)=﹣3(x﹣2y)2=﹣3×(﹣6)2=﹣108.【点评】本题主要考查了因式分解的应用,熟记完全平方公式是解答本题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20.已知x+y=4,x2+y2=10.(1)求xy的值;(2)求(x﹣y)2﹣3的值.【分析】(1)把x+y=4两边平方得到(x+y)2=16,然后利用完全平方公式和x2+y2=10可计算出xy的值;(2)利用完全平方公式得到(x﹣y)2﹣3=x2﹣2xy+y2﹣3,然后利用整体的方法计算.【解答】解:(1)∵x+y=4,∴(x+y)2=16,∴x2+2xy+y2=16,又∵x2+y2=10,∴10+2xy=16,∴xy=3;(2)(x﹣y)2﹣3=x2﹣2xy+y2﹣3=10﹣2×3﹣3=1.【点评】本题考查了完全平方公式:灵活运用完全平方公式:(a±b)2=a2±2ab+b2.21.23.142﹣23.14×6.28+3.142.【分析】利用完全平方公式得到原式=(23.14﹣3.14)2,然后进行乘方运算即可.【解答】解:原式=23.142﹣2×23.14×3.14+3.142=(23.14﹣3.14)2=400.【点评】本题考查了完全平方公式:熟练运用完全平方公式.完全平方公式为:(a±b)2=a2±2ab+b2.22.(a﹣3b)(3b﹣a).【分析】先变形得到原式=﹣(a﹣3b)2,然后利用完全平方公式计算.【解答】解:原式=﹣(a﹣3b)(a﹣3b)=﹣(a﹣3b)2=﹣a2+3ab﹣9b2.【点评】本题考查了完全平方公式:熟练运用完全平方公式.完全平方公式为:(a±b)2=a2±2ab+b2.23.(3a﹣b)2.【分析】根据完全平方公式进行计算.【解答】解:(3a﹣b)2=(3a)2﹣2×3a×b+b2=9a2﹣6ab+b2.【点评】本题考查了完全平方公式.解题的关键是掌握完全平方公式的运用,注意:完全平方公式有:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.24.计算(2a﹣1)2+2(2a﹣1)+3.【分析】先根据完全平方公式和单项式乘以多项式算乘法,再合并同类项即可.【解答】解:原式=4a2﹣4a+1+4a﹣2+3=4a2+2.【点评】本题考查了完全平方公式,单项式乘以多项式,合并同类项法则等知识点,能正确根据运算法则和乘法公式进行化简是解此题的关键,注意:(a+b)2=a2+2ab+b2,(a ﹣b)2=a2﹣2ab+b2.25.(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解答】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.【点评】此题主要考查了一元一次不等式的解法以及单项式乘以多项式,正确掌握相关运算法则是解题关键.26.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)﹣8=﹣3;当a+b=﹣5时,(a+b)﹣8=﹣5﹣8=﹣13.【点评】本题考查了完全平方公式在代数式求值中的应用,熟练掌握完全平方公式并正确变形是解题的关键.27.已知(a+b)2=13,(a﹣b)2=7,求下列各式的值:(1)a2+b2;(2)ab.【分析】(1)先利用完全平方公式将等式(a+b)2=13,(a﹣b)2=7的左边展开,然后两式相加即可求得a2+b2的值;(2)先利用完全平方公式将等式(a+b)2=13,(a﹣b)2=7的左边展开,然后两式相减即可求得ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=13,(a﹣b)2=a2﹣2ab+b2=7,∴a2+b2=[(a+b)2+(a﹣b)2]÷2=(13+7)÷2=10;(2)∵(a+b)2=a2+2ab+b2=13,(a﹣b)2=a2﹣2ab+b2=7,∴.【点评】本题主要考查的是完全平方公式,能够应用完全平方公式对等式进行变形是解题的关键.28.若(4x﹣y)2=9,(4x+y)2=81,求xy的值.【分析】已知等式利用完全平方公式化简,计算即可求出所求.【解答】解:∵(4x﹣y)2=9①,(4x+y)2=81②,∴②﹣①得:(4x+y)2﹣(4x﹣y)2=72,∴4×4x×y=72,整理得:xy=.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.29.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.【分析】已知等式利用完全平方公式化简,相加减即可求出所求.【解答】解:由题意可知x2+2xy+y2=16①,x2﹣2xy+y2=4②,①+②得:2x2+2y2=20,∴x2+y2=10,①﹣②得:4xy=12,∴xy=3,∴3xy=9.【点评】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.30.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.【分析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与﹣1的和的5次幂,由(1)中的结论得:25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5,计算出结果.【解答】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25﹣5×24+10×23﹣10×22+5×2﹣1.=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5.=(2﹣1)5,=1.【点评】本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.二.平方差公式(共14小题)31.计算:(a+5b)(a﹣5b)﹣(a+2b)2.【分析】根据平方差公式、完全平方公式进行计算即可.【解答】解:(a+5b)(a﹣5b)﹣(a+2b)2=(a2﹣25b2)﹣(a2+4ab+4b2)=a2﹣25b2﹣a2﹣4ab﹣4b2=﹣29b2﹣4ab.【点评】本题考查平方差公式、完全平方公式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.32.(a+1)(a2﹣1)(a﹣1).【分析】根据平方差公式、完全平方公式进行计算即可.【解答】解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.【点评】本题考查平方差公式、完全平方公式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.33.利用乘法公式进行简算:(1)2019×2021﹣20202;(2)972+6×97+9.【分析】(1)利用平方差公式将2019×2021转化为(2020﹣1)(2020+1),进而得到20202﹣1﹣20202,求出答案;(2)利用完全平方公式将972+6×97+9转化为(97+3)2即可.【解答】解:(1)2019×2021﹣20202=(2020﹣1)(2020+1)﹣20202=20202﹣1﹣20202=﹣1;(2)972+6×97+9=972+2×3×97+32=(97+3)2=1002=10000.【点评】本题考查平方差公式、完全平方公式的应用,掌握平方差公式、完全平方公式的结构特征是正确应用的关键.34.(a+2b)(a﹣2b)﹣(a﹣2b)2﹣4ab.【分析】先利用平方差公式和完全平方公式展开,然后去括号后合并即可.【解答】解:原式=a2﹣4b2﹣(a2﹣4ab+4b2)﹣4ab=a2﹣4b2﹣a2+4ab﹣4b2﹣4ab=﹣8b2.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.也考查了完全平方公式.35.计算:(x+y+z)(x+y﹣z)﹣(x+y+z)2.【分析】分别根据平方差公式以及完全平方公式展开后,再合并同类项即可.【解答】解:(x+y+z)(x+y﹣z)﹣(x+y+z)2=(x+y)2﹣z2﹣[(x+y)+z]2=(x+y)2﹣z2﹣[(x+y)2+2z(x+y)+z2]=(x+y)2﹣z2﹣(x+y)2﹣2z(x+y)﹣z2=﹣2z2﹣2xz﹣2yz.【点评】本题主要考查了整式的混合运算,熟记公式是解答本题的关键.36.计算:(x+3)(x﹣3)﹣(2﹣x)2.【分析】根据平方差公式和完全平方公式展开后,再合并同类项即可.【解答】解:(x+3)(x﹣3)﹣(2﹣x)2.=x2﹣9﹣(4﹣4x+x2)=x2﹣9﹣4+4x﹣x2=4x﹣13.【点评】本题主要考查了平方差公式和完全平方公式,熟记公式是解答本题的关键.37.计算(1)(2a+b)2(2)(5x+y)(5x﹣y)【分析】(1)利用完全平方公式计算即可得到结果;(2)利用平方差公式计算即可得到结果.【解答】解:(1)原式=(2a)2+4ab+b=4a2+4ab+b;(2)原式=(5x)2﹣y2=25x2﹣y2.【点评】此题考查了整式的运算,熟练掌握乘法公式是解本题的关键.38.运用适当的公式计算:(1)(﹣1+3x)(﹣3x﹣1);(2)(x+1)2﹣(1﹣3x)(1+3x).【分析】(1)根据平方差公式进行计算即可.(2)根据平方差公式、完全平方公式进行计算即可.【解答】解:(1)原式=(﹣1)2﹣(3x)2=1﹣9x2;(2)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.【点评】本题考查了整式的混合运算,掌握运算法则是解题的关键.39.利用整式乘法公式计算下列各题:(1)201×199(2)1012【分析】(1)把原式化为(200+1)(200﹣1)进行计算即可;(2)根据101=100+1即可得出结论.【解答】解:(1)原式=(200+1)(200﹣1)=40000﹣1=39999;(2)原式=(100+1)2=1002+200+1=10000+200+1=10201.【点评】本题考查了平方差公式与完全平方公式,熟记公式是解答此题的关键.40.计算:(2x+3y)(2x﹣3y).【分析】根据平方差公式直接进行计算即可.【解答】解:(2x+3y)(2x﹣3y)=(2x)2﹣(3y)2=4x2﹣9y2.【点评】本题考查平方差公式的应用,掌握平方差公式的结构特征是正确应用的前提.41.计算:3(2x﹣1)2﹣(﹣3x﹣4)(3x﹣4).【分析】根据去括号法则以及完全平方公式和平方差公式化简计算即可.【解答】解:原式=3(4x2﹣4x+1)﹣(16﹣9x2)=12x2﹣12x+3﹣16+9x2=21x2﹣12x﹣13.【点评】本题主要考查了整式的混合运算,熟记完全平方公式和平方差公式是解答本题的关键.42.化简:b(a+b)+(a+b)(a﹣b).【分析】根据单项式乘多项式的运算法则及平方差公式化简即可.【解答】解:b(a+b)+(a+b)(a﹣b)=ab+b2+a2﹣b2=ab+a2.【点评】此题考查了整式的运算,熟练掌握运算法则是解本题的关键.43.(﹣2x+3y﹣1)(﹣2x﹣3y+1).【分析】根据平方差公式以及完全平方公式计算即可.【解答】解:(﹣2x+3y﹣1)(﹣2x﹣3y+1)=[(﹣2x)+(3y﹣1)][(﹣2x)﹣(3y﹣1)]=(﹣2x)2﹣(3y﹣1)2=4x2﹣9y2+6y﹣1.【点评】本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a﹣b)=a2﹣b2;完全平方公式:(a±b)2=a2±2ab+b2.44.(1﹣a)(a+1)(a2+1)(a4+1).【分析】根据平方差公式解答即可.【解答】解:(1﹣a)(a+1)(a2+1)(a4+1)=(1﹣a2)(1+a2)(a4+1)=(1﹣a4)(1+a4)=1﹣a8.【点评】此题考查平方差公式,关键是根据两个数的和与这两个数的差相乘,等于这两个数的平方差解答.第21页(共21页)。

整式乘法公式专项练习题

整式乘法公式专项练习题

整式乘法公式专项练习题乘法公式》练题(一)一、填空题1.(a+b)(a-b)=a^2-b^22.(x-1)(x+1)=x^2-1.(2a+b)(2a-b)=4a^2-b^2.(x-y)(x+y)=x^2-y^23.(x+4)(-x+4)=-x^2+16.(x+3y)(x-3y)=9y^2-x^2.(-m-n)(m-n)=m^2-n^24.4.98×10^2=(7+1)(7-1)=48.(a+b+c)(a+b-c)=a^2+b^2+c^2-2ab-2ac+2bc5.-(2x^2+3y)(3y-2x^2)=-6x^2y+9y^26.(a-b)(a+b)(a^2+b^2)=a^4-b^47.(a-4b)(a+4b)=9a^2-16b^2.(x-2x)(x+2x)=4x^2-25y^28.(xy-z)(z+xy)=-z^2+xy^2.(x-0.7y)(x+0.7y)=x^2-0.49y^29.(x+y^2)(x-y^2)=y^4-x^210.(x-1)(xn+xn-1+。

+x+1)=xn-1二、选择题11.C。

(-a-b)(a-b)可以使用平方差公式计算。

12.B。

(x+4)(x-4)=x^2-16.13.B。

(xy+z)(xy-z)不能使用平方差公式计算。

14.A。

需要乘以-4x^2-5y才能使用平方差公式计算。

XXX(1-a)(1+a)(1+a^2)=a^4+1-a^2-a^3-a^2-a^4-a^2=a^4-2a^2+1+2a^4=a^4+a^4-2a^2+1=(2a^4-2a^2+1)-a^4=2a^4-2a^2+1.16.A。

(x+5y)(-x+5y)=x^2-25y^2.三、解答题,无需修改。

1.17.1.03×0.9718.(-2x2+5)(-2x2-5)19.a(a-5)-(a+6)(a -6)20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)D.(x-5y)(5y-x)111 21.(x+y)(x-y)(x2+y2)22.(x+y)(x-y)-x(x+y)339 23.3(2x+1)(2x -1)-2(3x+2)(2-3x)1/3 24.9982-425.2003×2001-1.(-2x²+5)(-2x²-5)的乘积为多少?2.求解a(a-5)-(a+6)(a-6)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. x n 、y n 一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D. x 2n —1、— y 2n — 1 一 定相等10. 已知 a =1996x 1995, b =1996x 1996, c = 1996x 1997,那么 a 2 b 2 c 2 - ab -be - ca 的 值为( ). (A ) 1 (B ) 2 (C ) 3 (D ) 411. 已知 X = 0,且 M =(x 2x 1)(x -2x 1) , N =(x x 1)(x -x 1),则 M 与 N 的大小关系为( ). (A ) M N (B ) M :: N (C ) M 二 N (D )无法确定12. 设a 、b 、c 是不全相等的任意有理数.若x=a 2-bc , y 二b 2「ca,z 二c 2「ab ,则x 、y 、z ().A .都不小于0 B .都不大于0 C .至少有一个小于0 D .至少有一个大于0 二、填空题2 2 4 41. ( — 2x+y ) ( — 2x — y ) = __ . ( — 3x +2y ) ( ____ ) =9x — 4y .2. (a+b — 1) (a — b+1) = ( _____ 2—( ____ )13. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形 的面积,差是 _____ .4. 若 a 2+b 2 — 2a+2b+2=0,则 a 2004+b 2005= ___ .5. 5 — (a — b)的最大值是 ________ 当5— (a — b)取最大值时,a 与b 的关系是 ___________ .6.多项式9x 2 1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是_____________ (填上你认为正确的一个即可,不必考虑所有的可能情况) 。

、选择题 乘法公式专项练习题 1 •平方差公式(a+b ) (a — b ) =a 2— b 2中字母a , b 表示() A •只能是数 B •只能是单项式 C •只能是多项式 D •以上都可以 2 •下列多项式的乘法中,可以用平方差公式计算的是( ) A . (a+b ) (b+a ) B . ( — a+b ) (a — b ) 1 1 2 2 C .(丄 a+b ) (b — - a ) D . (a — b ) (b +a ) 3 3 3. 4. 5. 6. 7. 8. 列计算中,错误的有( )A . 1个 B . 2个 C . 3个 D . 4个 ®(3a+4) (3a — 4) =9a i — 4;购(2a 2— b ) (2a 2+b ) =4a 2— b 2; 2 2 2 @(3 — x ) (x+3) =x — 9; ④(一x+y ) •( x+y ) =—(x — y ) (x+y ) = — x — y . 若 x 2 — y 2=30,且 x — y=— 5,贝U x+y 的值是( )A . 5 B . 6 C . —6 D . — 5 若 x — x — m=(x — m)( x+1)且 x 工 0,则 m 等于( )A. —1 B.0C.1D.2 计算](a 2— b 2)( a 2+b 2): 2等于() A. a 4— 2a 2b 2+b 4 B. a 6+2a 4b 4+b 6 C.a 6— 2a 4b 4+b 6 D.a 8- -2a 4b 4+b 8 已知(a+b)2=11,ab=2,则(a — b)2的值是() A.11 B.3 C.5 D.19 若x 2— 7xy+M 是一个完全平方式,那么 皿是( )A . 7y 2B.49 y 2 C . £9 y 2 D.49y 2 2 24 n 为正整数,你认为正确的是() 9.若x,y 互为不等于0的相反数, B.( 丄八(丄广一定是互为相反数 x y1__ 2 2 17. 已知 x — 5x+1=0,贝卩 x + 為= ____ , X_x = ________ .x 8. 已知(2005 — a)(2003 — a)=1000,请你猜想(2005 — a) 2+(2003 — a) 2= ___ .9. 填空: ①a +b =(a+b) — _______ ②(a+b) =(a — b) +_ _③a 3+b 3=(a+b)3— 3ab( _) ④a 4+b 4=(a 2+b 2)2 — _ _⑤a 5+b 5=(a+b)(a 4+b 4) — _ ― ⑥a 5+b 5=(a 2+b 2)(a 3+b 3) — __ _10. 已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 ______________ -11. 已知(2013 —x)(2011 —x) =2012,那么(2013 - x)2 (2011 - x)2= __________ 。

12. 计算:5(6 1)(62 1)(64 1)(68 1) 1 = __________________ 。

13. ________________________________________________________ 已知x, y 满足x 2 y 2 2^2x 10y ,则代数式一^ = ____________________________________________x + y1 已知a - =3 ,a 15. ______________________________________________________ 已知 a —b = 3,a •c = -5,贝U 代数式 ac - bc a 2 - ab =_____________________________________16. 若 x-y =2,x 2 • y 2 =4,则 x 2002 - y 2002 = _____________ 。

17. 若x 2 -13x • 1 = 0,则x 4 •厶 的个位数是 _____________ 。

x18. x 2 y 2 z 2 -2x _4y 6z 14 = 0,贝U x y z= ___________________ 。

19. 如果正整数x,y 满足方程x 2-y 2=64,则这样的正整数对(x, y )的个数是 ______________ 。

20. 已知 a = 2013x 1,b = 2013x 2,c = 2013x 3, 则 a 2 b 2 c 2 - ab - be - ca = _____________21. 多项式x 2 + y 2-6x+8y +7的最小值为 ________________ .22. 1. 345X 0.345 X 2.69 — 1.3453 — 1.345 X 0.345 2= __________ :23. ___________________________________ 请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你 非常熟悉的公式,这个公式是 。

14. 4 2 .a +a +1= 2 - a24.如图2,在长为a的正万形中挖掉一个边长为b的小正万形(a>b),把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是 三、解答题11. 计算(1)( a -2b+3c)2— (a+2b — 3c)2; (2) [ab(3 - b) -2a(b — - b 2) ] ( - 3a 2b 3);2 (3) - 2100x 0.5 100x ( - 1)2005- ( - 1) -5; (4) [(x+2y)( x -2y)+4( x - y)2-6x ] - 6x.2 42 2 2 2 2 2 2 (5) (a+2) (a+4) (a+16) (a - 2) (6) 1 -2 +3 -4 +……+ 99 - 100 + 101(7) (2+1) (22+1) (24+1)-( 22n +1) +1 (n 是正整数);2. 解方程(1) x(9x - 5) - (3x - 1)(3 x+1)=5. (2) (x+2) + (2x+1) (2x - 1) =5 (x 2+3)3. 若 x 工 1,贝U( 1+x ) (1 — x ) =1 — x , (1 — x ) (1+x+x ) =1 — x , (1 — x )(?1+x+x+x ) =1-x 4. (1)观察以上各式并猜想:(1 — x ) (1+x+x 2+…+x n ) = _______ . (n 为正整数)(2)根据 你的猜想计算: ◎( 1 -2) (1+2+22+23+24+25) = _____ .②2+22+23+^ +2n = _____ (n 为正整数).③(x — 1 ) (x 99+x 98+x 97+…+x 2+x+1) = ______ .(3)通过以上规律请你进行下面的探索:®( a — b ) (a+b ) = _______ . ®(a — b ) (a +ab+b ) = ________ .@( a — b ) (a 3+a 2b+ab 2+b 3) = _____ .2 4 24 2 2 44. 计算.(2+1)(2 +1)(2 +1)=(2 -1)(2+1)(2 +1)(2 +1)=(2 - 1)(2 +1)(2 +1)=(24- 1)(2 4+1)=28- 1. 根据上式的计算方法,请计算364(3+1)(3 2+1)(3 4+1)…(332+1)-—的值. 2 5.已知 m i +n 2-6m+10 n+34=0 求 m+n 的值 6. 已知a+b = 6,a-b=4 求 ab 与 a 2+b 2 的值。

1117.已知(a-b)=5,ab=3 求(a b)2 与 3(a 2 b 2)的值。

8.已知 x ,y ,z=1,且—•一 •— =0,x y z求x 2 y 2 z 2的值?9. 广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向 要加长3米,则改造后的长方形草坪的面积是多少?10. 试说明不论x,y 取何值,代数式x 2 y 2 6^4y 15的值总是正数。

11. 已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式3(a 2 b 2 c 2^(a b c)2,请说明该三角形是什么三角形?12. 已知 a=3x-20, b=3xT8, c=3x-16,求:代数式 a 2 • b 2 • c 2 - ab - ac - bc 的值。

相关文档
最新文档