《图形的位似》专项练习

合集下载

图形的位似--巩固练习

图形的位似--巩固练习

图形的位似--巩固练习【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有( ).A.2个 B.3个 C.4个 D.5个2.下列说法错误的是( ).A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是( ) .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C (2,2),点D(3,1),则点D的对应点B的坐标是( )A.(4,2)B.(4,1)C.(5,2)D.(5,1)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).二.填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为__________.9.已知ABC,以点A为位似中心,作出ADE,使ADE是ABC放大2倍的图形,则这样的图形可以作出______个,它们之间的关系是__________.''''',已知OA=10cm,OA′10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A B C D E'''''的周长的比值是__________.=20cm,则五边形ABCDE的周长与五边形A B C D E11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.(2015•钦州)如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第,三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n= .14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点. (1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么? (2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.(2014秋•海陵区校级月考)如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误.故正确的是:(2)(3)(5).故选B.2.【答案】D.3.【答案】C.4.【答案】C.【解析】设点B 的坐标为(x ,y ),∵△ABE 和△CDE 是以点E 为位似中心的位似图形,∴=,=,解得x=5,y=2,所以,点B 的坐标为(5,2).故选C .5.【答案】B【解析】由位似图形的概念可知③和④对,故选B.6.【答案】D.【解析】∵AC>BC ,∴AC 是较长的线段,AB AC AC≈0.618AB.故选D .7.【答案】B.二、填空题8.【答案】50cm.9.【答案】2个; 全等.10.【答案】1:2. 【解析】∵五边形ABCDE 与五边形A′B′C′D′E′位似,OA=10cm ,OA′=20cm, ∴五边形ABCDE∽五边形A′B′C′D′E′,且相似比为:OA :OA′=10:20=1:2, ∴五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2. 故答案为:1:2.11.【答案】 .【解析】由BC∥DE 可得△ADE∽△ABC,所以,故.13. 【答案】16.【解析】由图形的变化规律可得×256=,解得n=16.14. 【解析】∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,又BD 平分∠ABC,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴BC=BD=AD,∵D 点是AC 的黄金分割点,三.解答题15.【答案与解析】(1)△ADE 和 △ABC 是位似图形.理由是: DE∥BC,所以∠ADE=∠B, ∠AED=∠C.所以△ADE∽△ABC,所以. 又因为 点A 是△ADE 和 △ABC 的公共点,点D 和点B 是对应点,点E 和点C是对应点,直线BD 与CE 交于点A ,所以△ADE 和 △ABC 是位似图形. (2)DE∥BC.理由是: 因为△ADE 和△ABC 是位似图形, 所以△ADE∽△ABC 所以∠ADE=∠B 所以DE∥BC.16.【答案与解析】解:(1)△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形,理由:∵AB∥CD∥EF,∴△DFE∽△DBA,△BFE∽△BDC,△AEB∽△DEC,且对应边都交于一点,∴△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形;(2)∵△BFE∽△BDC,△AEB∽△DEC,AB=2,CD=3,∴==,∴==,解得:EF=.。

位似(5个考点)(题型专练+易错精练)(教师版) 2024-2025学年九年级数学下册(人教版)

位似(5个考点)(题型专练+易错精练)(教师版) 2024-2025学年九年级数学下册(人教版)

专题27.3 位似(5个考点)【考点1 位似图形的识别】【考点2 位似图形性质】【考点3 位似图形的点坐标】【考点4 判定位似中心】【考点5 画已知图形放大或缩小n倍后的位似图形】【考点1 位似图形的识别】1.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是()A.B.C.D.【答案】D【分析】此题主要考查了位似变换,正确把握位似图形的定义是解题关键.根据位似图形的定义,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,进而判断得出答案.【详解】解:A、△ABC与△A′B′C′是位似关系,故此选项不合题意;B、△ABC与△A′B′C′是位似关系,故此选项不合题意;C、△ABC与△A′B′C′是位似关系,故此选项不合题意;D、△ABC与△A′B′C′对应边BC和B′C′不平行,故不存在位似关系,故此选项符合题意;故选:D.2.如图,在正方形网格中,△ABC的位似图形可以是()A.△BDE B.△FDE C.△DGF D.△BGF3.如图,线段AB∥CD∥EF,AD、BC相交于点O,点E、F分别在线段OC、OD上,则图中与△AOB位似的三角形是().A.△AOB B.△COD C.△EOF D.△EOF与△COD【答案】D【分析】本题考查位似图形.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,(对应边互相平行(或共线)),那么这样的两个图形叫做位似图形.根据位似图形的定义,判定即可.【详解】解:∵AB∥CD∴△AOB∽△DOC,∵AB∥EF∴△AOB∽△FOE,∵AD、BC相交于点O,点E、F分别在线段OC、OD上,∴与△AOB位似的三角形有△DOC和△FOE.故选:D.4.如图,在菱形ABCD中,对角线AC,BD相交于点O,M,N分别是边AB,AD的中点,连接OM,ON,MN,则下列叙述不正确的是()A.△AMO与△ABC位似B.△AMN与△BCO位似C.△ABO与△CDO位似D.△AMN与△ABD位似【答案】B【分析】本题主要考查了位似三角形,菱形的性质,三角形中位线定理根据位似三角形的概念:如果两个相似三角形的每组对应点所在的直线相交于一点,那么这两个三角形叫做位似三角形,结合菱形的性质逐项判断即可.【详解】解:∵四边形ABCD是菱形,对角线AC,BD相交于点O,∴点O是线段AC、BD的中点,AB∥CD,∴△AOB∽△COD,∴△ABO与△CDO位似,故C不符合题意;∵M是边AB的中点,∴OM是△ABC的中位线,∴OM∥BC,同理可得MN∥BD,ON∥AB,∴△AMO∽△ABC,△AMN∽△ABD,∴△AMO与△ABC位似,△AMN与△ABD位似,故A、D不符合题意;∵△AMN与△BCO每组对应点所在的直线没有相交于一点,∴△AMN与△BCO不位似,故B符合题意.故选B.5.下列各组图形中的两个三角形均满足△ABC∽△DEF,这两个三角形不是位似图形的是()A.B.C.D.【答案】B【分析】根据位似图形的概念和性质,对应顶点的连线相交于一点的两个相似多边形叫位似图形.性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行,对各选项逐一分析,即可得出答案.【详解】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、C、D三个图形中的两个图形都是位似图形;B中的两个图形不符合位似图形的概念,对应边不平行,故不是位似图形.故选:B.【点睛】本题主要考查了位似变换,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.6.如图是与△ABC位似的三角形的几种画法,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据位似图形的性质判断即可.【详解】解:由位似图形的画法可得:4个图形都是△ABC的位似图形.故选:D.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.7.下列语句中,不正确的是()A.位似的图形都是相似的图形B.相似的图形都是位似的图形C.位似图形的位似比等于相似比D.位似中心可以在两个图形外部,也可以在两个图形内部【答案】B【分析】利用位似图形的性质分别判断得出即可.【详解】A、位似的图形都是相似的图形,正确,不合题意;B、相似的图形不一定是位似的图形,错误,符合题意;C、位似图形的位似比等于相似比,正确,不合题意;D、位似中心可以在两个图形外部,也可以在两个图形内部,正确,不合题意.故选:B.【点睛】此题主要考查了位似图形的性质,正确掌握位似图形的相关性质是解题关键.8.下列每组的两个图形,是位似图形的是()A.B.C.D.【答案】D【分析】根据位似图形的概念对各选项逐一判断,即可得出答案.【详解】对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A. B.C. 三个图形中的两个图形都不是位似图形;而D.的对应顶点的连线能相交于一点,故是位似图形故选D.【点睛】本题考查了位似变换,熟练掌握位似图形的概念是解题的关键.【考点2 位似图形性质】9.如图,△ABC与△DEF位似,点O为位似中心,若OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:4C.4:1D.2:1【答案】B【分析】根据位似图形的概念求出△ABC 与△DEF 的相似比,根据相似三角形的性质计算即可.本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.【详解】解:∵△ABC 与△DEF 是位似图形,OA:OD =1:2,∴△ABC 与△DEF 的位似比是1:2.∴△ABC 与△DEF 的相似比为1:2,∴△ABC 与△DEF 的面积比为1:4,故选:B .10.如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,OE EA =32,则S 四边形EFGH S 四边形ABCD 等于( )A .94B .925C .32D .3511.如图,△ABC与△DEF是以点O为位似中心的位似图形,若△ABC与△DEF的面积比为4:9,则OA:OD 为()A.4:9B.2:3C.2:1D.3:112.如图,已知△ABC与△DEF位似,位似中心为点O,若OD:OA=2:3,则△DEF与△ABC的周长之比为().A.2:3B.4:9C.9:4D.3:2【答案】A【分析】本题考查的是位似图形的概念,掌握位似图形的对应边平行、相似三角形的性质是解题的关13.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若O B′:B′B=3:2,则△A′B′C′的面积与△ABC的面积之比为( )A.3:5B.4:9C.4:25D.9:2514.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是A.1:1B.1:2C.1:4D.1:915.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:A A′=1:2,则△ABC与△A′B′C′的面积之比为()A.1:2B.1:4C.1:9D.4:9【答案】C【分析】本题考查了位似的性质和相似三角形的性质,得到△ABC和△A′B′C′的相似比是解题的关键.根据位似的性质得到△ABC∽△A′B′C′,相似比为OA:O A′=1:3,再根据相似三角形的性质得△ABC和△A′B′C′的面积之比即为相似比的平方.【详解】解:∵△ABC和△A′B′C′是以点O为位似中心的位似图形,OA:A A′=1:2,∴OA:O A′=1:3,∴S△ABC :S△A′B′C′=12:32=1:9,故选:C.16.如图,点O为四边形ABCD内的一点,连结OA,OB,OC,OD,若OA′OA =OB′OB=OC′OC=OD′OD=14,则四边形A′B′C′D′的面积与四边形ABCD的面积比为()A.1:2B.1:4C.1:8D.1:1617.如图,△ABC和△DEF是位似图形,位似中心是O,若OA:OD=1:2,S△ABC =3,那么S△DEF=()A.6B.9C.12D.18【答案】C18.如图,△ABC与△DEF是以点O为位似中心的位似图形,AC:DF=2:3,若OC=8,则CF的长为()A.12B.8C.6D.419.如图,点O是两个位似图形的位似中心,若O A′=A′A,则△ABC与△A′B′C′的周长之比等于.20.如图,△ABC与△DEF位似,点O为位似中心,已知OA:AD=3:2,则△ABC与△DEF的面积比为.【答案】9:25【分析】本题考查位似图形的概念,相似三角形的性质,难度较易,掌握相关知识是解题关键.先根据位似图形的概念求出△ABC与△DEF的相似比,再根据相似的性质,面积比等于相似比的平方解题即可.【详解】解:∵OA:AD=3:2,∴OA:OD=3:5,∵△ABC与△DEF位似,∴△ABC与△DEF的位似比为3:5,∴△ABC与△DEF的相似比为3:5,∴△ABC与△DEF的面积比为9:25,故答案为:9:25.【考点3 位似图形的点坐标】21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,3),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2:1的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(6,8)C.(4,2)D.(6,6)【答案】D【分析】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.直接根据位似图形的性质即可得.【详解】解:∵△ABC的位似比为2:1的位似图形是△A′B′C′,且C(3,3),∴C′(2×3,2×3),即C′(6,6),故选:D.22.如图,在平面直角坐标系中,△ABC和△A′B′C′是以原点O为位似中心的位似图形,点A在线段O A′上,A A′=2OA.若点B的坐标为(2,1),则点B′的坐标为()A.(4,2)B.(6,3)C.(8,4)D.(1,0.5)【答案】B【分析】本题考查的是位似变换.根据位似图形的概念得到△ABC∽△A′B′C′,且相似比为1:3,再根据位似变换的性质计算即可.【详解】解:∵△ABC和△A′B′C′是以原点为位似中心的位似图形,A A′=2OA,∴△ABC∽△A′B′C′,且相似比为1:3,∵点B的坐标为(2,1),∴点B′的横坐标为2×3=6,点B′的纵坐标为1×3=3,∴点B′的坐标为(6,3),故选:B.23.如图,△AOB与△A1O B1是以点O为位似中心的位似图形,且相似比为12,若点B的坐标为(−1,3),则点B1的坐标为( )A.(2,−6)B.(1,−6)C.(−1,6)D.(−6,2)24.如图,△AOB与△CDB位似,点B为位似中心,△AOB与△CDB的周长之比为1:2,若点B坐标为(1,1),则点D的坐标是()A.(3,3)B.(4,4)C.(5,5)D.(6,6)25.如图,在直角坐标系中,先以原点为位似中心,将△ABC在第一象限内放大2倍得到△AB1C1,再将1△AB1C1绕着原点逆时针旋转90°,得到的△A2B2C2,若点C、C1、C2是对应点,则C2的坐标是()1A .(−5,2)B .(−6,3)C .(6,−4)D .(−6,4)【答案】D 【分析】本题考查位似,旋转变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.根据位似,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 2即为所求.观察图象可知:C 2(−6,4)故选D .26.已知关于原点位似的两个图形中,一组对应点的坐标为(2,4)和(−1,x ),则x 的值为( )A .-2B .2C .12D .−12【答案】A【分析】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .27.如图,在直角坐标系中,△OAB的顶点分别为O(0,0),A(3,0),B(6,2).以点O为位似中心,在第三象限内作位似图形△OCD,与△OAB的位似比为1:3,则点D的坐标为()A.(−1,−2)B.−2,−2C.(−2,−1)D.−2,−328.如图,在平面直角坐标系中,A,B两点的坐标分别为(−3,−1),(−1,−2).以原点O为位似中心,把线段AB放大,得到线段A′B′,点A的对应点A′的坐标是(6,2),则点B′的坐标是.【答案】(2,4)【分析】本题考查了位似图形的性质,由以原点O为位似中心,相似比为−2,根据位似图形的性质即29.如图,在平面直角坐标系内,某图象上的点A、B为整数点,以点O为位似中心将该图像扩大为原的2倍,则点A的坐标为.【答案】(−2,2)或(2,−2)/(2,−2)或(−2,2)【分析】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.根据位似变换的性质计算即可.【详解】解:由题意得:A的坐标为(−1×2,1×2)或(−1×(−2),1×(−2)),∴A的坐标为(−2,2)或(2,−2),故答案为:(−2,2)或(2,−2).30.如图,△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,点A′的坐标为(5,−2),则点A的坐标为.【答案】(−10,4)【分析】本题考查位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可.【详解】解:由题意得:△ABO与△A′B′O是以原点O为位似中心的位似图形,且相似比为2:1,又∵A′(5,−2),且原图形与位似图形是异侧,∴点A的坐标是(5×(−2),−2×(−2)),即点A的坐标是(−10,4).故答案为:(−10,4).31.如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为.【答案】(2,1)【分析】连接各组对应点,它们在两个正方形之间相交于点P,则P点为位似中心,然后写出P点坐标即可.【详解】解:如图,点P为位似中心,P(2,1).故答案为:(2,1).【点睛】本题考查位似变换:位似的两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行(或共线),掌握位似变换的性质是解题的关键.【考点4 判定位似中心】32.如图,在平面直角坐标系中的两个矩形OEFG和矩形ABCD是位似图形,对应点C和F的坐标分别为(−4,4),(2,1),则位似中心的坐标是()A.(0,2)B.(0,2.5)C.(0,3)D.(0,4)∵∴GF//CD,CD=4,GF=∴∠PCD=∠PFG,∠DPC=∴△PFG∽△PCD,∴CD=PD,33.把△ABC放大为原图形的2倍得到△A′B′C′,则位似中心可以是()A.D点B.E点C.F点D.G点【答案】C【分析】本题考查了位似中心,解决本题的关键是熟练掌握位似中心的定义.如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,这个点叫做位似中心,据此解答即可.【详解】解:如图,连接A A′、BB′、CC′,交于点F,由位似中心的定义可知,此位似中心可以是点F,故选:C34.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【答案】A【分析】连接A A′,C C′交于点O,即可.【详解】解:如图,连接A A′,C C′交于点O,∴位似中心是点O.故选:A.【点睛】本题主要考查了位似图形的性质,熟练掌握位似图形的性质是解题的关键.35.已知△ABC与△DEF是一对位似三角形,则位似中心最有可能的是()A.O1B.O2C.O3D.O4【答案】A【分析】根据位似中心的定义判断即可.【详解】∵△ABC与△DEF是一对位似三角形,∴对应顶点的连线相交于一点,如图,位似中心是O1.故选:A.【点睛】本题考查位似图形的概念,掌握位似中心是对应点连线的交点是解题关键.36.下列图形中位似中心在图形上的是( )A.B.C.D.【答案】B【分析】直接利用位似图形的性质分别得出位似中心位置即可.【详解】A、,位似中点在图形内部,不合题意;B、,位似中点在图形上,符合题意;C、,位似中点在图形外部,不合题意;D、,位似中点在图形外部,不合题意;故选:B.【点睛】本题考查了位似变换,正确掌握位似图形的性质是解题关键.37.如图,在方格图中,△ABC的顶点与线段A′C′的端点都在小正方形的顶点上,且△A′B′C′与△ABC是关于点O为位似中心的位似图形,点A,C的对应点分别为点A′,C′.按下列要求完成画图,并保留画图痕迹.(1)请在方格图中画出位似中心O;(2)请在方格图中将△A′B′C′补画完整.【答案】(1)见解析(2)见解析【分析】本题考查了位似图形的性质,找位似中心.(1)连接对应点并延长,交点即为位似中心;(2)由(1)可知,OC:O C′=1:2,则连接OB并延长,使O B′=2OB,再连接A B′、B′C即可.【详解】(1)解:如图所示:点O即为位似中心;(2)解:补全△A′B′C′如图所示:38.如图,△DEF是△ABC经过位似变换得到的(点A、B、C的对应点分别为点D、E、F),位似中心是点O.(1)请在图中画出点O的位置;(2)若AB=2DE=36,BC=20,求EF的长.【答案】(1)作图见解析(2)10【分析】本题主要考查位似变换,熟知位似图形性质是解题的关键.(1)根据位似图形的对应顶点的连线过位似中心,即可确定点O的位置;(2)根据位似性质即可求得答案.【详解】(1)解:根据点O的位置如图所示.经过位似变换得到的,【考点6 画已知图形放大或缩小n 倍后的位似图形】39.如图,△ABC 在平面直角坐标系内,顶点坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)画出△ABC 绕O 点逆时针旋转90°的△A 1B 1C 1;(2)以A 为位似中心,在网格中画出△ADE ,使△ADE 与△ABC 位似且面积比为4:1.【答案】(1)见解析(2)见解析【分析】本题主要考查了中心对称作图和位似作图,解题的关键是作出对应点.(1)根据旋转的性质作出点A 、B 、C 的对称点A 1、B 1、C 1,然后顺次连接即可;(2)以A 为位似中心,作出点A 、B 、C 的位似点,然后顺次连接即可.【详解】(1)解:如图,△A 1B 1C 1即为所求作的三角形.;(2)解:如图,△A DE1与△A D2E2即为所求作的三角形.140.如图,在正方形网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:3.(2)证明△A′B′C′和△ABC相似.【答案】(1)作图见解析(2)证明见解析【分析】本题考查作图−位似变换、相似三角形的判定,勾股定理等知识点,理解题意、灵活运用所学知识是解答本题的关键.(1)根据△A′B′C′和△ABC位似,且位似比为1:3作出图形即可;(2)利用相似三角形的判定定理证明即可.【详解】(1)解:如图所示:△A′B′C′即为所求,;41.如图,△ABC 在平面直角坐标系内三个顶点的坐标分别为A (−1,2),B (−3,3),C (−3,1).(1)以点B 为位似中心,在点B 的下方画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似且相似比为3:1;(2)点A 1的坐标为______,点C 1的坐标为______.【答案】(1)见解析(2)(3,0),(−3,−3)【分析】本题考查了位似作图,图形与坐标,掌握位似的性质是解题的关键.(1)在网格中作出A 1、C 1,连接A 1C 1、BC 1、BA 1即可得到△A 1B 1C 1;(2)根据点的位置写出A 1、A 1、C 1的坐标即可.【详解】(1)△A 1B 1C 1即为所作;(2)点A 1的坐标为(3,0),点C 1的坐标为(−3,−3),故答案为:(3,0),(−3,−3).42.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,−4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请画出△A 2B 2C 2【答案】(1)见解析(2)见解析【分析】(1)根据平移的性质作图即可.(2)根据位似的性质作图即可.【详解】(1)解:如图,△A 1B 1C 1即为所求.B2C2即为所求.2【点睛】本题考查作图−平移变换、位似变换,熟练掌握平移和位似的性质是解答本题的关键.。

专项练习图形的位似变换与坐标

专项练习图形的位似变换与坐标
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系

《位似》习题

《位似》习题

《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。

6.6 图形的位似同步练习 2022-2023学年苏科版数学九年级下册

6.6 图形的位似同步练习 2022-2023学年苏科版数学九年级下册

HM GFNCBA ED 九年级数学下册同步练习6.6图形的位似一、选择题1.若两个图形位似,则下列叙述不正确的是()A.两个图形的面积比等于位似比的平方B.两个图形上的对应线段必平行C.两个图形上的对应线段之比等于位似比D.每对对应点所在直线交于同一点2.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.A.②③B.①②C.③④D.②③④3.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 4.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为()A.(4,3) B.(3,4)C.(5,3)D.(4,4)第3题第4题第5题5.如图,BC∥DE,下列说法不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.B与D,C与E是对应位似点D.AE:AD是相似比6.在平面直角坐标系中,点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P对应点的坐标为()A.(2,﹣4)B.(2,﹣4)或(﹣2,4)C.(,﹣1)D.(,﹣1)或(﹣,1)7.已知下列四种变化:①向下平移2个单位长度;②向左平移2个单位长度;③横坐标变为原来的2倍,纵坐标不变;④纵坐标变为原来的2倍,横坐标不变.若将函数y=x2+1图象上的所有点都经过三次变化得到函数y=x2+x的图象,则这三次变化的顺序可以是()A.③→④→①B.③→①→②C.④→②→①D.①→④→②8.如图,△DEF和△ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC的中点,若△ABC的面积是8,△DEF的面积是()A.2B.4C.6D.8二、填空题9.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为36cm,则较大图形的周长为______.10.如果把直角坐标系内多边形各点的横坐标与纵坐标均乘以2,则所得多边形与原多边形是______,它们的面积之比为______。

图形的位似基础训练含答案

图形的位似基础训练含答案

图形的位似基础训练含答案一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:59.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.1210.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.4912.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.316.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:117.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为.21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为.22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是.23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为.三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD的宽与长的比都是黄金比,求BC的长.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=.图形的位似基础训练含答案参考答案与试题解析一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点【答案】A【解答】解:若a:b=c:d,则ad=bc,A不正确;相似三角形的面积比等于相似比的平方,B正确;点C是线段AB的黄金分割点,且AC>BC,则,C正确;经过位似多边形对应顶点的直线一定交于同一点,D正确.故选:A.2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)【答案】C【解答】解:∵△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点为位似中心,将这个三角形放大为原来的2倍,得到△CDO,∴点A的对应点C的坐标为:(﹣4,8)或(4,﹣8).故选:C.3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)【答案】B【解答】解:作AC⊥OB于C,∵△OAB为等边三角形,AC⊥OB,∴OC=OB=3,∴AC==3,∴点A的坐标为(3,3),∵△OAB与△OA′B′关点O成位似图形,且位似比为1:2,∴点A′的坐标为(3×2,3×2)或(﹣3×2,﹣3×2),即(6,6)或(﹣6,﹣6),故选:B.4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.【答案】A【解答】解:∵△ABC与△DEF位似,∴DF∥AC,∴△ODF∽△OAC,∴==2,∴△ABC与△DEF的位似比是2:1,故选:A.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)【答案】D【解答】解:∵以原点O为位似中心,相似比为2,将△OAB放大为△OA′B′,点B (﹣1,2),∴B′点的坐标为(﹣2,4)或(2,﹣4).故选:D.6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)【答案】C【解答】解:∵O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,∴A点的对应点A′坐标为:(2,4)或(﹣2,﹣4).故选:C.7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)【答案】C【解答】解:∵△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),∴△ABO与△A′B′O的位似比为:,∴当线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为(,).故选:C.8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:5【答案】B【解答】解:∵△ABC和△A1B1C1是位似图形,∴△ABC∽△A1B1C1,AC∥A1C1,∴△APC∽△A1PC1,∴==,∵△ABC∽△A1B1C1,∴==,故选:B.9.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.12【答案】C【解答】解:∵△ABC与△A′B′C′是位似图形,点O是位似中心,∴△ABC∽△A′B′C′,AC∥A′C′,∴△AOC∽△A′OC′,∴==,∴=()2=,∵S△ABC=4,∴S△A′B′C′=9,故选:C.10.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.【答案】B【解答】解:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,=,∴==,则=()2=()2=,故选:B.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49【答案】D【解答】解:∵ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,∴OA:OD=3:7,∴S△ABC:S△DEF=9:49,∵S△ABC=9,∴△DEF的面积为:49.故选:D.12.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)【答案】见试题解答内容【解答】解:如图点P为位似中心,∴=,即=,解得,PB=3,∴点P的坐标为(﹣3,2),故选:A.13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)【答案】C【解答】解:∵点A(1,0),B(﹣1,4),D(0,2),∴点D是线段AB的中点,∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,∴点E是线段AC的中点,∵点A(1,0),E(﹣,),∴点E的对应点点C的坐标为(﹣2,1),故选:C.14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)【答案】D【解答】解:如图所示:过点A′作A′D⊥x轴于点D,过点A作AC⊥x轴于点E,过点P作x轴的平行线,交A′D于点F,交AE延长线于点E,由题意可得:△ACP∽△A′FP,∵点A(﹣3,﹣1),P(1,1)∴CP=3+1=4,AC=1+1=2,∵以点P为位似中心,把△P AB扩大为原来的2倍,∴==,∴PF=8,A′F=4,∴A′D=5,∴A'的坐标为(9,5).故选:D.15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.3【答案】D【解答】解:∵△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,线段AC=6,∴线段DE为:6×=3.故选:D.16.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:1【答案】B【解答】解:过点B作BE⊥x轴于点E,过点B′作B′F⊥x轴于点F,∵以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,点B的横坐标是﹣2,∴EC=1,∵点B的对应点B'的横坐标是2,∴CF=3,∴==,∴△ABC与△A'B'C的周长之比为:1:3.故选:B.17.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【答案】A【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣【答案】C【解答】解:∵点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,点D与点B对应,∴点D的横坐标为:3×=1或3×(﹣)=﹣1.故选:C.19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2【答案】D【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==2.故选:D.二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为(4,0).【答案】(4,0).【解答】解:∵正六边形OABCDE的边AB=4,∴OC=8,∴C(8,0)∵正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,∴点C'的坐标为(4,0).故答案为(4,0).21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为(﹣4,0).【答案】(﹣4,0).【解答】解:过点D作DH⊥OE于点H,由题意可得:BC=3,OE=6,△ABC∽△DOE,则位似比为:3:6=1:2,故OH=2OB=4,DH=2OA=6,则D点的坐标为:(4,6),由MO:MH=1:2,MH=MO+4,故MO:(MO+4)=1:2,解得:MO=4,则M点坐标为:(﹣4,0).故答案为:(﹣4,0).22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是(﹣2,﹣4).【答案】(﹣2,﹣4).【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为4.【答案】4.【解答】解:连接BG,∵▱ABCD和▱EBFG是以B为位似中心的位似图形,∴点D、G、B在同一条直线上,EG∥AD,∵四边形ABCD是平行四边形,面积为24,∴△ADB的面积为12,∵EG∥AD,∴==,∴=,∴△ADG的面积=12×=4,故答案为:4.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=5.【答案】5.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,其位似中心为点O,OC=6,CC′=4,∴==,∴=,∵AB=3,∴A′B′=5.故答案为:5.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为(3,3).【答案】见试题解答内容【解答】解:∵以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,∴点F的坐标为(1×3,×3),即F(3,3).故答案为(3,3).三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD 的宽与长的比都是黄金比,求BC的长.【答案】见试题解答内容【解答】解:∵矩形ABCD的宽与长的比是黄金比,∴=,又AB=10,∴BC=5+5.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.【答案】(1)A1(3,﹣3);(2)见解答.【解答】解:(1)如图,△A1B1C1所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C2为所作.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.【答案】(1)见解答;(2)C2(2,10).【解答】解:(1)如图,△AB1C1为所作;(2)如图,△A2B2C2为所作;点C2的坐标为(2,10).29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.【答案】作图见解析部分.【解答】解:如图,△OA'B'即为所求.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.【答案】见试题解答内容【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.故答案为:2:1.。

人教版九年级数学上图形的位似 课时练习(含答案解析)

人教版九年级数学上图形的位似 课时练习(含答案解析)

北师大版数学九年级上册第3章第8节图形的位似同步检测一、选择题1.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF 的面积比是()A.1:8B.1:6C.1:4D.1:2答案:C解析:解答:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.分析:先由已知条件及位似图形的性质,得AC∥DF,求得AC:DF=OA:OD=1:2,再根据相似三角形面积的比等于相似比的平方,求得△ABC与△DEF的面积比.掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(-2,0)B.(-1.5,-1.5)C.(-2,-2)D.(-2,-2)答案:C解析:解答:∵正方形OABC,点A的坐标为(1,0),∴B点坐标为:(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为:(-2,-2).故选:C.分析:首先利用正方形的性质得出B点坐标,然后利用位似图形的性质,将B点横纵坐标都乘以-2得出答案.此题主要考查了位似图形的性质以及坐标与图形的性质,得出E点与B点坐标关系是解题的关键.3.已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点'A的坐标为()A.(1,12)B.(4,2)C.(1,12)或(-1,-12)D.(4,2)或(-4,-2)答案:D解析:解答:如图,则点A 的坐标为(4,2)或(-4,-2).故选:D.分析:先由已知条件画出符合条件的两个图形,再根据图中点的位置写出坐标.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.4.如图,在3×3正方形网格中,顶点是网格线的交点的三角形叫做格点三角形,给出下列命题:①一定存在全等的两个格点三角形②一定存在相似且不全等的两个格点三角形③一定存在两个格点三角形是位似图形④一定存在周长和面积均为无理数的格点三角形其中真命题的个数是()A.4个B.3个C.2个D.1个答案:B解析:解答:根据题意,得如图所示:△FBG≌△AFH,①正确;△ABC∽△FBC,但两者不全等,②正确;△ABC与△DBE位似,③正确;因为可以得到格点三角形两直角边长为整数,所以面积无法得到是无理数的格点三角形,④错误;故选:B.分析:根据题意,先在图中作出三角形,再分析得到答案.此题考查了位似、全等、相似的相关知识,注意三者的区别与联系.5.下列语句正确的是()A.相似图形一定是位似图形,位似图形一定是相似图形B.位似图形一定是相似图形,而且位似比等于相似比C.利用位似变换只能放大图形,不能缩小图形D.利用位似变换只能缩小图形,不能放大图形答案:B解析:解答:相似图形对应点的连线不一定都经过同一点,所以不一定是位似图形,故选项A错误;位似图形一定是相似图形,而且位似比等于相似比,故选项B正确;利用位似变换能放大图形,也能缩小图形,故C和D选项错误.故选:B.分析:如果相似图形的对应点的连线都经过同一点,那么这两个图形是位似图形,并且位似比等于相似比,也能扩大原有图形,也能缩小原有图形.相似图形不一定是位似图形,但位似图形一定是相似图形.6.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)答案:B解析:解答:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.分析:利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.解答此题的关键是正确把握位似比与对应点坐标的关系.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(-2,-2)D.(2,1)答案:B解析:解答:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为(1,1).故选:B.分析:先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似求得答案.若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).8.已知△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,则△ABC与△DEF的面积比为()A.3:4B.3:7C.9:16D.9:49答案:C解析:解答:∵△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm和4cm,∴根据位似图形的性质,得△ABC与△DEF的位似比为:3:4,△ABC∽△DEF,∴△ABC与△DEF的相似比为:3:4,∴△ABC与△DEF的面积比为9:16.故选:C.分析:由△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,得△ABC∽△DEF,且相似比为3:4,再由相似三角形的面积比等于相似比的平方,求得△ABC与△DEF的面积比.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC 的中点,则△DEF与△ABC的面积比是()A.1:6B.1:5C.1:4D.1:2答案:C解析:解答:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.分析:根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方求出面积之比.熟练掌握:位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等答案:D解析:解答:∵位似是相似的特殊形式,∴位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等∴正确答案为D.故选:D.分析:根据性质可知,位似是相似的特殊形式,位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等,由此得到正确答案.11.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解析:解答:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.分析:位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得出DE:MN=2:3即可求解.12.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E'的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)答案:A解析:解答:∵E(-4,2),位似比为1:2,∴点E的对应点E'的坐标为(2,-1)或(-2,1).故选:A.分析:注意位似的两种位置关系,利用位似比为1:2,可求得点E的对应点E'的坐标为(2,-1)或(-2,1).此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.13.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点'A,'B,'C.下列说法正确的是()A.△'''A B C与△ABC是位似图形,位似中心是点(1,0)B.△'''A B C与△ABC是位似图形,位似中心是点(0,0)C.△'''A B C与△ABC是相似图形,但不是位似图形D.△'''A B C与△ABC不是相似图形答案:B解析:解答:∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍∴点'A,'B,'C的坐标分别为(2,4),(-4,6),(-2,0)∴直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0∴对应点的连线交于原点∴△'''A B C与△ABC是位似图形,位似中心是点(0,0)故选:B.分析:由已知条件△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,求得直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0,可知△'''A B C与△ABC是位似图形,位似中心是点(0,0).此题考查了位似的相关知识,位似是相似的特殊形式,位似图形的对应点的连线交于一点.14.下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个答案:C解析:解答:根据位似图形的定义可知:两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形的是第1个和第3个.故选:C.分析:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.正确掌握位似图形的定义是解答此题的关键.15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:2,点A的坐标为(0,1),则点E的坐标是()A.(-1.4,-1.4)B.(1.4,1.4)C.(-2,-2)D.(2,2)答案:D解析:解答:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(0,1),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选:D.分析:根据题意可得OA :OD =1:2,由点A 的坐标为(1,0),可求得OD 的长,再由正方形的性质,可求得E 点的坐标.此题考查了位似变换的性质与正方形的性质.二、填空题16.如图,在平面直角坐标系中,△ABC 和△A BC '''是以坐标原点O 为位似中心的位似图形,且点B (3,1),'B (6,2).若△ABC 的面积为m ,则△'''A B C 的面积(用含m 的代数式表示)是答案:4m解析:解答:∵△ABC 与△A BC '''的相似比为1:2∴'''14ABC A B C S S ∆∆=,∴'''14A B C m S ∆= ∴'''4A B C S m ∆=故答案为:4m .分析:利用位似是特殊的相似,利用面积比等于位似比的平方得出即可.此题考查位似变换;坐标与图形性质;相似三角形的性质.17.如图,已知E (-4,2),F (-1,-1),以原点O 为位似中心,按比例尺2:1把△EFO 缩小,则E 点对应点E '的坐标为答案:(2,-1)解析:解答:根据题意可知,点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-, 所以点E '的坐标为(2,-1).故答案为:(2,-1).分析:以O 为位似中心,按比例尺2:1,把△EFO 缩小,结合图形得出,则点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-,而得到的点E '的坐标为(2,-1).关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y ),经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).18.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△'''A B C 的位似比是1:2,已知△ABC 的面积是3,则△'''A B C 的面积是答案:12解析:解答:∵△ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1:2,△ABC 的面积是3,∴△ABC 与△'''A B C 的面积比为:1:4,则△'''A B C 的面积是:12.故答案为:12.分析:利用位似图形的面积比等于位似比的平方得出答案.此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解答此题的关键.19.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A 、B 的对应点分别为点D 、E ,则点C 的对应点F 的坐标应为答案:(4,4)解析:解答:∵△DEF ∽△ABC ,且F 点在CP 的连线上,∴可得F 点位置如图所示:故P 点坐标为(4,4).故答案为:(4,4)分析:根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F 点的坐标.此题考查位似的定义,注意掌握两位似图形的对应点的连线都经过同一点,这一点就是位似中心.20.如图,已知两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1:3把线段AB 缩小,则点A 的对应点坐标是答案:(2,1)或(-2,-1)解析:解答:如图所示:∵A (6,3),B (6,0)两点,以坐标原点O 为位似中心,相似比为13,∴A '、A "的坐标分别是A '(2,1),A "(-2,-1).故答案为:(2,1)或(-2,-1).分析:易得线段AB 垂直于x 轴,根据所给相似比把各坐标都除以3或-3即可.此题主要考查了位似图形变换,用到的知识点为:各点到位似中心的距离比也等于相似比.三、解答题21.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,每个小正方形的边长都为1. 求△ABC 与△A ′B ′C ′的面积比.答案:14解析:解答:∵由已知条件可知ABC S ∆∽'''A B C S ∆∴'''22 211 424ABCA B CSS∆∆⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.分析:已知△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1,根据位似图形是相似图形,相似图形的面积比等于相似比的平方计算求解.22.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm,放映的银幕规格为2m×2m,若影机的光源距胶片20cm时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕?答案:807m解析:解答:如图,O为位似中心,先计算位似比K=200400=3.57.设银幕距镜头x cm,则400207x=,解得:x=80007.答:银幕应在离镜头807m,放映的图象刚好布满整个银幕.分析:由题意可知此题可以利用位似知识来解答,先根据胶片和银幕边之比,求出位似比,再借助位似比求得问题的答案.23.如图,已知△ABC的三个顶点的坐标分别为A(-1,2)、B(-3,0)、C(0,0)(1)请直接写出点A关于x轴对称的点'A的坐标;答案:(-1,-2)(2)以C 为位似中心,在x 轴下方作△ABC 的位似图形111A B C ∆,使放大前后位似比为1:2,请画出图形,并求出111A B C ∆的面积;答案:12解析:解答:(1)∵点A 的坐标为(-1,2),∴点A 关于x 轴对称的点'A 的横坐标为-1,纵坐标为-2,∴点A '的坐标为(-1,-2);(2)111A B C ∆的面积=12×6×4=12.分析:(1)已知点A 的坐标,点A 的横坐标不变,纵坐标变为原来的相反数,即得点'A 的坐标;(2)连接AC 延长到'A 使1A C =2AC ,延长BC 到1B ,使1B C =2BC ,点1C 的对应点为C ,顺次连接各点即可;111A B C ∆的面积=12×底边×高. 24.如图,四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A ′B ′C ′D ′和四边形A B C D """"位似,位似比2k =1.四边形A B C D """"和四边形ABCD 是位似图形吗?位似比是多少?答案:是位似图形|位似比为12解析:解答:∵四边形ABCD 和四边形A B C D ''''位似,∴四边形ABCD ∽四边形A B C D ''''.∵四边形A B C D ''''和四边形A B C D """"位似,∴四边形A B C D ''''∽四边形A B C D """".∴四边形A B C D """"∽四边形ABCD .∵对应顶点的连线过同一点,∴四边形A B C D """"和四边形ABCD 是位似图形.∵四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A B C D ''''和四边形A B C D """"位似,位似比2k =1,∴四边形A B C D """"和四边形ABCD 的位似比为12. 分析:此题考查位似图形的判定方法与性质.因为位似图形是特殊的相似图形,四边形A B C D """"和四边形ABCD 位似,所以四边形A B C D """"∽四边形ABCD ;相似具有传递性,可得四边形A B C D """"∽四边形ABCD ;因为位似比等于相似比,所以求得四边形A B C D """"和四边形ABCD 的位似比.25.如图,△ABC 中,A 、B 两点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形''A B C ∆,并把△ABC 的边长放大到原来的2倍.设点B 的对应点'B 的横坐标是2,求点B 的横坐标.答案:−2.5解析:解答:过点B 、'B 分别作BD ⊥x 轴于D ,'B E ⊥x 轴于E ,∴∠BDC =∠'B EC =90°.∵△ABC 的位似图形是''A B C ∆,∴点B 、C 、'B 在一条直线上,∴∠BCD =∠'B CE ,∴△BCD ∽△'B CE .∴CD BC CE B C'=, 又∵1=2BC B C ', ∴12CD CE =, 又∵点'B 的横坐标是2,点C 的坐标是(-1,0),∴CE=3,∴CD=1.5.∴OD=2.5,∴点B的横坐标为−2.5.分析:过B和'B向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B 的横坐标即可求得点B的横坐标.难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.。

专项练习图形的位似变换与坐标

专项练习图形的位似变换与坐标

A'
B〞
x o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.
例3 如图,矩形OABC的顶点坐标分别为O(0,0), A(6,0),B(6,4),C(0,4).画出以点O为 位似中心,矩形OABC的位似图形OA ′ B ′ C ′ ,使 1 它的面积等于矩形OABC面积的 ,并分别写出A′, 4 B′,C′三点的坐标. y
y
z ( 1,4 ) y
( 5,4 )
1 ; 2
S ( 2,2 ) W ( 1,1 ) x ( 5,1 )
o
x
课堂小结:
1、如果两个图形不仅是相似图形,而且是每组对应点所在的 直线都经过同一个点, 那么这样的两个图形叫做 位似图形 。 2、 这个点叫做 位似中心 。 3、这时的相似比又称为 位似比 。
O
0
x
-1 -2
D E
0 O -1 -2 -3 -4
x
L
(图2)
M
4、如果把图(1)中的“鱼”画到同一个直角坐标系中,它 们是位似图形吗?如果是位似图形,位似中心是哪一个点?
是;
原点O.
顺次连接下列各点,你得到什么图形?
(0,0)
(6,0)
(6,4)
(0,4)
(0,0)
(1)把上面各点坐标的横坐标、纵坐标都除2,画出这 个新图形。 y (0,0) 8
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) y A'
6
4 3 2 1 B 6 12 A B' C C'

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。

4.8 图形的位似 同步练习

4.8  图形的位似 同步练习

4.8 图形的位似1、【根底题】关于对位似图形的表述,以下命题正确的选项是 _________ .〔只填序号〕①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.2、【根底题】以下说法错误的选项是 〔 〕A.位似图形一定是相似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比3、【根底题】如图,五边形ABCDE 和五边形A 1B 1C 1D 1E 1是位似图形,点A 和点A 1是一对对应点,P 是位似中心,且2 P A =3 P A 1,那么五边形ABCDE 和五边形A 1B 1C 1D 1E 1的相似比等于 ( ) ★★★A 、32. B 、23. C 、53. D 、35.4、【根底题】如左以下图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,点O 是位似中心,位似比为2:1. 假设五边形ABCDE 的面积为17 cm 2, 周长为20 cm ,那么五边形A ′B ′C ′D ′E ′的面积为______,周长为______. ★★★5、【综合题Ⅰ】如右上图,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A =4∶3,那么△ABC 与_______是位似图形,位似比为______;△OAB 与________是位似图形,位似比为______. ★6、【根底题】如右图,以O为位似中心,作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.★★★7、【综合题Ⅰ】如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;〔1〕把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;★★★〔2〕以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.★★★8、【根底题】画一个任意三角形,以三角形其中一个顶点为位似中心作一个与原三角形位似的新三角形,使新三角形与原三角形的位似比为3:1. ★9、【根底题】如图,△EFH和△MNK是位似图形,那么其位似中心是〔〕★★★A. 点AB. 点BC. 点CD. 点D10、【根底题】图中的每个小方格都是边长为1的小正方形,假设△ABC 与△111C B A 是位似图形,且顶点都在小正方形顶点上,那么它们的位似中心的坐标是____. ★★★答案1、【答案】 ②③2、【答案】 选D3、【答案】 选B4、【答案】 417 cm 2 , 10 cm5、【答案】 △A ′B ′C ′, 7∶4 , △OA ′B ′, 7∶46、【答案】如图,新图形为四边形A′B′C′D′,各点坐标分别为A′〔2,4〕,B′〔4,8〕,C′〔8,10〕,D′〔6,2〕.7、【答案】8、【答案】略.9、【答案】选B10、【答案】〔9,0〕。

4.8 图形的位似(分层练习)(解析版)

4.8 图形的位似(分层练习)(解析版)

第四章图形的相似4.8 图形的位似精选练习一、单选题1.(2022·全国·九年级专题练习)如图,在直角坐标系xOy中,矩形EFGO的两边OE,OG在坐标轴上,以y轴上的某一点P为位似中心,作矩形ABCD,使其与矩形EFGO位似,若点B,F的坐标分别为(4,4),(-2,1),则位似中心P的坐标为()A.(0,1.5)B.(0,2)C.(0,2.5)D.(0,3)故选:B .【点睛】此题主要考查了位似中心的概念和位似图形的性质等知识,熟练掌握位似中心的概念和位似图形的性质是解题的关键.2.(2022·江苏·西附初中八年级期末)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ¢¢¢¢的相似比为1:1B .四边形ABCD 与四边形A BCD ¢¢¢¢的相似比为1:2C .四边形ABCD 与四边形A B C D ¢¢¢¢的周长比为3:1D .四边形ABCD 与四边形A B C D ¢¢¢¢的面积比为4:1【答案】D【分析】根据题意可判断OA ¢:1OA =:2,即得出A B ¢¢:1AB =:2,从而可判断四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,由相似比即可求出其周长比和面积比,即可选择.【详解】Q 四边形ABCD 与四边形A B C D ¢¢¢¢是位似图形,点O 是位似中心,点A ¢是线段OA 的中点,∴OA ¢:1OA =:2,∴A B ¢¢:1AB =:2,\四边形ABCD 与四边形A B C D ¢¢¢¢的相似比为2:1,周长的比为2:1,面积比为4:1.故选D .【点睛】本题考查由位似图形求相似比,周长比和面积比.掌握位似图形的定义和性质是解题关键.3.(2022·重庆实验外国语学校八年级阶段练习)如图,在平面点角坐标系中V AOB 与V COD 是位似图形,以原点O 为位似中心,若2AC OA =,B 点坐标为(4,2),则点D 的坐标为( )A .( 8,4)B .(8,6)C .(12,4)D .(12,6)4.(2022·全国·九年级专题练习)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ′,B ′.若AB =6,则A ′B ′的长为( )A .8B .9C .10D .156AB =Q ,9A B ¢¢\=,故选:B .【点睛】本题考查的是位似图形,解题的关键是掌握位似图形的位似比是对应边的比.5.(2022·全国·九年级课时练习)如图,△ABC 与△DEF 是位似图形,且顶点都在格点上,则位似中心的坐标是( )A .(8,2)B .(9,1)C .(9,0)D .(10,0)【答案】C 【分析】延长EB 、DA 交于点P ,根据位似图形的对应点的连线相交于一点解答即可.【详解】解:延长EB 、DA 交于点P ,则点P 即为位似中心,位似中心的坐标为(9,0),故选:C .【点睛】本题考查的是位似变换的定义,如果两个图形不仅是相似图形,而且对应点的连线相交于一点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.(2022·山东威海·八年级期末)如图,矩形OABC 与矩形ODEF 是位似图形,点P 是位似中心.若点B 的坐标为(2,3),点E 的横坐标为1-,则点P 的坐标为( )A .(2,0)-B .(0,2)-C .3,02æö-ç÷D .30,2æö-ç÷二、填空题7.(2022·广东·佛山市三水区三水中学附属初中九年级开学考试)如图,在平面直角坐标系中,以原点O 为位似中心,将ABO V 扩大到原来的2倍,得到A B O ¢¢△,若点A 的坐标是()1,2,则点A ¢的坐标是______.【答案】()2,4--【分析】根据以原点O 为位似中心,将ABO V 扩大到原来的2倍,结合图形,可知将对应点的坐标应乘以2-,即可得出点A ¢的坐标.【详解】解:根据以原点O 为位似中心扩大到原来的2倍 ,A B O ¢¢△在第三象限,即对应点的坐标应乘以2-,∵点A 的坐标是()1,2,∴点A ¢的坐标是()2,4--,故答案为:()2,4--.【点睛】此题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k 或k -是解题关键.8.(2022·浙江·九年级单元测试)如图,ABC V 与△A B C ¢¢¢是位似图形,且顶点都在格点上,则位似中心的坐标是________.【答案】(9,0)【分析】根据位似中心的概念解答即可.【详解】解:连接A A ¢和B B ¢并延长相交于点D ,则点D 即为位似中心,作图如下:点D 的坐标为(9,0),即位似中心的坐标为(9,0),故答案为:(9,0).【点睛】本题考查的是位似变换的概念,解题的关键是掌握各对应点所在直线的交点即为位似中心.9.(2022·甘肃·平凉市第十中学九年级阶段练习)如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''A B CD E ,已知10cm OA =,'20cm OA =,则五边形ABCDE 的周长与五边形''''A B CD E 的周长比是______.【答案】1:2【分析】根据已知可得五边形ABCDE 的周长与五边形'''A B CD E 的位似比,然后由相似多边形的性质可证得:五边形ABCDE 的周长与五边形'''A B CD E 的周长比.【详解】Q 以点O 为位似中心,将五边形ABCDE 放大后得到五边形'''''A B C D E ,10OA cm =,'20OA cm =,\五边形ABCDE 的周长与五边形'''''A B C D E 的位似比为:10:201=:2,\五边形ABCDE 的周长与五边形'''''A B C D E 的周长比是:1:2.故答案为1:2.【点睛】此题考查了位似图形的性质,掌握相似多边形的周长比等于相似比是解题关键.10.(2022·吉林省第二实验学校九年级阶段练习)如图,ABC V 与111A B C △位似,位似中心是点O ,则1:1:2OA OA =,ABC V 的面积为3,则111A B C △的面积是___________.三、解答题11.(2022·全国·九年级专题练习)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到111A B C △,请画出111A B C △;(2)以坐标原点O 为位似中心,在x 轴下方,画出△ABC 的位似图形222A B C △,使它与△ABC 的位似比为2:1.【答案】(1)见解析(2)见解析【分析】(1)直接利用旋转的性质得出对应点的位置,画出图形即可;(2)直接利用位似图形的性质得出对应点的位置,画出图形即可.(1)解:如图,111A B C △即为所求.;(2)解:如图,222A B C △即为所求.【点睛】本题考查了位似变换与旋转变换,正确得出对应点的位置是解题的关键.12.(2022·山东烟台·八年级期末)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (1,1),B (2,2),C (3,0).(1)以原点O 为位似中心,在y 轴的右侧画出将△ABC 放大为原来的2倍得到的△A 1B 1C 1,请写出点B 的对应点B 1的坐标;(2)画出将△ABC 向左平移1个单位,再向上平移2个单位后得到的△A 2B 2C 2,写出点C 的对应点C 2的坐标;(3)请在图中标出△A 1B 1C 1与△A 2B 2C 2的位似中心M ,并写出点M 的坐标.【答案】(1)图见解析,(4,4)(2)图见解析,(2,2)(3)图见解析,(﹣2,4)【分析】(1)把A ,B ,C 的横纵坐标都乘以2得到111,,A B C 的坐标,然后描点即可.(2)利用,点平移的坐标特征写出222,,A B C 的坐标,然后描点即可.(3)对应点连线的交点M 即为所求作.(1)如图△A 1B 1C 1即为所求作的三角形,点B 1的坐标(4,4).(2)如图,△A 2B 2C 2即为所求作的三角形点C 2的坐标(2,2).(3)如图所示:点M 即为所求作.M (﹣2,4).【点睛】本题考查了作图一位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,也考查了平移变换.一、填空题1.(2022·全国·九年级课时练习)如图,在平面直角坐标系中,以原点O 为位似中心,将△AOB 缩小为原来的12,得到△COD ,若点A 的坐标为(4,2),则AC 的中点E 的坐标是 _____.2.(2022·全国·九年级单元测试)如图所示,在平面直角坐标系中,已知点A (-4,2),B (-2,-2).以坐标原点O 为位似中心把△AOB 缩小得到△A 1OB 1,△A 1OB 1与△AOB 的位似比为12,则点A 的对应点A 1的坐标为_______.3.(2021·湖北·武汉二中广雅中学九年级阶段练习)在平面直角坐标系中,已知点()2,1A -,()3,2B --,以原点O 为位似中心,相似比为12,把ABO V 缩小,则点A 的对应点A ¢的坐标是______.【答案】11,2æö-ç÷或1(1,2-##1(1,)2-或1(1,2-4.(2022·全国·九年级专题练习)如图,在平面直角坐标系中,等边ABC V 与等边BDE V 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE V 的边长为12,则点C 的坐标为_________.∵等边△ABC 与等边△BDE 是以原点为位似中心的位似图形,∴BC ∥DE ,∴△OBC ∽△ODE ,∴BC OB DE OD=,∵△ABC 与△BDE 的相似比为13,等边△BDE 5.(2022·全国·九年级课时练习)如图,已知ABCD Y 的面积为24,以B 为位似中心,作ABCD Y 的位似图形EBFG Y ,位似图形与原图形的位似比为23,连接AG 、DG .则ADG V 的面积为________.故答案为:4.【点睛】本题考查了位似图形的性质,平行四边形的性质与判定,掌握这些性质是解题的关键.二、解答题6.(2022·全国·九年级专题练习)如图,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,画出一个三角形,使它与△ABO的位似比为1.2【点睛】本题考查了位似的概念.位似比为对应点到位似中心的距离比.解题关键是根据位似比找到对应7.(2022·山东·聊城江北水城旅游度假区北大培文学校九年级阶段练习)已知:如图,△ABC三个顶点的坐标分别为A(0,-3)、B(3,-2)、C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的111A B C △;(2)以点C 为位似中心,在网格中画出222A B C △,使222A B C △与△ABC 位似,且222A B C △与△ABC 的位似比为2:1,并直接写出点2C 的坐标.【答案】(1)见解析(2)图见解析,2C 坐标为(2,-4)【分析】(1)直接利用平移的性质得出对应点位置即可得出答案;(2)直接利用位似图形的性质以C 为位似中心,将边长扩大为原来的2倍即可.(1)如图所示:111A B C △即为所求;(2)如图所示:222A B C △即为所求,2C 坐标为:(2,-4).【点睛】本题考查了平移的性质,位似的性质,能根据性质的特点进行画图是解此题的关键.8.(2021·黑龙江绥化·期末)按要求完成下面各题:(1)三角形AOB 顶点B 的位置用数对表示是 .(2)画出三角形AOB 绕点O 逆时针旋转90°后的图形.(3)按2∶1的比画出三角形AOB 放大后的图形.【答案】(1)(2,4)(2)见详解(3)见详解【分析】(1)根据网格即可得三角形AOB 顶点B 的位置;(2)根据旋转的性质即可画出三角形AOB 绕点O 逆时针旋转90°后的图形;(3)根据2:1的比即可画出三角形AOB 放大后的图形.(1)解:三角形AOB 顶点B 的位置用数对表示是(2,4);故答案为:(2,4);(2)如图三角形A OB ¢¢即为所求;(3)²²²即为所求.如图,三角形A O B【点睛】本题考查了作图﹣旋转变换,解决本题的关键是掌握旋转的性质.。

4.7 图形的位似(9大题型)(分层练习)(原卷版)

4.7 图形的位似(9大题型)(分层练习)(原卷版)

第4章相似三角形4.7 图形的位似(9大题型)分层练习考查题型一位似图形的识别1.(2022秋·九年级单元测试)如图,下面三组图形中,位似图形有( )A.0组B.1组C.2组D.3组2.(2023·河北廊坊·校考三模)在研究相似问题时,嘉嘉和淇淇两同学的观点如下:嘉嘉:将边长为1的正方形按图1的方式向外扩张,得到新正方形,它们的对应边间距为1,则新正方形与原正方形相似,同时也位似;淇淇:将边长为1的正方形按图2的方式向外扩张,得到新正方形,每条对角线向其延长线两个方向各延伸1,则新正方形与原正方形相似,同时也位似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对3.(2022春·全国·九年级专题练习)位似图形的性质(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于(2)位似图形相似图形,但相似图形4.(2020秋·安徽滁州·九年级校联考阶段练习)在如图所示的网格中,以点的位似图形,小明认为四边形边形NPMQ,你认为正确的是A.2、点P B2.(2023·河北沧州·模拟预测)如图,A.点M B.点3.(2023秋·九年级课时练习)如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为4.(2022春·九年级课时练习)如图,在正方形()1,1--,则两个正方形的位似中心的坐标是(1)在图中标出ABC V 与111A B C △的位似中心点M 的位置,并直接写出点(2)若以点O 为位似中心,请你帮小明在图中画出△似比为2(只画出一个三角形即可).考查题型三 位似图形相关概念辨析1.(2022秋·吉林长春·九年级校考阶段练习)如图,ABC V 与DEF V 位似,点O 为位似中心,位似比为2:3,若DEF V 的周长为6,则ABC V 的周长是( )A.16B.2.(2023秋·河北保定·九年级统考期末)下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;4.(2023秋·九年级课时练习)如图,点=;ABCÐ=,Ð5.(2022春·九年级单元测试)如图,在68´的网格中,每个小正方形的边长均为1,点O 和ABC V 的顶点均为小正方形的顶点.(1)在图中ABC V 的内部作A B C ¢¢¢V ,使A B C ¢¢¢V 和ABC V 位似,且位似中心为点O ,位似比为1:2;(2)连接(1)中的AA ¢,则线段AA ¢的长度是________.A .1:2B .2:12.(2023秋·全国·九年级专题练习)如图,四边形形,若四边形ABCD 与四边形A .23:B .49:C .3.(2023秋·陕西西安·九年级高新一中校考阶段练习)面积为1,DEF V 面积为9,则OC CF 的值为4.(2023秋·黑龙江哈尔滨·九年级哈尔滨工业大学附属中学校校考开学考试)四边形1111D C B A 是位似图形,点A 与点么AB A B = .(1)在图中画出ABC V 沿x 轴翻折后的11A B C △(2)以点()1,2M 为位似中心,作出111A B C △按(3)求点2A 的坐标以及ABC V 与222A B C △的周长比.考查题型五 画已知图形放大或缩小n 倍后的位似图形1.(2023春·河北邢台·九年级统考开学考试)以O 为位似中心,画出一个矩形,使得所画的矩形与矩形ABCD 位似,且位似比为1:2,则所画的矩形可以是( )A .①B .②C .③D .④A.P点B.Q点3.(2022春·九年级课前预习)总结画位似图形的一般步骤:(1)确定;(2)分别连接并延长和能代表原图的关键点;(3)根据,确定能代表所作的位似图形的关键点;(4)顺次连接上述各点,得到放大或缩小的图形.4.(2022春·九年级课前预习)把图中的四边形分析:把原图形缩小到原来的似中心的距离之比为作法:5.(2022秋·四川成都·九年级川大附中校考期中)在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ¢¢△,放大后点B ,C 两点的对应点分别为B ¢,C ¢,请画出OB C ¢¢△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M ¢的坐标.(用含a ,b 的代数式表示)A.62.(2022秋·安徽合肥为位似中心,把△A.(9,6)B.3.(2023秋·福建莆田·九年级校考阶段练习)如图,()A-,OAB4,2V与OCDV4.(2023秋·陕西榆林·九年级校考期末)如图,在平面直角坐标系中,位似中心的位似图形,点A、5,6,则点A点A的坐标为()5.(2023秋·浙江·九年级专题练习)如图,方格纸中的每个小方格都是边长为面直角坐标系后,ABC V 的顶点均在格点上,点C 的坐标为()41-,.(1)以O 为位似中心在第二象限作位似比为1:2变换,得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;(2)以原点O 为旋转中心,画出把ABC V 顺时针旋转90°的图形222A B C △,并写出2C 的坐标.A .2B .33.(2022春·八年级单元测试)如图,四边形6,4,3OC CC AB ¢===,则A B ¢¢=4.(2023·山西运城·统考一模)在平面直角坐标系中,的坐标分别为()1,3-,()3,9-,则ABC V 5.(2022秋·广西贵港·九年级统考期中)A .DEF VB .DHF △2.(2023春·河北邯郸·九年级校考开学考试)在如图所示正方形网格图中,以大为原来的2倍,则A 的对应点为(A .N 点B .M 点3.(2023春·九年级单元测试)已知方形网格中,每个小正方形的边长是与ABC V 位似,且111A B C △与ABC V5.(2022春·湖南郴州·九年级校考开学考试)如图,平面直角坐标系中,点上.(1)以O 点为位似中心,位似比为2,将ABC V (2)若ABC V ,111A B C △的面积为S 、1S ,写出考查题型九 在坐标系中画位似中心1.(2023春·云南昭通·九年级统考期中)如图,在直角坐标系中,ABC V 与ODE V 是位似图形,已知点()2,1A ,则位似中心的坐标是( )A .()1,5B .()4,22.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF V V 、成位似关系,则位似中心的坐标为(A .()1,0-B .()0,03.(2023秋·全国·九年级专题练习)如图,在直角坐标系中,则位似中心的坐标是 .5.(2023秋·全国·九年级专题练习)已知,分别为()()()104132-,,,,,.1A △(1)请画出点P 的位置,并写出点P 的坐标(2)以点O 为位似中心,在y 轴左侧画出V 内一点,则点M 在222A B C △内的对应点的坐标为1,2BA.()2.(2023秋·浙江·九年级专题练习)如图,四边形OE2A.4B.163.(2023秋·山东聊城·九年级校考开学考试)如图,在边长为V的三个顶点均在格点(网格线的交点)上.以原点标系,ABC相似比为2,则点B的对应点1B的坐标是(42,B.A.()4.(2023·山东日照·校考三模)如图,在平面直角坐标系中,()-,,点C坐标为()20-,10A .()3,2-B .5.(2021春·福建龙岩·九年级校考阶段练习)COD △的相似比是31:,且点A .()2,4B .7.(2023秋·湖南衡阳·九年级校联考阶段练习)将函数的新函数记作()g x ,我们称()f x 与(g x 8.(2023秋·全国·九年级专题练习)如图,在平面直角坐标系中,是位似中心,已知点()2,0A ,点(),C a b ,式子表示)9.(2023·辽宁盘锦·统考中考真题)如图,ABO V 中心,将ABO V 缩小为原来的13,得到A B O ¢¢△10.(2022秋·湖南长沙位似比是1:3,已知11.(2022秋·湖南永州·九年级校考期中)如图,()2,4C -,请你画出以坐标原点并直接写出A 、B 的对应点的坐标.12.(2022秋·陕西渭南·九年级统考期末)如图,在平面直角坐标系中,()()()0,02,11,2O A B -、、.(1)以原点O 为位似中心,在图中画出OAB V 的位似11OA B V ,使得点AB 、的对应点11A B 、均在y 轴的右侧,且11OA B V 与OAB V 的相似比为2:1;(2)在(1)的条件下,写出点1A 的坐标.13.(2023秋·山东临沂·七年级统考开学考试)(1)用数对分别表示出梯形四个顶点的位置:A ( )B ( )C ( )D ( )(2)把图中的梯形绕B 点顺时针旋转90°,画出旋转后的图形.(3)将原梯形按2:1放大,画出放大后的图形.14.(2023春·黑龙江绥化·九年级校考阶段练习)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC V 的三个顶点坐标分别为()1,4A ,()1,1B ,()3,1C .(1)画出ABC V ,再画出ABC V 关于x 轴对称的111A B C △;(2)画出ABC V 以点O 为位似中心扩大2倍后的图形222A B C △.15.(2023秋·全国·九年级专题练习)如图,已知()0,2A -,()2,1B -,()3,2C .(1)求线段AB 的长;(2)把A 、B 、C 三点的横坐标,纵坐标都乘2,得到A ¢,B ¢,C ¢的坐标,画出A B C ¢¢¢V ,并求A B ¢¢的长;(3)ABC V 与A B C ¢¢¢V 是位似图形吗?若是,请写出位似中心的坐标,并求出位似比.。

九年级数学 48 图形的位似 同步练习 精选练习

九年级数学 48 图形的位似 同步练习 精选练习

4.8 图形的位似1、【基础题】关于对位似图形的表述,下列命题正确的是_________.(只填序)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.2、【基础题】下列说法错误的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行3、【基础题】如图,五边形ABCDE和五边形ABCDE是位似图形,点A和点A是一对对应点,111111P是位似中心,且2 PA=3 PA,则五边形ABCDE和五边形ABCDE的相似比等于( ) 111111★★★2335.B、.、AC、.D、.3235是位似中心,位似O是位似图形,点DBAABCDE【基础题】如左下图,五边形与五边形′′C′′E′4、2的面积′′′,那么五边形周长为ABCDE1. 2比为:若五边形的面积为17 cm,20 cmA′BCDE′,周长为____________. ★★★为是位似BA、5【综合题Ⅰ】如右上图,′′′AAABC,则△3=4∶与_______∶′OABC∥′′B,∥ABC,且;△图形,位似比为______ ______. 是位似图形,位似比为________与OAB ★6、【基础题】如右图,以O为位似中心,作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.★★★和△BC【综合题Ⅰ】如图,在边长为1个单位长度的小正方形组成的格中,按要求画出△A7、111 C;AB222★★★个单位,得到△ABC;)把△(1ABC先向右平移4个单位,再向上平移1111★C.作位似变换且放大到原来的两倍,O以图中的为位似中心,将△ABC得到△AB(2)221121★★【基础题】画一个任意三角形,以三角形其中一个顶点为位似中心作一个与原三角形位似的新三8、角形,★使新三角形与原三角形的位似比为3:1.★★★)MNKEFH、9【基础题】如图,已知△和△是位似图形,那么其位似中心是(A. 点AB. 点BC. 点CD. 点DABC是位似图形,与△已知图中的每个小方格都是边长为1的小正方形,若△ABC10、【基础题】111且顶点都在小正方形顶点上,则它们的位似中心的坐标是____. ★★★答案②③、【答案】1D 选、【答案】2B选【答案】3、1724、【答案】10 cm ,cm 44 7∶′, B 7CA、5【答案】△′B′′,∶4 ,△OA′,),C′(810,84B′),(,各点坐标分别为如图,新图形为四边形、6【答案】A′B′C′D′A′24,(,). 26D′(,)7、【答案】8、【答案】略.9、【答案】选B(9,0、10【答案】)。

初三数学图形的位似试题

初三数学图形的位似试题

初三数学图形的位似试题1.如图,点是四边形与的位似中心,则________=________=________;________, ________.【答案】,,;,【解析】位似图形的性质:位似图形的对应边成比例,对应角相等.∵点是四边形与的位似中心∴==;,.【考点】位似图形的性质点评:本题是位似图形的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2.如图,,则与的位似比是________.【答案】【解析】先根据可得∽,再根据位似图形的相似比也叫做位似比即可得到结果.∵∴∽∴与的位似比是.【考点】位似图形的判定和性质点评:相似三角形全等的判定和性质的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________.【答案】【解析】相似图形的性质:相似图形的对应边的比等于相似比.由题意得原图与新图的相似比为.【考点】相似图形的性质点评:本题是相似图形的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.4.两个相似多边形,如果它们对应顶点所在的直线________,那么这样的两个图形叫做位似图形.【答案】相交于一点【解析】直接根据位似图形的定义填空即可.两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.【考点】位似图形的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较单一,因而在中考中不太常见,一般以选择题、填空题形式出现,难度一般.5.位似图形的相似比也叫做________.【答案】位似比【解析】直接根据位似比的定义填空即可.位似图形的相似比也叫做位似比.【考点】位似比的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较单一,因而在中考中不太常见,一般以选择题、填空题形式出现,难度一般.6.位似图形上任意一对对应点到________的距离之比等于位似比.【答案】位似中心【解析】直接根据位似图形的性质填空即可.位似图形上任意一对对应点到位似中心的距离之比等于位似比.【考点】位似图形的性质点评:本题是位似图形的判定方法与性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度不大.7.画出下列图形的位似中心.【答案】如图所示:【解析】连接两个位似图形两对对应点,对应点连线的交点就是位似中心.点O就是所求的位似中心.【考点】位似中心的画法点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.8.将四边形放大2倍.要求:(1)对称中心在两个图形的中间,但不在图形的内部.(2)对称中心在两个图形的同侧.(3)对称中心在两个图形的内部.【答案】(1)四边形A′B′C′D′就是所求的四边形;(2)四边形A′BC′D′就是所求的四边形;(3)四边形A′B′C′D′就是所求的四边形.【解析】画任意一个四边形ABCD,设对称中心为O.(1)对称中心在四边形外,连接对称中心和顶点A,并延长到A′,使A′到对称中心的距离等于A到对称中心的距离,同法得到其余点的对应点,顺次连接各对应点即为所求的图形;(2)对称中心在四边形的顶点,依照(1)的方法做;(3)对称中心在四边形的内部,依照(1)的方法做.(1)四边形A′B′C′D′就是所求的四边形;(2)四边形A′BC′D′就是所求的四边形;(3)四边形A′B′C′D′就是所求的四边形.【考点】画位似图形点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.9.如图,四边形和四边形′位似,位似比,四边形和四边形位似,位似比.四边形和四边形是位似图形吗?位似比是多少?【答案】是位似图形,【解析】因为四边形A″B″C″D″和四边形ABCD的对应顶点的连线已经相交于一点了,所以我们只要证明四边形A″B″C″D″∽四边形ABCD即可;相似具有传递性,所以可证得四边形A″B″C″D″∽四边形ABCD;又因为位似比等于相似比,所以可求得四边形A″B″C″D″和四边形ABCD的位似比.∵四边形ABCD和四边形A′B′C′D′位似,∴四边形ABCD∽四边形A′B′C′D′.∵四边形A′B′C′D′和四边形A″B″C″D″位似,∴四边形A′B′C′D′∽四边形A″B″C″D″.∴四边形A″B″C″D″∽四边形ABCD.∵对应顶点的连线过同一点,∴四边形A″B″C″D″和四边形ABCD是位似图形.∵四边形ABCD和四边形A′B′C′D′位似,位似比k=2,1=1,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2∴四边形A″B″C″D″和四边形ABCD的位似比为.【考点】位似图形的判定方法与性质点评:本题是位似图形的判定方法与性质的基础应用题,在中考中比较常见,在各种题型中均有出现,一般难度不大.10.请把如图所示的图形放大2倍.【答案】如图所示:【解析】可选择原图形的一个顶点作为位似中心,分别连接原图形中的关键点及位似中心并延长到放大后的新顶点,使新顶点到位似中心的距离等于2倍的原顶点到位似中心的距离,按原图形中的关键点的顺序连接新图形中的对应点即可.【考点】画位似图形点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.。

图形的位似

图形的位似

《图形的位似》同步练习一、填空题1.如图,△ABC∽△DEF,则△ABC与△DEF是以为位似中心的位似图形,若,则△ABC与△DEF的相似比是.第1题第2题第3题2.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为.若五边形ABCDE的面积为17 cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为cm2,周长为cm.3.已知,如图,A′B′∥AB,B′C′∥BC,且OA′:A′A=4:3,则△ABC与是位似图形,位似比为;△OAB与是位似图形,位似比为.4.如图,A′,B′,C′分别是OA,OB,OC的中点,则△ABC与△A′B′C′相似,△ABC与△A′B′C′位似(填“一定”或“不一定”).第4题第5题第6题5.如图,点P是DA,FC,EB的交点,则△ABC与△DEF是位似图形(填“一定”或“不一定”).6.如图,点E,F分别是▱ABCD的AB边和CD边延长线上的点,连接EF交AD,BC于点H,G,则图中的位似图形有.(至少写出两对)7.已知点A(﹣2,4),点B(﹣4,2),以原点O为位似中心,相似比为1:2把线段AB缩小,则点A 的对应点坐标为,点B的对应点坐标为.8.△ABC和△A′B′C′关于原点位似,且点A(﹣3,4),它的对应点A′(6,﹣8),则△ABC与△A′B′C′的相似比是.二、选择题9.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等10.下列说法:①位似图形一定是相似图形②相似图形一定是位似图形③位似图形对应顶点的连线相交于一点④位似图形的对应边互相平行.其中正确的有()A.1个B.2个C.3个D.4个11.如果四边形ABCD与四边形A′B′C′D′是位似图形,且位似比为k,下列等式中成立的有()①=k,②△BCD∽△B′C′D′,③=,④.A.1个B.2个C.3个D.4个12.已知△ABC在第一象限,则它关于原点位似的△A′B′C′在()A.第三象限B.第二象限C.第一象限D.第一或第三象限13.两个图形关于原点位似,且一对对应点的坐标分别为(3,﹣4),(﹣2,b),则b的值为()A.﹣9B.9C.D.﹣14.把△ABC的每一个点横坐标都乘﹣1,得到△A′B′C′,这一变换是()A.位似变换B.旋转变换C.中心对称变换D.轴对称变换三、解答题15.把下图的四边形ABCD以O为位似中心缩小为原来的.16.如图,O为△ABC内一点,以O为位似中心,作△A′B′C′∽△ABC,且相似比为2.17.在下面的平面直角坐标系中,作出以A(1,1),B(2,3),C(4,1)为顶点的△ABC,并作出△A′B′C′,使其与△ABC以原点为位似中心的位似图形,且△A′B′C′与△ABC的对应边的比为2:1.18.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边△CDE使点C在OA上,点D在OB上;②连结OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连结C′D′,则△C′D′E′是△AOB的内接三角形.求证:△C′D′E′是等边三角形.19.如图,已知B′C′∥BC,C′D′∥CD,D′E′∥DE.(1)求证:四边形BCDE位似于四边形B′C′D′E′.=20,求S四边形B′C′D′E′.(2)若,S四边形BCDE。

九年级数学上册4.7图形的位似练习浙教版(new)

九年级数学上册4.7图形的位似练习浙教版(new)

4.7 图形的位似姓名班级第一部分1、如图,四边形A’B’C’D'是四边形ABCD的位似图形,是位似中心,相似比为1∶2,S四边形A’B’C’D'∶S四边形ABCD= ,图中除四边形A’B’C'D’,的四边形ABCD外,还可以找到对相似三角形(可用字母表示的),它们是。

2、以点M为位似中心,画出四边形ABCD的位似图形四边形A1B1C1D l ,使得四边形ABCD与四边形A1B1C1D l的相似比为2∶1。

3、小明要在给定的锐角△ABC中,求作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB上,他的作法如下:第一步:画一个有三个顶点在△ABC两边上的正方形D′E′F′G′(如图);第二步:连结B、F′并延长交AC于点F;第三步:过F点作FE⊥BC,垂足为点E;第四步:过F点作FG∥BC交AB于点G;第五步:过G点作GD⊥BC,垂足为点D. 四边形DEFG即为所求作的正方形.小明的作法合理吗?请你给出合理的解释。

MDBAAB CD EFGD EG F''''4、如图所示,点O 是△ABC 外的一点,分别在射线OA ,OB ,OC 上取一点A’,B’,C’,使得3OA'OB'OC'OA OB OC===,连结A’B',B’C’,C’A’,所得△A’B’C’与△ABC 是否相似?证明你的结论.第二部分1. 下列说法正确的是…………………………………………………………………( )A .只有位似方法才能把一个图形放大或缩小B .两个相似的图形一定位似C .两个位似的图形一定相似D .利用位似的方法无法作两个 2。

如图,△ABC 和△DEF 是位似图形,且D 是OA 的中点,则EFBC等于……………( ) A.12B 。

13 C.14D 。

233。

如图,已知△OCD 位似和△OAB 是位似三角形,则中心是………………………( )A 。

专题04图形的位似(五大类型)(题型专练)(原卷版)

专题04图形的位似(五大类型)(题型专练)(原卷版)

专题04 图形的位似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.6 图形的位似
1.已知,如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC 与________是位似图形,位似比为________;△OAB与________是位似图形,位似比为________.
2.下列说法中正确的是()
A.位似图形可以通过平移而相互得到
B.位似图形的对应边平行且相等
C.位似图形的位似中心不只有一个
D.位似中心到对应点的距离之比都相等
3.小明在一块玻璃上画上了一幅画,然后用手电筒照着这块玻璃,将画映到雪白的墙上,这时我们认为玻璃上的画和墙上的画是位似图形.请你再举出一些生活中的位似图形来?并说明一对对应线段的位置关系.
4.将有一个锐角为30°的直角三角形放大,使放大后的三角形的边是原三角形对应边的3倍,并分别确定放大前后对应斜边的比值、对应直角边的比值.
5.一三角形三顶点的坐标分别是A(0,0),B(2,2),C(3,1),试将△ABC 放大,使放大后的△DEF与△ABC对应边的比为2∶1.并求出放大后的三角形各顶点坐标.
6.经过不同位似中心将同一图形进行放大和缩小,试问放大后的图形和缩小后的图形能否也是位似图形?谈谈你的看法.
参考答案
1、△A′B′C′ 7∶4 △OA′B′ 7∶4
2、D
3、略
4、(1)1∶3 1∶3
5、位似中心取点不同,所得D、E、F各点坐标不同,即答案不惟一.
6、由放大或缩小猴图形中对应线段与原图形中对应线段互相平行,故而放大后的图形和缩小后的图形的对应线段也互相平行,因而它们也是位似图形.。

相关文档
最新文档