人教A版高中数学必修三随机事件的概率教案
3.1.1《随机事件的概率》教案(新人教版必修3)完美版
高一数学必修3导学案(教师版) 编号3.1.1随机事件的概率周次上课时间月日周课型-新授课主备人使用人课题 3.1.1随机事件的概率教学目标<1.了解随机事件、必然事件、不可能事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;教学重点事件的分类;概率的定义以及和频率的区别与联系;教学难点随机事件发生存在的统计规律性.课前准备多媒体课件,硬币数枚》一、〖创设情境〗日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购买的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性二、〖新知探究〗(一)必然事件、不可能事件和随机事件—思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.让学生列举一些必然事件的实例#思考3:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件让学生列举一些不可能事件的实例~思考5:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.让学生列举一些随机事件的实例思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为>事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A 在这个条件下是确定事件,在另一条件下是随机事件你能举例说明吗(二):事件A发生的频率与概率物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为(事件A出现的频数,那么事件A出现的频率fn(A)等于什么频率的取值范围是什么思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:抛掷次数正面向上次数;频率0.502048106104040204812000@601924000120123000014984,7208836124在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,每批粒数?2510701303107001500]20003000发芽的粒数24960116~2826391339180627150发芽的频数1、()[0,1]Annf An}在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的事件A发生的频率较稳定,在某个常数附近摆动.思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率。
高中数学人教A版必修3《3.1.1随机事件的概率》教案3
随机事件的概率必修三3.1.1一.教学任务分析:1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义.2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键.3.理解随机事件的频率定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系.4.通过对概率的学习,使学生利用概率知识正确理解现实生活中的实际问题.二.教学重点与难点:教学重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.教学难点:理解随机事件的频率定义及概率的统计定义及计算概率的方法, 理解频率和概率的区别和联系.三.教学基本流程:↓↓↓↓↓四.教学情境设计:1.创设情景,揭示课题(1)章头语(2)日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.下列现象发生与否,各有什么特点?(1)在标准大气压下,把水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一张福利彩票,中奖;(6)掷一枚硬币,正面朝上.引导学生分析:(1)(2)两种现象必然发生,(3)(4)两种现象不可能发生,(5)(6)两种现象可能发生,也可能不发生.(2)几个概念a.确定性现象:在一定条件下,事先就能断定发生或不发生某种结果的现象;b.随机现象:在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果的现象.C.事件的概念对于某个现象,如果能让其条件实现一次,就是进行了一次试验。
而试验的每一种可能的结果,都是一个事件.2.基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;3. 基本概念辨析例1 试判断下列事件是随机事件、必然事件、还是不可能事件.(1)我国东南沿海某地明年将3次受到热带风暴的侵袭;a ;(2)若a为实数,则0(3)某人开车通过10个路口都将遇到绿灯;(4) 抛一石块,石块下落;(5) 抛掷骰子两次,向上的面的数字之和大于12.解:由题意知,(2)(4)为必然事件;(5)是不可能事件;(1)(3)是随机事件. 4.频数与频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A为事件A 出现的频率. 实验1: 投币实验完成课本P 113表格填写实验2: 观察计算机模拟掷硬币的实验结果:我们看到,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动.实验3 :观察历史上掷硬币的实验结果我们看到,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动.在相同条件下,随着试验次数的增多,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画该随机事件发生的可能性大小,而将频率作为其近似值. 5. 随机事件的概率对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率. 即:频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性.()mP A n≈, 0()1P A ≤≤, 6. 例题分析:例2: 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91. (2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89. 例3:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:中靶的频数为9,试验次数为10,所以靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 7. 课外作业课本P117练习 、。
人教A版高二数学:必修三 3.1.1必修三3.1.1随机事件的概率教学系教学设计
必修三3.1.1随机事件的概率教学设计一、教材分析:《随机事件的概率》是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量的不确定事件,而概率正是研究不确定事件的一门学科。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
由于学生在初中阶段已经学习了概率初步,因此本节课是对已学内容的深化和延伸;同时,又是对后面拓展模块学习的古典概型、几何概型等内容的一个铺垫,具有承上启下的作用。
二、教学目标及重难点:1.知识与技能:(1)结合一些具体实例了解随机事件、必然事件、不可能事件的概念;(2)通过亲身实验,了解随机事件发生的不确定性和频率的稳定性;(3)理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率。
2.过程与方法:(1)创设情境,引出课题,激发学生的学习兴趣和求知欲;(2)发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;(3)明确概率与频率的区别和联系,理解利用频率估计概率的思想方法.3.核心素养的培养:(1)通过学生自己动手、动脑和亲身试验来理解数学建模,培养逻辑推理能力;(2)通过动手实验,培养学生的数据分析能力和直观想象能力,享受“做”数学带来的成功喜悦。
4.教学重点:事件的分类;了解随机事件发生的不确定性和概率的稳定性;正确理解概率的定义。
5.教学难点:随机事件的概率的统计定义。
三.教学过程例2 对某电视机厂生产的电视机进行抽样检测的数据如下:(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?例3 天气预报说明天下雨的概率为95%,周六下雨的概率为5%,于是有位同学说:“明天肯定下雨,周六肯定不下雨.”这个说法正确吗?回答下列问题。
人教版高中数学必修三《随机事件的概率(第一课时)》公开课教案
随机事件的概率(第一课时)【课型】新授课【教学准备】多媒体设备,硬币数十枚,表格,三封信【教学目标】1、知识与技能目标:(1)进一步认识随机现象,了解随机事件发生的不确定性和频率的稳定性;(2)正确理解概率的统计定义,明确概率与频率的区别和联系,掌握利用频率估计概率的思想方法;(3)通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,使学生对对立统一的辨证关系有进一步的认识.2、过程与方法目标:(1)通过动手试验,体会随机事件发生的随机性和规律性;(2)在试验、探究和讨论过程中,学会利用频率估计概率的思想方法.3、情感态度与价值观目标:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性与必然性的对立统一;(3)通过本节课浓厚的生活背景,指导学生形成正确的价值观和人生观.【教学重点】通过抛掷硬币试验了解概率的统计定义、明确其与频率的区别和联系.【教学难点】利用频率估计概率,体会随机事件发生的随机性和规律性.【教法学法】针对本节课的特点,在教法上,采用以教师为主导,学生为主体的探究式教学方法;在教学过程中,注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在教学手段上,灵活运用黑板板书和多媒体展示,激发学生的创造力.【教学过程】(含时间分配)(一)创设情境,引入新知(5分钟)今天,我们从两场比赛说起:播放视频生活实例1:张梦雪里约奥运夺首金生活实例2:女排逆转夺冠设计意图:从刚刚过去的里约奥运会的实例引入,一方面奥运会是备受关注的社会热点话题,可以增强学生的国家自豪感和荣誉感,尤其是女排精神,可以激发学生永不服输,坚持到底的学习动力;另一方面可以激发学生的听课兴趣,通过身边的生活实例,让学生体会学习随机事件及其概率的必要性.思考一:1、在张梦雪射击前,你能知道她会获得冠军吗?2、在比赛前,你能猜到中国女排能再次夺得金牌吗?设计意图:抓住生活实例中包含的数学思维部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考,并且这两个问题在学生看来是很容易回答的,这恰恰说明概率的雏形在生活实践中已经产生,引出本节课的课题《随机事件的概率》.思考二:1、既然能否夺冠是随机事件,为什么派张梦雪参加奥运会,而不是派其他射击运动员参加?2、张梦雪“击中靶心的可能性比其他射击运动员大”这一生活经验是如何得到的呢?学生:根据以往的射击数据,统计其击中靶心的频率.教师:张梦雪击中靶心的频率是怎么计算的呢?=击中靶心的次数击中靶心的频率射击总次数,射击一次相当于做一次试验,在生活中我们通常用射击试验命中的频率来估计命中的概率,那么这种方法是否具有普遍性?设计意图:基于初中的学习,有些学生已经具备了用试验频率来估计概率的经验,但对于“为什么可以这样做”,缺乏思考.因此从学生熟悉的命中率入手,为接下来探讨随机事件的概率做准备.(二)合作交流,探究新知(25分钟)1、动手试验,探究随机事件的可能性大小(1)试验目的:探究随机事件“抛掷一枚硬币,正面朝上”发生的可能性大小.(2)试验要求:①从约30cm的高度下抛硬币,让其自由下落在桌面上;②小组成员两两结合,一人抛掷硬币时另一人帮其记录,每人掷20次,共80次,认真记录“正面向上”出现的次数,组长汇总本组的总次数.学生活动:由学生自己动手做试验,亲身体验随机事件发生的随机性及其频率的稳定性,经历动手试验——分析数据——观察规律——总结结论的探究过程.设计意图:分组试验是本节课最重要的环节,不能忽略,这也是本节课教学中最难控制的一个环节——必须把试验的自主权交给学生,让同学们亲历抛掷硬币的随机过程,唯有如此,才能建构起正确的随机观,才能辩证的理解随机性中的规律性.2、汇总数据,观察频率的特征设置问题:对比研究,探讨正面朝上的规律性(教师引导、学生归纳)学生活动:同学们先独立思考下面几个问题,然后小组讨论交流,举手发言.(1)仔细观察上表,频率呈现出什么样的特征?举手发言.生:频率基本上在常数0.5附近摆动,个别偏离常数较大.(2)请同学们小组讨论频率偏离常数较大的原因,派代表发言.生:①没有在相同条件下做试验;②由于随机事件本身的不确定性,当试验次数较少时,个别偏离较大是正常情况.(3)增加试验次数,继续观察频率有什么变化?生:随着试验次数的增加,频率摆动的幅度具有减小的趋势,并逐渐稳定于常数0.5.设计意图:设置“问题串”,层层深入,步步递进,让学生在动手试验和数据分析中总结频率的随机性与稳定性,以及两个条件“相同条件下”、“大量重复试验”,最终得出频率在大量重复试验下的规律性,符合学生的认知规律.3、观察分析,猜想频率的规律性借助计算机模拟抛10000次的试验,通过对比寻找在大量重复试验下的频率呈现出的规律性:随着试验次数的增加,频率摆动的幅度有减小的趋势,并逐渐稳定于常数0.5教师:有没有人亲手做过这么多次试验呢?历史上一些抛掷硬币的试验结果:(德育教育:这些数学家们正因为专注于一件事,在平凡的事情中创造了不平凡的业绩,这种持之以恒,科学严谨的探究精神也是我们所要学习的)试验者 抛掷次数(n ) 正面向上的次数(频数m ) 频率(nm) 棣莫弗 2048 1061 0.5181 布丰 4040 2048 0.5069 费勒 10000 4979 0.4979 皮尔逊 24000 12012 0.5005 罗曼诺夫斯基80640401730.4982学生活动:先独立思考下面两个问题,然后小组讨论交流,小组代表举手发言. ①能不能用某次试验的频率作为硬币正面向上的概率?为什么? ②用哪个量作为硬币正面向上的概率比较合适呢?结论:在相同条件下,大量重复抛掷硬币试验时,出现正面向上的频率在常数0.5附近摆动,随着试验次数的增加,正面向上的频率稳定于常数0.5,这个常数0.5就是硬币正面向上的概率.设计意图:学生亲历随机试验过程,更能理解试验的随机性,并体会出大量重复试验后的规律性,结合历史上数学家所做的努力、电脑模拟,加深对频率的稳定性的认识,并意识到概率概念的雏形.频率稳定在0.5附近,这个0.5即抛掷一枚硬币“正面朝上”的概率,引出概率定义.建构主义要求在课堂上体现概念、思想方法的自主建构过程,让学生去尝试、探索,总结、沉淀,内化成知识结构.4、感知升华,概括结论学生活动:请同学们根据试验结论,尝试自己概括出概率的统计定义,先单独思考,然后在练习本上写出来.(1)概率的统计定义在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在某一个常数附近摆动,即随机事件A发生的频率具有稳定性.我们把这个常数叫做随机事件A的概率,记作P(A).思考:随机事件A的概率 P(A)的取值范围是多少?随机事件的概率可以为0或1吗?你能举例说明吗?(2)求随机事件概率的方法生:大量重复试验下的频率估计概率(3)频率和概率有何联系和区别?学生活动:讨论交流后,找学生代表阐述自己的观点,教师做补充.联系:频率是概率的近似值,随着试验次数的增加,频率会稳定在概率附近;区别:频率反映了随机事件出现的频繁程度,是随机的,试验前不能确定;概率是确定的,是客观存在的,与试验无关.设计意图:通过思考问题,引导学生结合试验过程得出结论,锻炼学生的发现、合作、归纳的能力;通过投影结论,规范数学语言.教师结合实验过程对频率与概率的区别与联系以及求随机事件的概率的方法进行再探讨,突出本节课重点,突破难点.(三)自主练习,应用新知(8分钟)例1:判断下列说法的对错:(1)在对一批种子进行的发芽试验中,抽取的10粒种子全部发芽,所以该种子的发芽率为100%;(2)乒乓球比赛中,小李比小王获胜的概率大,若两人打一局比赛,小李一定获胜;(3)因为抛掷一枚硬币出现正面的概率是0.5,所以抛掷12000次时,出现正面的次数很有可能接近6000次;(4)某种彩票的中奖率为11000,那么,买1000张彩票一定能中奖.设计意图:通过种子发芽、体育比赛、抛掷硬币,彩票中奖等随机事件,让学生对生活中的随机事件的概率有了重新的认识,进一步了解了概率的定义及频率与概率的区别与联系.例2. 某射手在同一条件下进行射击,结果如下:(1)计算表中击中靶心的各个频率;(2)这个射手射击一次,击中靶心的概率约为多少?(3)这位射手击中靶心的概率为0.9,那么他射击10次一定能击中靶心9次吗?设计意图:通过射击的命中率,让学生学会如何利用频率估计概率,了解求生活中随机事件的概率的方法.(四)研究性课题(2分钟)探究1:站错队在超市购物后结账,人多的时候,多数情况是自己站的队伍慢,其它队伍快,总让人很是烦恼,你能利用所学的概率知识消除我的烦恼吗?探究2:电脑在今天已走进了千家万户,大大提高了人们的学习和工作效率.当你的指尖敲打着电脑键盘时,你是否想过,键盘上的字母为什么不按顺序排列?我们不妨一起来做一次统计,先选取一篇英文文章,然后统计总的字母数,每个字母出现的频数与频率,你能发现什么?设计意图:通过身边两个学生很熟悉的问题,更能激发学生的求知欲与兴趣,并能够让学生通过思考探究,跳一跳能够摘到桃子,鼓励学生继续学习.(五)打开信笺课堂小结(5分钟)(1)这节课你都学到了哪些知识?(2)这节课你都掌握了什么思想方法?(3)通过本节课的学习,对你的人生观、价值观有什么影响?设计意图:以灵活的方式引导学生总结本节课所学内容,并分享自己的一些体会,对本节课知识进行再回顾,再梳理,再理解(鼓励同学们自由发言).【板书设计】【教学反思】本节课内容非常贴近生活,因此丰富的问题情境会激发学生浓厚的兴趣,在教学时通过创设情境、引入新知——合作交流、探究新知——自主练习、应用新知——课堂小结、再现新知——课下探究、拓展新知等环节,引导学生逐步掌握知识,提高能力,本节课在教学中充分体现以教师为主导,以学生为主体的原则.在教学中提供恰当的问题情景,使学生在自主探索与合作交流中成为学习的主人,教师成为数学学习的组织者、引导者与合作者,在教学中注重学生的合作和交流活动,在活动中促进知识的学习,让学生澄清生活中的一些对概率的错误认识.引导学生认识到试验频率并不等同于概率,认识大量重复试验下的频率逐渐稳定于概率,频率是概率的近似值,而概率是频率的稳定值.。
人教A版高中数学必修3第三章 概率3.1 随机事件的概率教案(1)
《3.1.1随机事件的概率》教学设计一、教材分析随机事件的概率主要研究事件的分类,概率的定义、概率的意义及统筹算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科,它在人们的生活和生产建设中有着广泛的应用,也是今后学习概率统计的预备知识,所以它在教材中处于非常重要的地位。
概率是新课程高考的新增内容,由于概率问题与人们的实际生活有着紧密的联系,所以概率也成为了近几年新课程高考的一个热点。
二、学情分析概率所研究的对象具有抽象和不确定性等特点,学生很难用已获得的解决确定性数学问题的思维方法,去求的“活”的概率问题的解,这就决定了概率教学中教师的教学方式和学生的学习方式的转变,学生不能沿用传统的记忆加形成性训练的机械学习方法去学习,教师不能沿用传统的给予加示范性的灌输式教学方法去教学,教师必须引导学生经历概率模型的构建过程和模型的应用过程,从中获得问题情境性的情境体验和感悟,才能面对“活”的概率问题。
三、目标定位1、知识与技能:(1)结合实例了解必然事件,不可能事件,随机事件的概念;(2)通过试验了解随机事件的发生在大量重复试验下,呈现规律性,从而理解频率的稳定性及概率的统计定义;(3)结合概率的统计定义理解频率与概率的区别和联系.2、过程与方法:通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。
四、学习重难点学习重点:事件的分类;理解频率的稳定性及概率的统计定义。
学习难点:频率与概率的区别和联系;用概率的知识解释现实生活中的具体问题。
五、教法学法分析:针对本节课的特点,在教法上,我采用以教师引导为主,学生合作探索、积极思考为辅的探究式教学方法;在教学过程中,我注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在学法上,通过对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;做简单易行的实验,发现随机事件的某一结果发生的规律性;通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3.1.1随机事件的概率 教案(人教A版必修3)
3.1.1 随机事件的概率●三维目标1.知识与技能(1)了解随机事件、必然事件、不可能事件的概念.(2)正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系.2.过程与方法通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性,使学生正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.情感、态度与价值观通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义.难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知,突破了难点.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程.从而强化了重点.●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程. 主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力;还穿插运用了“发现式、讨论式”教学法.(4)学生探究的过程中,尽量为他们提供思维策略上的指导.●教学流程创设故事情境,引入新课:你购买本期福利彩票一定中奖吗?⇒引导学生对生活中的实例进行分析、探究,得出基本概念⇒学生分组讨论各个概念的特征,掌握各个概念⇒通过例1及变式训练使学生掌握判断事件的基本方法通过例2及变式训练使学生掌握试验结果的分析方法⇒通过例3变式训练使学生明确概率与频率的关系⇒归纳整理课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固本节知识并进行反馈矫正1.考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落.这两个事件就其发生与否有什么共同特点?【提示】 都是必然要发生的事件.2.考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点?【提示】 都是不可能发生的事件.3.考察下列事件:(1)某人射击一次命中目标;(2)山东地区一年里7月15日这一天最热;(3)抛掷一个骰子出现的点数为偶数.这些事件就其发生与否有什么共同特点?【提示】 都是可能发生也可能不发生的事件. 事件的概念及分类 事件错误!)【问题导思】 做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数. 1.在本实验中出现了几种结果?【提示】 一共出现了1点、2点、3点、4点、5点、6点六种结果. 2.一次试验中的试验结果试验前能确定吗?【提示】 不能.3.若做大量地重复试验,你认为出现每种结果的次数有何关系? 【提示】 大致相等.频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A出现的频率.【问题导思】1.频率的取值范围是什么?概率的取值范围是什么? 【提示】 频率与概率的取值范围都是[0,1].2.概率为1的事件是否一定发生?概率为0的事件是否一定不发生?为什么? 【提示】 不一定,概率为1只是发生的可能性很大,而概率为0的事件也不是一定不发生(即也可能发生).1.概率:概率是度量随机事件发生的可能性大小的量.2.概率与频率联系:对于给定的随机事件A ,事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).例1 (1)我国东南沿海某地明年将受到3次冷空气的侵袭. (2)若a 为实数,则|a |≥0.(3)抛掷硬币10次,至少有一次正面向上.(4)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标. (5)没有水分,种子发芽.【思路探究】 解答本题可依据随机事件,必然事件和不可能事件的定义逐一验证. 【自主解答】 (1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)对任意实数a ,|a |≥0总成立,是必然事件.(3)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件. (4)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件. (5)没有水分,种子不可能发芽,是不可能事件.1.正确理解并掌握必然事件、不可能事件和随机事件的概念是解答本题的关键.2.要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的.第二步再看它是一定发生,还是不一定发生,还是一定不发生.一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.指出下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)某体操运动员将在运动会上获得全能冠军;(2)一个三角形的大边所对的角小,小边所对的角大;(3)如果a>b,那么b<a;(4)某人购买福利彩票中奖;(5)某人的手机一天接到20个电话.【解】(1)(4)(5)是随机事件,(2)是不可能事件,(3)是必然事件.例2果.(1)从中任取1球;(2)从中任取2球.【思路探究】明确条件和结果,据生活经验按一定顺序逐一列出全部结果.【自主解答】(1)条件为:从袋中任取1球,结果为:红、白、黄、黑4种.(2)条件为从袋中任取2球,若记(红,白)表示一次试验中,取出的是红球与白球,结果为(红,白)、(红,黄)、(红,黑)、(白,黄)、(白,黑)、(黄,黑)6种.1.把握住随机试验的实质,要明确一次试验就是将事件的条件实现一次,如取出“红球、白球”就实现了条件“任取2个小球”一次.2.准确理解随机试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是求概率的基础.在写试验结果时,一般采用列举法写出,必须首先明确事件发生的条件.根据日常生活经验,按一定次序列举,才能保证所列结果没有重复,也没有遗漏.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.【解】(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2, 1-6=-5,6-1=5, 1-10=-9,10-1=9, 3-6=-3,6-3=3, 3-10=-7,10-3=7, 6-10=-4,10-6=4.例3 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考察它的概率.【思路探究】 先由公式f n (A )=n An 分别求出各项试验对应的频率然后估计概率.【自主解答】 由f n (A )=n An ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.规律方法1.频率与概率的关系:频率随着试验次数的变化而变化,概率却是一个常数,是客观存在的,与试验次数无关,概率是频率的科学抽象,当试验次数越来越大时,频率向概率靠近.2.此类题目的解题方法是:先利用频率的计算公式依次计算出各个频率值,然后根据概率的定义确定频率的稳定值即为概率.变式训练某质检员从一大批种子中抽取若干组种子,在同一条件下进行发芽试验,有关数据如下:(2)根据频率的稳定值估计种子的发芽率.【解】 (1)种子的发芽频率从左到右依次为:0.96,0.86,0.89,0.91,0.90,0.90. (2)由(1)知发芽频率逐渐稳定在0.90,因此可以估计种子的发芽率为0.90.易错易误辨析 忽视试验结果导致解题错误典例 先后抛掷两枚质地均匀的硬币,则: (1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种? (3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”,“两枚反面”,“一枚正面,一枚反面”三种不同的结果.(2)出现“一枚正面,一枚反面”的结果有一种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 将“一正,一反”与“一反,一正”两种情形错认为是一种情形,若在题干中强调了“先后”“依次”“顺序”“前后”就必须注意顺序问题.【防范措施】 1.把握随机试验的实质,明确一次试验的含义. 2.按一定的顺序用有序数组的形式写出,要不重不漏.【正解】 (1)一共可能出现“两枚正面”“两枚反面”“第一枚正面,第二枚反面”“第一枚反面,第二枚正面”四种情况.(2)出现“一枚正面,一枚反面”的结果有2种. (3)出现“一枚正面,一枚反面”的概率为12.课堂小结1.随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A 的概率),这个常数越接近于1,事件A 发生的概率就越大,也就是事件A发生的可能性就越大;反之,常数越接近于0,事件A发生的可能性就越小.2.概率就是用来度量某事件发生的可能性大小的量,根据随机事件发生的频率只能得到概率的估计值.当堂双基达标1.下列事件是随机事件的有()①掷一枚硬币,反面向上;②x为实数,则x2<0;③明年高考数学试题很容易.A.②B.①②C.①③D.②③【解析】①③为随机事件,②为不可能事件.【答案】 C2.下列说法正确的是()A.任何事件的概率总在(0,1)内B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定D.随着试验次数的增加,频率一般会越来越接近概率【解析】任何事件的概率总在[0,1]内,频率与试验次数有关,C中概率是客观存在的,故A、B、C都不正确.【答案】 D3.北京去年6月份共有7天为阴雨天气,设阴雨天气为事件A,则事件A出现的频数为________,事件A出现的频率为________.【解析】由频数的意义知,事件A出现的频数为7,频率为730.【答案】77 304.从甲、乙、丙、丁四名同学中选2名代表学校参加一项活动,可能的选法有哪些?【解】可能的选法为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁).课后知能检测一、选择题1.给出关于满足A B的非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确命题的个数为()A .1B .2C .3D .4【解析】 由真子集的定义可知:①③④是正确命题,②假命题. 【答案】 C2.(2013·德州高一检测)事件A 的频率mn 满足( )A.m n =0B.mn =1 C .0<m n<1D .0≤mn≤1【解析】 ∵0≤m ≤n ,∴0≤mn ≤1.【答案】 D3.在掷一枚硬币的试验中,共掷了100次,“正面向上”的频率为0.49,则“正面向下”的次数为( )A .0.49B .49C .0.51D .51 【解析】 “正面向上”的次数为100×0.49=49. 故“正面向下”的次数为100-49=51. 【答案】 D4.掷一枚硬币,反面向上的概率是12,若连续抛掷同一枚硬币10次,则有( )A .一定有5次反面向上B .一定有6次反面向上C .一定有4次反面向上D .可能有5次反面向上【解析】 掷一枚硬币,“正面向上”和“反面向上”的概率为12,连掷10次,并不一定有5次反面向上,可能有5次反面向上.【答案】 D5.(2013·广州高一检测)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A .0.53B .0.5C .0.47D .0.37【解析】 取到号码为奇数的频率是10+8+6+18+11100=0.53.【答案】 A 二、填空题6.从3双鞋子中,任取4只,其中至少有两只鞋是一双,这个事件是________(填“必然”,“不可能”或“随机”)事件.【解析】 由题意知该事件为必然事件. 【答案】 必然7.设某厂产品的次品率为2%,则该厂1 000件产品中不合格品的件数约为________. 【解析】 1 000×2%=20. 【答案】 208.已知随机事件A 发生的频率是0.01,事件A 出现了10次,则一共进行了________次试验.【解析】 设共进行了n 次试验,则10n =0.01,∴n =1 000.【答案】 1 000 三、解答题9.指出下列事件是必然事件、不可能事件,还是随机事件? (1)某地1月1日刮西北风; (2)当x 是实数时,x 2≥0; (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%.【解】 (1)(4)是随机事件;(2)是必然事件;(3)是不可能事件.10.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击一次,问中靶的概率约是多少?【解】 设射击次数为n ,中靶次数为m .射击10次,∴n =10,有9次中靶,∴m =9, ∴中靶频率mn=0.9.由频率估计概率,故假设此人射击一次,中靶概率约为0.9.11.某人做试验“从一个装有标号为1,2,3,4的小球的盒子中,无放回地取小球两次,每次取一个,构成有序数对(x ,y ),x 为第一次取到的小球上的数字,y 为第二次取到的小球上的数字”.(1)求这个试验结果的种数;(2)写出“第一次取出的小球上的数字是2”这一事件. 【解】 (1)当x =1时,有(1,2),(1,3),(1,4)三种结果. 当x =2时,有(2,1),(2,3),(2,4)三种结果. 当x =3时,有 (3,1),(3,2),(3,4)三种结果.当x =4时,有(4,1),(4,2),(4,3)三种结果. 故这个试验共有3×4=12种结果.(2)记“第一次取出的小球上的数字是2”为事件A ,则A ={(2,1),(2,3),(2,4)}.某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 【思路探究】 (1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6.即估计灯管使用寿命不足1 500小时的概率为0.6.对某厂生产的某种产品进行抽样检查,数据如下:抽取多少件产品?【解】 5次抽查的合格频率分别为0.94,0.92,0.96,0.95,0.953,则合格概率估计为0.95. 设若想抽到950件合格品,大约抽n 件产品,950则n=0.95,所以n=1 000.。
高中数学人教A版必修3教案-3.1_随机事件的概率_教学设计_教案_2
教学准备1. 教学目标互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
2. 教学重点/难点重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
3. 教学用具4. 标签教学过程一、基本知识概要:1、互斥事件:如果事件A与B不能同时发生(即A发生B必不发生或者B发生A必不发生),那么称事件A,B为互斥事件(或称互不相容事件)。
如果事件A1,A2,…中任何两个都是互斥事件,那么称事件A1,A2,…An彼此互斥。
互斥事件的概率加法公式:如果事件A,B互斥,那么P(A+B)=P(A)+P (B);如果事件A1,A2,…彼此互斥,则P(A1+A2+…+)=P(A1)+P(A2)+…+P ();二、重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
三、思维方式: 在求某些稍复杂的事件的概率时通常有两种方法:一是将所求事件的概率分化成一些彼此互斥的事件的概率的和;二是先求出此事件的对立事件的概率,即用逆向思维法。
正难则反的思想。
四、特别注意:互斥事件、对立事件的区别。
④8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,则这两个强队被分在一个组内的概率是;解法一:2个强队分在同一组,包括互斥的两种情况:2个强队都分在A组和都分在B组。
2个强队思维点拨:运用互斥事件的概率加法公式解题时,首先要分清事件是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏。
三、课堂小结1.互斥事件不一定是对立事件、对立事件一定是互斥事件。
在求用“至少”表达的事件的概率时,先求其对立事件的概率往往比较简便。
2.把一个复杂事件分解成几个彼此互斥的事件时,要做到不重复不遗漏。
3.互斥事件的概率加法公式利用互斥事件的概率加法公式来求概率,首先要确定事件彼此互斥,然后求出事件分别发生的概率,再求其和。
最新人教版高中数学必修3第三章《随机事件的概率》教案
《随机事件的概率》教案教学目标:1.了解随机事件、必然事件、不可能事件的概念;通过试验了解随机事件发生的不确定性和频率的稳定性;2.通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;明确概率与频率的区别和联系,理解利用频率估计概率的思想方法;3.培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学事实史实渗透,培育学生刻苦严谨的科学精神.教学重点难点:1.重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系;2.难点:利用频率估计概率,体会随机事件发生的随机性和规律性.教法与学法:1.教法选择:指导学生通过实验,发现随机事件随机性中的规律性,更深刻的理解事件的分类,认识频率,区分概率;2.学法指导:在教师的指导下,学生分组互相讨论,尤其注意频率与概率的区别和联系.教学过程:一、设置情境,引出概念二、例题详解,深化概念三、思维拓展,共同探究四、归纳小结,课堂延展教学设计说明1.教材地位分析:“随机事件的概率”是学生学习《概率》的入门课,也是一堂概念课.现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科.概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的地位.2.学生现实分析:由于大部分学生对于数学缺乏兴趣,学习数学缺少主动性,很少动手解题.因此,教学过程中要不断增强学生学习的兴趣,让学生主动学习数学.3. 本节课的特点是教学任务相对简单,可以留给学生思考和活动的空间较大.所以在设计本节课时,着力体现如下设计思想:渗透数学源于生活、用于生活的意识,激发学生的好奇心.学生通过动手实验,自己来探究解决问题的方法,并通过实验结果总结出规律.通过巧妙地创设问题情景,让学生主动、积极地体会知识的形成过程,体验数学概念的产生、完善的过程.。
人教版高中数学必修3第三章概率-《3.1.1随机事件的概率》教案
3.1.1 随机事件的概率整体设计教学分析概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施.三维目标1.通过在抛硬币、抛骰子的试验中获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率f n (A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.重点难点教学重点:1.理解随机事件发生的不确定性和频率的稳定性.2.正确理解概率的意义.教学难点:1.对概率含义的正确理解.2.理解频率与概率的关系.课时安排1课时教学过程导入新课思路1日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.思路21名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.推进新课新知探究提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念.具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:思考试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下,填入下表.思考与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示.思考这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性. 思考如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么? 引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示. (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n a 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同. 概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关. 应用示例思路1例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件. (1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b,那么a-b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”; (10)“在常温下,焊锡熔化”.分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.点评:紧扣各类事件的定义,结合实际来判断.例2 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A 出现的频数n a 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89. 点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之. 变式训练一个地区从某年起几年之内的新生儿数及其中男婴数如下:(1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少? 答案:(1)0.520 0.517 0.517 0.517 (2)由表中的已知数据及公式f n (A )=nn A即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.思路2例1 做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出; (2)做60次试验,每种结果出现的频数、频率各是多少?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点. (2)根据实验结果列表后求出频数、频率,表略.例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 知能训练1.指出下列事件是必然事件、不可能事件、还是随机事件. (1)某地1月1日刮西北风; (2)当x 是实数时,x 2≥0;(3)手电简的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%.答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件. 2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率. 点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法. 拓展提升1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A.必然事件B.随机事件C.不可能事件D.无法确定 答案:B提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件. 2.下列说法正确的是( )A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对 答案:C提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格;(2)该油菜子发芽的概率约是多少?解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897.4.某篮球运动员,在同一条件下进行投篮练习,结果如下表所示.(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.课堂小结本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.作业完成课本本节练习.。
A版高中数学必修3《随机事件的概率》教案和教案说明
课题:随机事件的概率教材:人教版A版普通高中课程标准实验教材-数学必修 3教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)探究发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过史例提高学生学习的兴趣,以及对我国数学家的尊敬,实施爱国主义教育;(2)通过学生自己动手、动脑和亲身试验来理解知识,培养学生的探究意识与创新精神,并体会数学知识与现实世界的联系;(3)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 通过实验理解频率和概率的区别和联系.教学难点:理解随机事件的频率定义及概率的统计定义及计算的方法, 理解频率和概率的区别和联系.教学方法:学生自主探索、合作交流,教师充分运用信息技术进行引导、启发教学教学手段:多媒体平台、PowerPoint课件、信息技术(电脑模拟实验、EXCEL图表)、数学历史教育、学生动手做抛硬币实验教学情境设计:教学过程设计意图和师生互动一、设计课堂情景引入“随机事件的概率”:1、故事情景:故事: 1名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭通过生动的数学历史故事,激起学生学习“随机事件的概率”的兴趣,并指出故事中的数学家就是我国著名的航天之父——钱学森,他早期在美国麻省击,搞得英美盟军焦头烂额.为此,有位美国海军将领专门去请教了一位数学家,该数学家运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(如100艘)编队规模越小,编次就越多(若每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.理工大学获得航空工程博士学位,后放弃优厚薪金毅然回国为祖国航空事业效力,我们作为中国的新一代也要努力学习科学文化知识,将来为国家贡献。
人教A版高中数学必修三随机事件的概率教案
人教A版高中数学必修三随机事件的概率教案高中数学必修三中的随机事件的概率是一个比较重要的概念,也是数学中的一个基础概念。
掌握随机事件的概率,可以帮助学生更好地理解和应用数学中的概率知识。
本文将设计一个针对高中数学必修三中的随机事件的概率的教学案例,旨在帮助学生更好地理解和掌握该概念。
一、教学目标:1.知识与技能:(1)理解随机事件的概念,能够用自己的语言解释什么是随机事件。
(2)掌握随机事件的概率的计算方法,包括简单事件、复合事件、互斥事件和对立事件的概率计算方法。
(3)能够应用所学知识解决实际问题,特别是对混合事件的概率计算能力。
2.过程与方法:(1)通过观察、实验等方式引入随机事件的概念。
(2)通过示例分析,引导学生掌握概率计算方法。
(3)培养学生应用所学知识解决实际问题的能力。
3.情感态度与价值观:(1)培养学生对数学研究的兴趣和热爱。
(2)培养学生的创新思维和解决问题的能力。
二、教学过程:1.引入:通过实验引入随机事件的概念。
(1)指导学生进行简单的实验,如抛硬币、掷骰子等。
(2)让学生观察实验的结果,并总结出现的各种情况。
(3)引导学生理解随机事件的概念,提问学生,什么是随机事件?2.概率的基本定义和性质的讲解。
(1)通过简单的实例,讲解概率的基本定义和性质。
(2)引导学生理解简单事件和复合事件的概念,以及它们的概率计算方法。
(3)提问学生,什么是互斥事件和对立事件?并讲解它们的概率计算方法。
3.示例分析:(1)设计一些示例,引导学生运用所学方法计算概率。
(2)提问学生,如何计算混合事件的概率?并讲解混合事件的概率计算方法。
(3)引导学生通过分析实际问题,灵活运用所学方法解决问题。
4.练习与拓展:(1)设计一些练习题,巩固学生对随机事件的概率计算方法的掌握。
(2)给学生一些拓展性题目,培养学生的创新思维和解决问题的能力。
5.讲解与总结:(1)综合学生的实际操作和计算结果,讲解一些难点和疑惑。
人教A版高中数学必修三随机事件的概率教案(1)(1)
课 题: 随机事件的概率教学目的:1巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤教学重点:等可能性事件概率的定义和计算方法教学难点:排列和组合知识的正确运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A 由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成).6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n=. ①一个基本事件是一次试验的结果,且每个基本事件的概率都是1n ,即是等可能的; ②公式()m P A n=是求解公式,也是等可能性事件的概率的定义,它与随机事件的频率有本质区别; ③可以从集合的观点来考察事件A 的概率:()()()card A P A card I =.8.等可能性事件的概率公式及一般求解方法二、讲解范例:例1.在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率解:(1)记事件1A =“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893()990C P A C ==. (2)记事件2A =“任取2件,2件都是次品”,∴2件都是次品的概率为25321001()495C P A C ==. (3)记事件3A =“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019()198C C P A C ⋅==. 例2.储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的事件A事件I密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少?解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等, ∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等, ∴正好按对密码的概率是2110P =. 例3.7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率;(3)甲、乙两人不相邻的概率解:(1)甲不站正中间的概率667766()7A P A A ⋅==; (2)甲、乙两人正好相邻的概率6262772()7A A PB A ⋅==; (3)甲、乙两人不相邻的概率5256775()7A A P C A ⋅==. 例4.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,计算:(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?解:(1)甲抽到选择题,乙抽到判断题的概率11642104()15C C P A A ⋅==; (2)甲、乙二人中至少有一人抽到选择题的概率211116644621013()15A C C C C PB A +⋅+⋅== 三、课堂练习:1.10件产品有2件次品,现逐个进行检查,直至次品全部被查出为止,则第5次查出最后一个次品的概率为 ( )()A 454 ()B 452 ()C 92 ()D 21 2.n 封信投入m 个信箱,其中n 封信恰好投入同一个信箱大概率是( )()A 1n m ()B 1m n ()C 11n m - ()D 11m n - 3.袋中装有标号为1,2,3,4的四只球,四人从中各取一只球,其中甲不取1号球,乙不取2号球,丙不取3号球,丁不取4号球的概率为 ( )()A 14 ()B 38 ()C 1124 ()D 23244.有5种不同的作物,从中选出3种分别种在3种不同土纸的试验小区内,其中甲、乙两种作物不宜种在1号小区内的概率为 ( )()A 110 ()B 12 ()C 35 ()D 15.3名旅客随机地住入旅馆的3间客房中,则每间客房恰好住1人的概率为 .6.4本不同的书分给3个人,每人至少分得1本的概率为 .7.某火车站站台可同时停靠8列火车,则在某段时间内停靠在站台旁的3列列车任两列均不相邻的概率为 .8.将3个球随机地放入4个盒子中,盒中球数最多为1的概率为 ,球数做多为2的概率为 .9.在一次口试中,要从10道题中随机抽出3道题进行回答,答对了其中2道题就获得及格,某考生会回答10道题中的6道题,那么他(她)获得及格的概率是多少?10.在80件产品中,有50件一等品,20件二等品,10件三等品,从中任取3件,计算:⑴3件都是一等品的概率;⑵2件是一等品、1件是二等品的概率;⑶一等品、二等品、三等品各有一件的概率11.一套书共有上、中、下三册,将它们任意列到书架的同一层上去,各册自左至右或自右至左恰好成上、中、下的顺序的概率是多少?12.甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率13.下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有(请将正确的序号填写在横线上).14.将骰子先后抛掷2次,(1)朝上一面数之和为6的概率是;(2)朝上一面数之和小于5的概率是答案:1. A 2. C 3. B 4. C5.3323!9A= 6.11234323343439C C C AA= 7.3638514AA=8.343348A=,143151416C-= 9.12346633101023C C CC C+=10. ⑴3503802451027CC=;⑵21502038012254108C CC=;⑶1115020103801251027C C CC= 11.33213A=12. 解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.13. ①③④ 14.(1) 536(2)16四、小结:用排列组合数公式计算等可能性事件概率的基本方法和一般步骤五、课后作业:六、板书设计(略)七、课后记:。
人教新课标A版高中数学必修3《随机事件的概率及概率的意义》2课时教学设计
3.1随机事件的概率3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题. b5E2RGbCAP2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法. p1EanqFDPw3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2 )培养学生的辩证唯物主义观点,增强学生的科学意识. DXDiTa9E3d二、重点与难点:(1 )教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题. RTCrpUDGiT三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学. 5PCzVD7HxA四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
jLBHrnAlLg2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数;称事件A出现的比例f n(A)=互为事件A出现的概率:对于给定的随机事件nA,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个常数记作P (A),称为事件A的概率。
人教版高中数学必修三 第三章 概率随机事件的概率-教案
[师](打出投影片§10.5.1 B),请同学们来看这样一组数据:历史上曾有人作过抛掷硬币的大量重复试验,这便是试验结果.大家从这组数据中,是否可获得什么结论呢?
[生]出现正面的频率值都接近于0.5.
(打出投影片§10.5.1 C)
[师]再请同学们看这样两组数据,从表2可看到……
[生]当抽查的球数很多时,抽到优等品的频率接近于0.95.
[师]从表3可看到……
[生]当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于0.9.
[师]随机事件在一试验中是否发生虽然不能事先确定,但随着试验次数的不断增加,它的发生会呈现出一定的规律性,正如我们刚才看到的:某事件发生的频率在大量重复的试验中总是接近于某个常数.
[生甲]事件(1)是必然要发生的.
[师]还有必然要发生的事件吗?
[生乙]有,还有事件(4)、(6)都是一定会发生的事件.
[师]那么,其余的事件……
[生丙]事件(2)、(9)、(10)是一定不发生的事件.
[师]也就是说,这些事件是不可能发生的事件.
[生丁]事件(3)、(5)、(7)、(8)有可能发生,也有可能不发生.
若记事件A:油菜籽发芽,则P(A)=0.9,即:任取一油菜籽,发芽的概率为0.9.
[师]概率这一常数从数量上反映了一个事件发生的可能性的大小.
如上:抛掷一枚硬币出现“正面向上”的可能性是50%;任取一乒乓球得到优等品的可能性是95%;任取一油菜籽,发芽的可能性是90%.
这一数值会给我们的生活和统计工作带来很多方便,很有研究价值.
2.增强学生的科学意识.
●教学重点
1.事件的分类.
2.概率的统计定义.
高中数学人教A版必修3第三章3.1.1随机事件的概率 教案
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;
注:(1) 必然事件与不可能事件统称为确定事件.
教学难点
用概率的知识解释现实生活中的具体问题.
课型
新课
主要教学方法
自主学习、思考、交流、讨论、讲解
教学模式
合作探究,归纳总结
教学手段与教具
智慧黑板.
教学过程设计
各环节教学反思
一、导入
同学们,看我手里拿着什么?(彩票)对了,这是我早上刚买的彩票,大家说我一定能中奖吗?(不一定)那就是可能中也可能不中,也就是说买彩票中奖这个事件可能发生也可能不发生,在数学中我们把这类事件称为随机事件。
4.发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.
5.在探究过程中,鼓励学生大胆尝试,培养学生勇于创新,敢于实践等良好的个性品质;
6.通过对概率的学习,渗透偶然寓于必然,事物之间既对立又统一的辩证唯物主义.
教学重点
事件的分类;概率的统计定义以及和频率的区别与联系.
随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发生ቤተ መጻሕፍቲ ባይዱ否会有规律性呢?
三、实验观察归纳
I试验
下面我们通过做一个抛掷硬币的试验,来了解“抛掷一枚硬币,正面向上”这个随机事件发生的可能性大小.
第一步:每人各取一枚同样的硬币,做10次抛掷硬币试验,记录正面向上的次数,并计算正面向上的频率,将试验结果填入表中:
《随机事件的概率》教案
《随机事件的概率》教案一、教学内容本节课选自高中数学教材《概率论与数理统计》第二章第一节“随机事件的概率”。
详细内容包括:1. 随机事件的定义与分类;2. 概率的定义及其性质;3. 概率的计算方法,包括古典概率、几何概率和统计概率;4. 概率的基本运算,如加法公式、乘法公式等。
二、教学目标1. 理解随机事件的概念,能对实际问题进行分类和分析;2. 掌握概率的定义及其性质,了解不同类型概率的计算方法;3. 学会运用概率的基本运算,解决实际问题。
三、教学难点与重点1. 教学难点:概率的定义及其性质,概率的基本运算;2. 教学重点:随机事件的分类,概率的计算方法。
四、教具与学具准备1. 教具:PPT,黑板,粉笔;2. 学具:教材,练习本,计算器。
五、教学过程1. 导入:通过生活中的实例,引导学生了解随机事件的概念,激发学生的学习兴趣;2. 新课导入:详细讲解随机事件的定义与分类,引导学生学习概率的定义及其性质;3. 例题讲解:结合实际例子,讲解概率的计算方法,让学生掌握不同类型概率的计算;4. 随堂练习:设计具有代表性的习题,让学生运用所学知识解决问题,巩固课堂所学;6. 布置作业:布置具有挑战性的作业,培养学生独立思考和解决问题的能力。
六、板书设计1. 随机事件的定义与分类;2. 概率的定义及其性质;3. 概率的计算方法;4. 概率的基本运算。
七、作业设计1. 作业题目:A. 抛掷一枚硬币,正面朝上;B. 一副52张的扑克牌中随机抽取一张,抽到红桃;C. 从一个装有3个红球和2个蓝球的袋子中,随机抽取一个球,抽到红球。
2. 答案:(1)随机事件;(2)A. 0.5;B. 1/4;C. 3/5。
八、课后反思及拓展延伸1. 课后反思:本节课通过实际例子引入,让学生充分理解随机事件的概念,掌握概率的计算方法。
但在讲解概率的基本运算时,可能存在学生难以理解的情况,今后教学中需加强此处的内容;2. 拓展延伸:引导学生运用所学知识,解决生活中的实际问题,如彩票中奖概率、游戏胜负概率等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1随机事件的概率 (第一课时)一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系;2、过程与方法:发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
2、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率 3、例题分析:例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”. 答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.例2 某射手在同一条件下进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A 出现的频数n A 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A )稳定在某个常数上时,这个常数即为事件A 的概率。
解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。
小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。
练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:(1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少? 答案:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517. (2)由表中的已知数据及公式f n (A )=nn A即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518. 4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
5、自我评价与课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A .必然事件B .随机事件C .不可能事件D .无法确定 2.下列说法正确的是( )A .任一事件的概率总在(0.1)内B .不可能事件的概率不一定为0C .必然事件的概率一定为1D .以上均不对 6、评价标准:1.B[提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件。
] 2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.] 7、作业:习案3.1.2概率的意义(第二课时)一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,计算机及多媒体教学.四、教学设想:1、创设情境: (1)必然事件:(2)不可能事件:(3)确定事件:(4)随机事件:(5)频数与频率:(6)频率与概率的区别与联系:2、基本概念:(7)似然法与极大似然法:见课本P1113、例题分析:例1 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:中靶的频数为9,试验次数为10,所以靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 例2 如果某种彩票中奖的概率为10001,那么买1000张彩票一定能中奖吗?请用概率的意义解释。
分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
解:不一定能中奖,因为,买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖。
例3 在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。
分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。
解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。
小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。
4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
5、自我评价与课堂练习:(2)该油菜子发芽的概率约是多少?(2)这位运动员投篮一次,进球的概率约为多少?3.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。
”学了概率后,你能给出解释吗?6、评价标准:1.解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.8 93,0.903,0.905.(2)该油菜子发芽的概率约为0.897。
2.解:(1)填入表中的数据依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80。
3.解:天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。
7、作业:习案3.1.3 概率的基本性质(第三课时)一、教学目标: 1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) (3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。
3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。
二、重点与难点:概率的加法公式及其应用,事件的关系与运算。
三、学法与教学用具:1、讨论法,师生共同讨论,;2、教学用具:投灯片 四、教学设计:1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等; (2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗? 2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115; (2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B). 3、 例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。