材料科学基础-名词解释.

合集下载

《材料科学基础》名词解释

《材料科学基础》名词解释

《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。

第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。

4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。

5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。

大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。

第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。

2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。

3、电子浓度:固溶体中价电子数目e与原子数目之比。

4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。

材料科学基础名词解释

材料科学基础名词解释

1、晶体:本子按一定办法正在三维空间内周期性天准则沉复排列,有牢固熔面,各背同性.之阳早格格创做2、中间相:二组元A战B组成合金时,除了产死以A为基大概以B为基的固溶体中,还大概产死晶体结构与A、B 二组员均不相共的新相.由于它们正在二元相图上的位子经常位于中间,故常常把那些相称为中间相.3、亚稳相:亚稳相指的是热力教上不克不迭宁静存留,但是正在赶快热却大概加热历程中,由于热力教能垒大概能源教的果素制成其已能转化成宁静相而姑且宁静存留的一种相.4、配位数:晶体结构中任一本子周围迩去邻且等距离的本子数.5、再结晶:热变形后的金属加热到一定温度之后,正在本变形构制中沉新爆收了无畸变的新晶粒,而本能也爆收了明隐的变更并回复到变形前的状态,那个历程称为再结晶(指出现无畸变的等轴新晶粒逐步与代变形晶粒的历程).6、真共晶:正在非仄稳凝固条件下,某些亚共晶大概过共晶身分的合金也能得到局部的共晶构制,那种由非共晶身分的合金得到的共晶构制称为共晶构制.7、接滑移:当某一螺型位错正在本滑移里上滑移受阻时,有大概从本滑移里变化到与之相接的另一滑移里上去继承滑移,那一历程称为接滑移.8、过真效:铝合金经固溶处理后,正在加热保温历程中将先后析出GP时资料的硬度强度将下落,那种局里称为过真效.9、形变加强:金属经热塑性变形后,其强度硬度降下,塑性战韧性下落,那种局里称为形变加强.10、固溶加强:由于合金元素(杂量)的加进,引导的以金属为基体的强度得到加强的局里.11、弥集加强:许多资料由二相大概多相形成,如果其中一相为细小的颗粒并弥集分集正在资料内,那种资料的强度往往会减少,称为弥集加强.12、不齐位错:柏氏矢量不等于面阵矢量整数倍的位错称为不齐位错.13、扩展位错:常常指一个齐位错领会为二个不齐位错,中间夹杂着一个堆垛层错的所有位错形态.14、螺型位错:位错附近的本子按螺旋形排列的位错称为螺型位错.15、包晶转化:包晶转化便是以结晶的固相与结余液好同应产死另一固相的恒温转化.16、共晶转化:由一个液相转化成二个分歧固相的转化.17、共析转化:由一种固相转化成其余二个分歧固相的转化.18、上坡扩集:溶量本子从矮浓度背下浓度处扩集的历程称为上坡扩集,标明扩集的驱能源是化教位梯度,而非浓度梯度.19、间隙扩集:那是本子扩集的一种体制,对付于间隙本子去道,由于其本子尺寸小,处于晶格间隙中,正在扩集时,间隙本子从一个间隙位子跳到相邻的另一个位子,产死本子的移动.20、身分过热:界里前沿液体中的本量温度,矮于由溶量分集所决断的凝固温度时爆收的过热.21、一级相变:凡是新旧二相化教位相等,化教位的一次偏偏导不相等的相变.22、二级相变:从相变热力教上道,相变前后二相的自由能(焓)相等,自由能(焓)的一阶偏偏导数相等,但是二阶偏偏导数不等的相变称为二级相变,如磁性转化,有序-无序转化,常导-超导转化.23、共格相界:如果二相界里上的所有本子均成-对付应的真足匹配闭系,即界里上的本子处于二相晶格的节面上,为相邻二晶体所公有,那种相界里称为共格界里.24、调幅领会:过鼓战固溶体正在一定温度下领会成结构相共,身分分歧的二个相的历程.25、回火坚性:淬火钢正在回火历程中,普遍情况下随回火的温宿的普及,其塑性、韧性普及,但是正在特定的回火温度范畴内,反而产死韧性下落的局里称为回火坚性.对付于钢铁资料存留第一类战第二类回火坚性.他们的温度范畴,效率果素战个性分歧.26、再结晶退火:所谓再结晶退火工艺,普遍是指将热变形后的金属加热到再结晶温度以上,保温一段时间后,缓缓热却到室温的历程.27、回火索氏体:淬火钢正在正在加热到400-600ºC温度回火后产死的回火构制,其由等轴状的铁素体战细小的颗粒状(蠕虫状)渗碳体形成.28、有序固溶体:当一种组元溶解正在另一组元中时,各组元本子分别吞噬各自的布推维面阵的一种固溶体,产死一种各组元本子有序排列的固溶体,溶量正在晶格真足有序排列.29、非匀称形核:新相劣先正在母相中存留的同量处形核,即依附于液相中的杂量大概中去表面形核.30、马氏体相变:钢中加热至奥氏体后赶快淬火所产死的下硬度的针片状构制的相变历程.31、贝氏体相变:钢正在珠光体转化温度以下,马氏体转化温度以上范畴内(550ºC-230ºC)的转化称为贝氏体相变.32、铝合金的真效:经淬火后的铝合金强度、硬度随时间延少而爆收隐著普及的局里称之为真效,也称为铝合金的真效.33、热弹性马氏体:马氏体相变制成弹性应变,而当中加弹性变形后不妨使马氏体相变爆收顺转化,那种马氏体称为热弹性马氏体.大概马氏体相变由弹性变形去协做.那种马氏体称为热弹性马氏体.34、柯肯达我效力:反映了置换本子的扩集体制,二个杂组元形成扩集奇,界里将背扩集速率快的组元一侧移动.35、热弹性马氏体相变:当马氏体相变形状的变更是通过弹性变形去协做时,称为热弹性马氏体相变.36、非晶体:本子不少程的周期排列,无牢固的熔面,各背同性等.37、致稀度:晶体结构中本子体积占总体积的百分数.38、多滑移:当中力正在几个滑移系上的分切应力相等并共时达到了临界分切应力时爆收共时滑移的局里.39、过热度:相变历程中热却到相变温度以下某个温度后爆收转化,仄稳相变温度与该本量转化温度只好称为过热度.40、间隙相:当非金属(X)战金属(M)本子半径的比值.41、齐位错:把柏氏矢量等于面阵矢量大概其整数倍的位错称为齐位错.42、滑移系:晶体中的一个滑移里及该里上一个滑移目标的推拢称为一个滑移系.43、离同共晶:共晶体中的α相依附于初死α相死少,将共晶体中另一相β相推到末尾凝固的晶界处,进而使共晶体二组成相相间的构制个性消得,那种二相分散的共晶体称为离同共晶.44、匀称形核:新相晶核是正在母相中匀称死少的,即晶核由液相中的一些本子团间接产死,不受杂量粒子大概中表面的效率.45、刃型位错:晶体中的某一晶里,正在其上半部有多余的半排本子里,佳像一把刀刃拔出晶体中,使那一晶里上下二部分晶体之间爆收了本子错排,称为刃型位错.46、细晶加强:晶粒越细小,晶界总少度愈少,对付位错滑移的阻拦愈大,资料的伸服强度愈下,晶粒细化引导晶界减少,位错的滑移受阻,果此普及了资料的强度.47、单接滑移:如果接滑移后的位错再转回战本滑移里仄止的滑移里上继承疏通,则称为单接滑移.48、单位位错:把柏氏矢量等于单位面阵矢量的位错称为单位位错.49、反应扩集:伴伴随化教反应而产死新相的扩集称为反应扩集.50、晶界偏偏散:由于晶内与晶界上的畸变能不共大概由于空位的存留使得溶量本子大概杂量本子正在晶界上富集的局里.51、柯氏气团:常常把溶量本子与位错接互效率后,正在位错周围偏偏散的局里称为气团,是由柯垂我最先提出,又称柯氏气团.52、形变织构:多晶体形变历程中出现的晶体教与背择劣的局里喊搞形变织构.53、面阵畸变:正在局部范畴内,本子偏偏离其仄常的面阵仄稳位子,制成面阵畸变.54、稳态扩集:正在稳态扩集历程中,扩集组元的浓度只随距离变更,而不随时间变更.55、包析反应:二个固好同应得到一个固相的历程为包析反应.56、非共格晶界:当二相正在相界处的本子排列出进很大.共大角度晶界相似,可瞅成由本子不准则排列的很薄的过度层形成.57、置换固溶体:当溶量本子溶进溶剂中产死固溶体时,溶量本子吞噬溶剂面阵的阵面,大概者道溶量本子置换了溶剂面阵的部分溶剂本子那种固溶体称为置换固溶体.58、间隙固溶体:溶量本子分集于溶剂晶格间隙而产死的固溶体称为间隙固溶体.59、二次再结晶:再结晶中断后仄常少大被压制而爆收的少量晶粒非常十分少大的局里.60、真共析转化:非仄稳转化历程中,处正在共析身分面附近的亚共析,、过共析合金,转化结束构制局部呈共析构制形态.61、肖脱基空位:正在个体晶体中,当某一本子具备脚够大的振荡能而使振幅删大到一定程度时便大概克服周围本子对付它的约束效率,跳离其本去位子,迁移到晶体表面大概内表面的仄常节面位子上而使晶体里里留住空位,称为肖脱基空位.62、弗兰克我空位:离启仄稳位子的本子挤进面阵中的间隙位子,而正在晶体中共时产死相等数手段空位战间隙本子.63、非稳态扩集:扩集组元的浓度不但是随距离x变更,也随时间变更的扩集称为非稳态扩集.64、真效:过鼓战固溶体后绝正在室温大概下于室温的溶量本子脱溶历程.65、回复:指新的无畸变晶粒出现之前所爆收的亚结媾战本能变更的阶段.66、相律:相律给出了仄稳状态下体系中存留的相数与组元.67、合金:二种大概二种以上的金属大概金属与非金属经熔炼、烧结大概其余要领推拢而成并具备金属个性的物量.68、孪晶:孪晶是指二个晶体(大概一个晶体的二部分)沿一个大众晶里形成镜里对付称的位背闭系,那二个晶体便称为孪晶,此大众晶里便称为孪晶里.69、相图:形貌各相存留条件大概共存闭系的图解,也可称为仄稳时热力教参量的几许轨迹.70、孪死:晶体受力后,以孪晶的办法举止的切变历程称喊孪死.71、晶界:晶界是身分结构相共的共种晶粒间的界里.72、晶胞:正在面阵中与出一个具备代表性的基础单元(最小仄止六里体)动做面阵的组成单元,称为晶胞.73、位错:是晶体内的一种线缺陷,其个性是沿一条线目标本子有顺序天爆收错排,那种缺陷用一个线目标战柏氏矢量共共形貌.74、偏偏析:合金中化教身分的不匀称性.75、金属键:自由电子与本子核间之间静电效率爆收的键合力.76、固溶体:以某一组元为溶剂,正在其晶体面阵中溶进其余组元本子(溶量本子)所产死的匀称混同的固溶体,它坚持溶剂的晶体结构典型.77、亚晶粒:一个晶粒中若搞个位背稍有好别的晶粒称为亚晶粒.78、亚晶界:相邻亚晶粒间的界里称为亚晶界.79、晶界能:无论是小角度晶界大概大角度晶界,那里的本子大概多大概少天偏偏离了仄稳位子,所以相对付于晶体里里,晶界处于较下的能量状态,超过的那部分能量称为晶界能,大概称晶界自由能.80、表面能:表面本子处于不匀称的力场之中,所以其能量大大降下,超过的能量称为表面自由能(大概表面能). 81、界里能:界里上的本子处正在断键状态,具备逾额能量.仄稳正在界里单位里积上的逾额能量喊界里能.82、淬透性:淬透性是指合金淬成马氏体的本领,主要与临界热速有闭,大小用淬透层深度表示.83、淬硬性:淬硬性是指钢正在淬火后所能达到的最下硬度,主要与钢的含碳量有闭.84、惯习里:固态相变时,新相往往正在母相的一定晶里上启初产死,那个晶里称为惯习里.85、索氏体:中温段珠光体转化产品,由片状铁素体渗碳体组成,片层间距较小,片层较薄.86、珠光体:铁碳合金共析转化得产品,是共析铁素体战共析渗碳体层片状混同物.87、莱氏体:铁碳相图共晶转化的产品,是共晶奥氏体战共晶渗碳体的板滞混同物.88、柏氏矢量:形貌位错个性的一个要害矢量,它集结反映了位错天区内畸变总量的大小战目标,也是位错扫过后晶体相对付滑动的量.89、空间面阵:指几许面正在三维空间搞周期性的准则排列所产死的三维阵列,是人为的对付晶体结构的抽象.90、范德华键:又瞬间奇极矩战诱导奇极矩爆收的分子间引力所形成的物理键.91、位错滑移:正在一定应力效率下,位错线沿滑移里移动的位错疏通.92、同量形核:晶核正在液态金属中依赖中去物量表面大概正在温度不匀称处择劣产死.93、结构起伏:液态结构的本子排列为少程无序,短程有序,而且短程有序本子团不是牢固稳定的,它是此消彼少,转眼万变,尺寸不宁静的结构,那种局里称为结构起伏.94、沉心规则:处于三相仄稳的合金,其身分面必位于共轭三角形的沉心位子.95、应变真效:第一次推伸后,再坐时举止第二次推伸,推伸直线上不出现伸服阶段.但是第一次推伸后的矮碳钢试样正在室温下搁置一段时间后,再举止第二次推伸,则推伸直线上又会出现伸服阶段.不过,再次伸服的强度要下于初次伸服的强度.那个真验局里便称为应变真效.96、枝晶偏偏析:固溶体正在非仄稳热却条件下,匀晶转化后新得的固溶体晶粒里里的身分是不匀称的,先结晶的内核含较多的下熔面的组元本子,后结晶的中缘含较多的矮熔面组元本子,而常常固溶体晶体以树枝晶办法少大,那样,枝搞含下熔面组元多,枝间含矮熔面组元较多,制成共一晶粒里里身分不匀称的局里.97、临界变形度:给定温度下金属爆收再结晶所需的最小预先热变形量.98、电子化合物:电子化合物是指由主要电子浓度决断其晶体结构的一类化合物,又称戚姆-罗赛里相,凡是具备相共的电子浓度,则相的晶体结构典型相共.99、共量同构体:化教组成相共,由于热力教条件分歧而产死分歧的晶体结构.100、再结晶温度:形变金属正在一定时间(普遍1h)内刚刚佳完毕再结晶的最矮温度.101、布推菲面阵:除思量晶胞形状中,还思量阵面位子所形成的面阵.102、配位多里体:本子大概离子周围与它间接相邻分散的本子大概离子的核心连线所形成的多里体,称为本子大概离子的配位多里体.103、施稀特果子F的夹角.与中力F104、拓扑稀堆相:由二种大小分歧的金属本子所形成的一类中间相,其中大小本子通过适合的协共形成空间利用率战配位数皆很下的搀杂结构,由于那类结构具备拓扑个性,故称那些相为拓扑稀堆相.105、间隙化合物:当非金属(X)战金属(M)本子半径的隙化合物.106、大角度晶界:多晶资料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的大角度晶界的位出进大于10度的晶界.107、小角度晶界:相邻亚晶粒之间的位背好小于10度,那种亚晶粒间的晶界称为小角度晶界,普遍小于2度,可分为倾斜晶界、扭转晶界、沉合晶界等.108、临界分切应力:滑移系启动所需的最小分切应力;它是一个定值,与资料自己本量有闭,与中力与背无闭.。

材料科学基础最全名词解释

材料科学基础最全名词解释

1.固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

2.金属键:自由电子与原子核之间静电作用产生的键合力。

3.离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。

这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。

部分位错:柏氏矢量小于点阵矢量的位错包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。

材料科学基础名词解释汇总

材料科学基础名词解释汇总

材料科学基础名词解释晶体原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

中间相两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

有序固溶体当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

致密度晶体结构中原子体积占总体积的百分数。

间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

点阵畸变在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

金属键自由电子与原子核之间静电作用产生的键合力。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

同质异构体化学组成相同由于热力学条件不同而形成的不同晶体结构。

布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

配位多面体原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。

拓扑密堆相由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。

材料科学基础名词解释

材料科学基础名词解释

金属材料:以金属键结合为主的材料,如钢铁材料。

无机非金属材料:以离子键和共价键结合为主的材料,如陶瓷材料。

高分子材料:以共价键结合为主的材料,如塑料、橡胶。

复合材料:以界面特征结合为主的材料,如玻璃钢。

结构材料:利用它的力学性能,用于制造需承受一定载荷的设备、零部件、建筑结构等。

功能材料:利用它的特殊物理性能(电、热、光、磁等),用于制造各种电子器件、光敏元件、绝缘材料等。

高聚物:是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。

复合材料:是由两种或两种以上化学性质或组织结构不同的材料组合而成。

晶体:物质的质点(分子、原子或离子)在三维空间呈规则的周期性重复排列的物质。

空间点阵:把质点看成空间的几何点,点所形成的空间阵列。

晶格:用假想的空间直线,把这些点连接起来,所构成的三维空间格架。

晶胞:从晶格中取出具有代表性的最小几何单元。

晶格参数:描述晶胞的六个参数a、b、c、晶体中各种方位上的原子面叫晶面,表示晶面的符号叫晶面指数。

{hkl}代表原子排列完全相同,只是空间位向不同的各组晶面,称为晶面族。

晶体中各个方向上的原子列叫晶向,表示晶向的符号叫晶向指数。

<unw>代表原子排列完全相同,只是空间位向不同的各组晶向,称为晶向族所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。

属此晶带的晶面称为共带面。

晶胞原子数:指一个晶胞内所含的原子个数。

原子半径:指晶胞中原子密度最大方向上相邻两个原子之间距离的一半,与晶格常数有关。

配位数:指晶格中任一原子周围所具有的最近且等距的原子数。

致密度:合金:是指由两种或两种以上元素组成的具有金属特性的物质。

如:黄铜,Cu、Zn合金;碳钢,Fe、C合金。

组元:组成合金最基本的独立物质(组成合金的元素、稳定化合物)。

相:成分结构相同并以界面分开的均匀部分。

组织:在显微镜下所看到的相的分布形态。

固溶体:指溶质组元溶于溶剂晶格中,并保持溶剂组元晶格类型而形成的均匀固体。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释黑龙江大学北京工业大学张建整理《材料科学基础》名词解释1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6、伪共晶:非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7、交滑移:当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效:铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化:金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11、弥散强化:许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

材料科学基础---名词解释

材料科学基础---名词解释

材料科学基础---名词解释(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一部分名词解释第二章晶体学基础1、晶体结构:反映晶体中全部基元之间关联特征的整体。

晶体结构有4种结构要素,质点、行列、面网、晶胞。

晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

空间格子:为便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,于是就构成一个三维几何构架,称为空间格子。

2、晶带定律:晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0。

凡满足此关系的晶面都属于以[uvw]为晶带轴的晶带,故该关系式也称为晶带定律。

布拉格定律:布拉格定律用公式表示为:2dsinx=nλ(d为平行原子平行平面的间距,λ为入射波长,x为入射光与晶面的夹角)。

晶面间距:两相邻平行晶面间的平行距离。

晶带轴:所有平行或相交于某一晶向直线的的晶面构成一个晶带,该直线称为晶带轴,属此晶带的晶面称为共带面。

3、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

材料科学基础名词解释

材料科学基础名词解释

1.空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。

2.肖特基缺陷:离开平衡位置的原子迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位。

3.弗伦克尔空位(缺陷):离开平衡位置的原子挤入点阵的间隙位置在晶体中同时形成数目相等的空位和间隙原子。

4.上坡扩散:物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。

5.反应扩散:当某种元素通过扩散,自金属表面向内部渗透时,若该扩散元素的含量超过基体金属的溶解度,则随着扩散的进行会在金属表层形成中间相(也可能是另一种固溶体),这种通过扩散形成新相的现象称为反应扩散。

6.形变织构:在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性运动组织状态称为形变织构。

(多晶体形变过程中出现的晶体学取向择优的现象。

)7.晶胞:在点阵中取出一个具有代表性的基本单元作为主阵的组成单元。

8.晶带和晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

9.割阶与扭折:一根运动的位错线,特别是在受到阻力的情况下,有可能通过其中一部分线段(n个原子间距)首先进行滑移,若由此形成的曲折线段就在位错的滑移面上时,称为扭折;若该曲折线段垂直于位错的滑移面时,则称为割阶。

10.晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。

11.孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

12.离异共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。

13.能量起伏:是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。

14.穿晶断裂:裂纹穿过多晶体材料的晶粒扩展而发生的断裂。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释第一章固体结构1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

2、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排列方式称为晶体结构或晶体点阵。

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。

6、晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。

8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位向,称为晶向。

9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。

10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种符号,这种符号称为晶面指数和晶向指数。

国际上通用的是密勒指数。

一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。

11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以<uvw>表示。

12、晶面间距:相邻两个平行晶面之间的垂直距离。

低指数晶面的面间距较大,而高指数晶面的面间距较小。

晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。

13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。

14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结构,这种性质称为晶体的多晶型性。

15、多晶型性转变:具有多晶型性的金属在温度或压力变化时,由一种结构转变为另一种结构的过程称为多晶型性转变,也称为同素异构转变。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释材料科学基础名词解释:1.材料科学:研究材料的性质、结构、制备、加工和应用的学科,旨在揭示材料的内在规律并推动材料的发展与应用。

2.材料:指一切可供人类使用的物质,包括金属、塑料、陶瓷、玻璃、复合材料等,是制造各种产品的基础。

3.性质:材料固有的特征或行为,如机械性能、热性能、电性能、磁性能等。

材料的性质决定了其在特定应用中的适用性能。

4.结构:材料内部的组织和排列方式。

结构包括原子、晶格、晶体、晶粒、晶界等层次,它们的不同排列方式和组织特征决定了材料的性质。

5.制备:指通过一系列的加工工艺将原材料或中间体转化为特定形状和性能的材料。

制备方法包括合成、提炼、熔炼、溶解、固化、烧结等。

6.加工:指对已制备好的材料进行形状和性能的改变,以满足特定应用需求。

加工方法包括锻造、轧制、深冲、焊接、切割等。

7.应用:指材料在各个领域中的具体使用场景和目的,如材料在电子、航空、化工、医疗等行业中的应用。

合理的材料选择和应用能够提高产品的性能和效益。

8.机械性能:材料在外力作用下的抗力和变形能力,包括强度、韧性、硬度、弹性等。

机械性能决定了材料的承载能力和使用寿命。

9.热性能:材料在高温或低温条件下的变化和表现,包括热膨胀系数、导热性、热稳定性等。

热性能影响着材料在高温环境下的应用和稳定性。

10.电性能:材料对电流和电磁场的响应和传导能力,包括导电性、绝缘性、电化学性能等。

电性能决定了材料在电子器件和电力系统中的应用。

11.磁性能:材料对磁场的吸引力和响应能力,包括磁导率、磁感应强度、磁饱和度等。

磁性能决定了材料在磁记录、传感器等领域的应用。

12.复合材料:由两种或两种以上材料组成的复合体。

通过不同材料的组合,利用各自的优点来提升整体性能,如强度、刚度、耐腐蚀性等。

综上所述,材料科学基础名词解释给出了材料科学中一些重要的概念和术语的定义,对于理解和应用材料科学具有重要的指导作用。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)以下是一些与材料科学基础相关的名词解释:1. 材料科学:研究和应用材料的结构、性能和制备等方面的科学学科。

2. 结构:材料内部的原子、分子、晶格或微结构排列方式。

3. 性能:材料对外部条件的响应和表现,包括力学性能(强度、硬度)、热学性能(热传导性、热膨胀系数)、电学性能(导电性、绝缘性)、磁学性能等。

4. 制备:制备材料的过程,包括合成、加工、改性等步骤。

5. 结构性材料:材料的性能主要由其结构决定,如金属、陶瓷、聚合物等。

6. 功能性材料:材料具有特殊功能和性能,用于特定领域,如半导体材料、光电材料、磁性材料等。

7. 复合材料:由两个以上的材料组合而成,以综合各材料的优点,如纤维增强复合材料、金属-陶瓷复合材料等。

8. 纳米材料:具有纳米尺寸特征的材料,其性能和行为与宏观尺寸材料有显著差异,如纳米颗粒、纳米管、纳米薄膜等。

9. 腐蚀:材料与环境中的化学物质(如氧气、水等)相互作用导致材料失去原有性能的过程。

10. 界面:两种不同材料的接触面,界面性质对材料性能和使用寿命有重要影响。

11. 化学性质:材料在化学反应中的行为,如与酸碱反应、氧化还原反应、水解反应等。

12. 物理性质:材料在物理环境中的行为,如热膨胀、电导率、磁性等。

13. 析晶:材料中晶粒的形成和排列过程。

14. 晶体缺陷:晶体中的不完整或缺失的原子、离子或分子,如晶格缺陷、位错等。

15. 导电性:材料传导电流的能力,通常与材料内自由电子的存在和运动有关。

16. 绝缘性:材料不能传导电流的能力,通常与电子和离子的运动受到限制有关。

17. 改性:通过添加掺杂剂、添加剂或改变处理条件,改变材料的性能和特性。

18. 硬度:材料抵抗局部形变和划伤的能力。

19. 强度:材料抵抗外力破坏的能力。

20. 热处理:通过控制材料的加热和冷却过程,改变材料的组织结构和性能。

这些名词是材料科学基础中常见的,但并不包含所有相关的名词解释。

材料科学基础 名词解释

材料科学基础 名词解释

1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。

共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。

离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。

范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。

金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。

2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。

单晶体:由一个晶粒组成的晶体。

准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。

玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。

非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。

非晶态金属又称作金属玻璃。

微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。

纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。

3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。

阵点:代表原子(分子或离子)中心的点。

晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。

晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。

晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。

4、晶向:晶体中某些原子在空间排列的方向叫晶向。

(完整)材料科学基础-名词解释

(完整)材料科学基础-名词解释

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用.金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键.近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质.晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性.3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面.14、晶面间距:晶面间的距离.18、点群:点群是指一个晶体中所有点对称元素的集合。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

材料科学基础最全名词解释

材料科学基础最全名词解释

小崔工作室材料科学基础最全名词解释固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

金属键:自由电子与原子核之间静电作用产生的键合力。

离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。

这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。

材料科学基础-名词解释

材料科学基础-名词解释

第六章组元:组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物.相:在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。

相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡.各组元在各相中的化学势相同。

相图:表示合金系中合金的状态与温度、成分之间的关系的图形,又称为平衡图或状态图。

相变:从一种相转变为另一种相的过程称为相变。

若转变前后均为固相,则称为固态相变。

凝固:物质由液态到固态的转变过程称为凝固结晶:如果液态转变为结晶态的固体这个过程称为结晶过冷:纯金属的实际凝固温度Tn总比其熔点Tm低的现象过冷度:Tm与Tn的差值△T叫做过冷度均匀形核:在液态金属中,存在大量尺寸不同的短程有序的原子集团.当温度降到结晶温度以下时,短程有序的原子集团变得稳定,不再消失,成为结晶核心。

这个过程叫自发形核。

非均匀形核:实际金属内部往往含有许多其他杂质。

当液态金属降到一定温度后,有些杂质可附着金属原子,成为结晶核性,这个过程叫非自发形核.临界晶核:半径恰为r*的晶核称为临界晶核临界半径:r*称为晶核的临界晶核半径临界形核功:形成临界晶核时自由能的变化△G*>0,这说明形成临界晶核是需要能量的.形成临界晶核所需的能量△G*称为临界形核功。

能量起伏:形成临界晶核时,液、固两相之间的自由能差只提供所需要的表面能的三分之二,另外的三分之一则由液体中的能量起伏来提供结构起伏:液态金属中的规则排列的原子团总是处于时起时伏,此起彼伏的变化之中,人们把液态金属中的这种排列原子团的起伏现象称为相起伏或结构起伏。

粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层.但是宏观上看,界面反而是平直的。

光滑界面:光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

晶体:即里里量面正在三维空间呈周期性沉复排列的固体.之阳早格格创做非晶体:本子不少程的排列,无牢固熔面、各背共性等.晶体结构:指晶体中本子或者分子的排列情况,由空间面阵战结构基元形成.空间面整:指几许面正在三维空间做周期性的准则排列所产死的三维阵列,是人为的对于晶体结构的抽象.晶里指数:结晶教中用去表示一组仄止晶里的指数.晶胞:从晶体结构中与出去的反映晶体周期性战对于称性的沉复单元.晶胞参数:晶胞的形状战大小可用六个参数去表示,即晶胞参数.离子晶体晶格能:1mol离子晶体中的正背离子,由相互近离的气态分散成离子晶体时所释搁的能量.本子半径:从本子核核心到核中电子的几率分集趋背于整的位子间的距离.配位数:一个本子或者离子周围共种本子或者同号离子的数目.极化:离子稀切散集时,戴电荷的离子所爆收的电厂必定要对于另一个离子的电子云爆收吸引或者排斥效率,使之爆收变形,那种局里称为极化.共量多晶:化教组成相共的物量正在分歧的热力教条件下产死结构分歧的晶体的局里.类量共晶:化教组成相似或者相近的物量正在相共的热力教条件下产死具备相共结构晶体的局里.铁电体:指具备自收极化且正在中电场效率下具备电滞回线的晶体.正、反尖晶石:正在尖晶石结构中,如果A离子吞噬四周体清闲,B离子吞噬八里体清闲,称为正尖晶石.如果对于合的B离子吞噬四周体清闲,A离子战其余对于合的B离子吞噬八里体清闲则称为反尖晶石.反萤石结构:正背离子位子刚刚佳与萤石结构中的好同.压电效力:由于晶体正在中力效率下变形,正背电荷核心爆收相对于位移使晶体总电矩爆收变更.结构缺陷:常常把晶体面阵结构中周期性势场的畸变称为结构缺陷.空位:指仄常结面不被量面吞噬,成为空结面.间隙量面:量面加进仄常晶格的间隙位子.面缺陷:缺陷尺寸处于本子大小的数量级上,三维目标上的尺寸皆很小.线缺陷:指正在一维目标上偏偏离理念晶体中的周期性、准则性排列而爆收的缺陷.里缺陷:是指正在二维目标上偏偏离理念晶体中的周期性、准则性排列而爆收的缺陷.弗伦克我缺陷:量面离启仄常格面后加进到晶格间隙位子,特性是空位战间隙量面成对于出现.肖特基缺陷:量面由表面位子迁移到新表面位子,正在晶体表面产死新的一层,共时正在晶体里里留住空位,特性是正背离子空位成比率出现.非化教计量缺陷:是指组成上偏偏离化教中的定比定律所产死的缺陷.电荷缺陷:是指量面排列的周期性已受到损害,但是果电子或者空穴的爆收,使周期性势场爆收畸变所爆收的缺陷.辐照缺陷:指资料正在辐照下所爆收的结构的不完备性.位错:晶体已滑移部分战已滑移部分的接线.混同位错:晶体里里已滑移战已滑移部分的接线既不笔直也不仄止滑移目标的位错.晶界:分歧与背的晶粒之间的界里.堆垛层错:是指仄常堆垛程序中引进不仄常程序堆垛的本子里而爆收的一类里缺陷.固溶体:将中去组元引进晶体,吞噬基量晶体量面位子或者间隙位子的一部分,仍脆持一个晶相,那种晶体称为固溶体.置换型固溶体:溶量本子位于面阵结面上,代替了部分溶剂本子.间隙型固溶体:溶量本子位于面阵的间隙中.非化教计量化合物:正背离子比率不可牢固比率闭系的一些化合物.色心:是由于电子补偿而引起的一种缺陷.熔体:特指加热到较下温度才搞液化的物量的液体,即较下熔面物量的液体.熔融石英的瓦解历程:正在氧化钠效率下,使架状{sio4}断裂的历程.缩散:由瓦解历程爆收的矮散合物不是一成稳定的,它不妨相互爆收效率,产死级次较下的散合物,共时释搁出部分氧化钠,那个历程称为缩散.桥氧、非桥氧:正在硅酸盐熔体中,与二个si贯串的氧称为桥氧,与一个si贯串的氧称为非桥氧.粘度:是流体抵挡震动的量度.物理意思:指单位里积、单位速度梯度下二层液体间的内摩揩力.硼反常局里:那种由于硼离子配位数变更引起本能直线上出现转合的局里称为表面弛力物理意思:效率于表面单位少度上与表面相切的力.表面能:正在恒温恒压下减少一个单位表面积时所搞的功.玻璃:由熔体过热而产死的一种无定形固体.均态核化:如果熔体里里自收成核,称为~.非均态核化:如果是由表面、界里效力,杂量或者引进晶核剂等百般果素支配的成核历程,称为~.根据单键能的大小,可将氧化物分为三类:(1)玻璃搜集产死体:其单键强度大于335kj/mol,那类氧化物能单独产死玻璃.(2)搜集改变体:单键强度小于250,那类氧化物不克不迭产死玻璃,但是能改变搜集结构,进而使玻璃本量改变.(3)搜集中间体:其单键强度介于250~335,那类氧化物的效率介于玻璃产死体战搜集改变体之间.界里:相邻二个结晶空间的接界里.物体表面:晶体三维周期结媾战真空之间的过度地区潮干局里分为:沾干、浸干、铺展.交战角小于90,可潮干,大于90,不可潮干扬德圆程:粘附功:指把单位粘附界里推启所需的功.相:系统中具备相共物理与化教本量的真足匀称部分的总战称为相.组元:系统中每一个能单独分散出去并能独力存留的化教杂物量称为组元.独力组元:脚以表示产死仄稳系统中各相组成所需要的最少量手段组元称为独力组元.自由度:正在一定范畴内,不妨任性改变而不引起旧相消得或者新相爆收的独力变量.凶布斯相律:F=C-P+n相律决定了多相仄稳系统中,系统的自由度数、独力组元数、相数战对于系统的仄稳状态不妨爆收效率的中界效率果素数之间的闭系.应用相律不妨很快的决定仄稳体系的自由度数目.凝结系统:不气相或者气相效率可忽略不计的系统称为~.相仄稳:当中界条件稳定时如果系统的百般本量不随时间而改变,则系统处于仄稳状态.相图:根据多相仄稳的考查截止,不妨画造成几许图形用去形貌那些正在仄稳状态下的变更闭系,那种图形称为~.普遍熔融化合物:是一种宁静的化合物,与仄常的杂物量一般具备牢固的熔面,熔化时所爆收的液相与化合物组成相共.纷歧致熔融化合物:是一种不宁静的化合物,加热那种化合物到某一温度便爆收领会,领会的产品是一种液相战一种晶相,二者组成战化合物组成皆分歧.可顺多晶转化相图特性:多晶转化温度矮于二种晶型熔面.不可顺好同.一级变体之间的转化:分歧系列战熔体之间的转化.二级变体间的转化:共系列的分歧形态之间的转化,也称下矮温型转化.扩集:当物量内有梯度存留时,由于热疏通而触收的量面定背迁移即扩集.(扩集是一种传量历程,宏瞅上表示为物量的定背迁移,真量是量面的无准则疏通)扩集通量:单位时间内通过笔直于X轴的单位里积的本子数量.扩集系数:单位浓度梯度下的扩集通量.稳态扩集:扩集系统中,空间中任性一面的浓度不随时间变更,扩集通量不随位子变更.非稳态扩集:···,空间任性一面的浓度随时间变更,扩集通量随位子变更.相变:正在中界条件爆收变更的历程中,物相于某一特定的条件下爆收突变.一级相变:正在临界温度、临界压力时,二相化教位相等,但是化教位的一阶偏偏导数不相等的相变.二级相变:相变时化教位及其一阶偏偏导数相等,而二阶偏偏导数不相等的相变.扩集型相变:正在相变时依赖本子的扩集去举止的相变.无扩集型相变:相变历程不存留本子的扩集,或者虽存留扩集,但是不是扩集所必须的或者不是主要历程的相变即为.沉构型相变:相变前后有旧键损害战新键产死,相变所需的能量下、速度缓,此类相变称为.位移型相变:相变时不过本子间键少、键角的安排,不旧键损害战新键产死,相变的能量矮,速度快,此类相变称为.成核速率:单位时间单位体积母相中产死新相核心的数目.晶化速率(少大速率):单位时间新相尺寸的减少.液相不混溶或者玻璃的分相:一个匀称的液相或者玻璃相正在一定的温度战组成范畴内有大概分成二个互不溶解或者部分溶解的液相或者玻璃相,并相互共存的局里.上坡扩集:转化时爆收浓度矮的背浓度下的目标扩集,爆收身分的偏偏散而不是身分的均化.扩集统造的少大:新相少大速率受溶量本子的扩集速率所统造.界里统造的少大:晶体死少与决于分子或者本子从熔体中背界里扩集与其反背扩集之好.固态反应:固体间接介进反应并起化教变更,共时起码正在固体里里或者中部的一个历程中起统造效率的反应.固态反应的二个历程:相界里上的化教反应战固相内的物量迁移.连绝反应:正在固态反应中,偶我反应不是一步完毕,而是经由分歧的中间产品才最后完毕,称为连绝反应.当扩集速度近大于化教反应速度时,证明化教反应统造此历程,称为化教能源教范畴.特性是:反应物通过产品层的扩集速度近大于交战里上的化教反应速度.泰曼温度:一种反应物启初浮现隐著扩集的温度.烧结宏瞅定义:粉体本料通过成型、加热到矮于熔面的温度,爆收固结、气孔率下落、中断加大、致稀度普及、晶粒删大,成为脆硬的烧结体,那个历程称为烧结.烧结微瞅定义:固体中分子或者本子间存留相互吸引,通过加热使量面赢得脚够的能量举止迁移,使粉终体爆收颗粒粘结,爆收强度并引导致稀化战再结晶的历程称为烧结.固相烧结:是指紧集的粉终或者经压造具备一定形状的粉终压坯被置于不超出其熔面的设定温度中正在一定的气氛呵护下,保温一定时间的支配历程.液相烧结:烧结温度超出某一组成的熔面,果而产死液相.初次再结晶:指从塑性变形的、具备应变的基量中,死少出新的无应变晶粒的成核战少大历程.二次再结晶:是坯体中少量大晶粒尺寸的非常十分减少,其截止是各别晶粒尺寸的减少.。

材料科学基础名词解释(40个)

材料科学基础名词解释(40个)

名词解释(40个)1 同质多晶:化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象,称为同质多晶现象。

类质同晶:化学组成相似或相近的物质,在相同的热力学条件下,形成相同结构晶体的现象,称为类质同晶现象。

反萤石结构:如果晶体的结构与萤石完全相同,但阴阳离子的位置与萤石刚好相反,这种结构称为反萤石结构。

铁电效应:压电效应:晶体在外力作用下发生变形,正负电荷中心产生相对位移,使晶体总电矩发生变化所表现的现象,称为压电效应。

四面体空隙:等径球体作最紧密堆积时,由其中四个球体球心连线而构成的正四面体所围成的空隙。

八面体空隙:等径球体作最紧密堆积时,由其中六个球体球心连线而构成的正八面体所围成的空隙。

位移性转变:在同质多晶中,两个变体之间由于结构差异小,转变时只是原子的位置发生少许位移,仅仅是键长和键角的调整,不涉及旧键的破坏和新键的产生,这类变体之间的转变称为位移性转变,其特点是转变速度很快。

重建性转变::在同质多晶中,两个变体之间由于结构差异大,转变时必须破坏原子间的键,形成一个具有新键的结构,这类变体之间的转变称为重建性转变,其特点是转变速度很慢。

2 结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

点缺陷:又称零维缺陷,缺陷尺寸处于原子大小数量级上,即三维方向上缺陷的尺寸都很小。

点缺陷包括空位、间隙质点、杂质质点和色心等。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维上很小,故又称二维缺陷。

如晶界、表面、堆积层错等,与材料的断裂韧性有关。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向上较长,另外二维方向上很短,故又称一维缺陷热缺陷:当晶体温度高于绝对0K时,由于晶格内原子热振动,使一部分能量较高的原子偏离平衡位置所造成的缺陷,称为热缺陷(又称本征缺陷)。

弗伦克尔缺陷:当晶格热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而在原来位置形成空位,这种缺陷称弗伦克尔缺陷。

材料科学基础名词解释

材料科学基础名词解释

解释下列名词1、奥氏体本质晶粒度是根据标准实验条件,在930±10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。

2、奥氏体实际晶粒度指在某一热处理加热条件下,所得到的晶粒尺寸。

3、珠光体晶粒在片状珠光体中,片层排列方向大致相同的区域称为珠光体团4、二次珠光体转变由于贝氏体转变的不完全性,当转变温度较高时,未转变的奥氏体在随后的保温过程中有可能会发生珠光体转变,此时的珠光体转变称为二次珠光体转变。

5、马氏体转变是一种固态相变,是通过母相宏观切变,原子整体有规律迁移完成的无扩散相变。

6、形变马氏体由形变诱发马氏体转变生成的马氏体称为形变马氏体。

7、马氏体异常正方度“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度。

8、马氏体相变塑性相变塑性:金属及合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。

钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性。

9、相变冷作硬化马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体内产生大量微观缺陷,如位错、孪晶、层错等。

这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。

10、位向关系在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。

11、K-S关系在固态相变母相与新相之间所保持的晶体学位向关系,例如:奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ∥(110)α,〈110〉γ∥〈111〉α12、组织遗传;指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。

13、相遗传;母相将其晶体学缺陷遗传给新相的现象称为相遗传。

14、反稳定化在热稳定化上限温度M C以下,热稳定程度随温度的升高而增加;但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用。

金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。

近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。

晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性。

3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面。

14、晶面间距:晶面间的距离。

18、点群:点群是指一个晶体中所有点对称元素的集合。

19、空间群:用以描述晶体中原子组合所有可能的方式,是确定晶体结构的依据,它是通过宏观和微观对称元素在三维空间的组合而得出的。

20、晶胞原子数:一个晶胞体积内的原子数。

21、点阵常数:晶胞的大小一般是由晶胞的棱边长度来衡量的,它具有表征晶体结构的一个重要基本参数。

22、配位数:指晶体结构中任一原子周围最近邻且等距离的原子数。

23、致密度:指晶体结构中原子体积占总体积的百分数。

24、多晶型:有些固态金属在不同的温度和压力下具有不同的晶体结构,即具有多晶型,转变产物为同素异形体。

25、合金:指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

26、相:指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。

27、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀固态溶体,它保持着溶剂的晶体结构类型。

28、中间相:两组元A和B组成合金时,除了可形成以A为基或以B为基的固溶体(端际固溶体)外,还可能形成晶体结构与A,B两组元不同的新相,由于它们在二元相图上位置总是位于中间,故通常把这些相称为中间相。

29、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

30、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。

31、有限固溶体:金属元素彼此之间形成有限溶解的称为有限固溶体。

32、无限固溶体:金属元素彼此之间能形成无限溶解的称为无限固溶体。

33、无序固溶体:溶质原子统计式分布在溶剂晶格的结点上,它们或占据着与溶剂原子等同的位置,或占据着溶剂原子间隙的位置,看不出有什么次序性或规律性,这类固溶体叫无序固溶体。

34、有序固溶体:有些固溶体结构在高温时形成无序固溶体,但在缓慢冷却或低温退火时,溶质原子按适当比例并按一定顺序和方向,围绕着溶质原子重新排列.使溶质,溶剂原子在晶格中占据一定的位置,这一过程称为固溶体的有序化.溶质和溶剂原子呈有序排列的固溶体称为有序固溶体或称超结构:35、正常价化合物:在元素周期表中,一些金属与电负性较强的IV A,V A,VIA族的一些元素按照化学上的原子价规律所形成的化合物称为正常价化合物。

36、电子化合物:电子化合物是由第一族或过渡族元素与第二至第四元素构成的化合物,他们不遵守化合价规律,但满足一定的电子浓度,虽然电子化合物可用化学式表示,但实际成分可在一定的范围变动,可溶解一定量的固溶体。

38、间隙相:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径比小于0.59时,形成具有简单晶体结构的相,称为间隙相。

39、间隙化合物:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径大于0.59时,形成具有复杂晶体结构的相,通常称为间隙化合物。

第三章晶体缺陷点缺陷:点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。

其特征是在三维空间的各个方向上尺寸都很小,尺寸范围约为一个或几个原子尺寸,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子等。

线缺陷:其特征是在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷,如各类位错。

面缺陷:其特征是在一个方向尺寸上很小,另外两个方向上扩展很大,也称二维缺陷,晶界、相界、孪晶界和堆垛层错都属于面缺陷。

空位:一个原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点。

间隙原子:从空位中跳离,挤入点阵的空隙位置的原子。

刃型位错:一种位错在晶体中有一个刀刃状的多余半原子面的位错形式。

螺型位错:原来与位错线相垂直的品而都将由平而变成螺旋的一种位错形式。

混合位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度的位错。

全位错:把伯氏矢量等于点阵矢量或其整数倍的位错称为“全位错”不全位错:柏氏矢量不等于点阵矢量的不全位错。

柏氏回路:在实际晶体中,西欧那个任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路,称为柏氏回路。

柏氏矢量:通常将形成一个位错的晶体的相移矢量定义为该位错的柏氏矢量,用b表示。

柏氏矢量的物理意义:同一晶体中,位错的柏氏矢量愈大,位错强度也愈大,表明该位错导致的点阵畸变愈严重,它所具有的能量也愈高。

柏氏矢量的守恒性:不论所做柏氏回路的大小、形状、位置如何变化,怎样任意扩大、缩小或移动,只要它不与其他位错线相交,对给定的位错所确定的柏氏矢量是一定的。

位错的滑移:在外加应力作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移的过程。

交滑移:当某一螺型位错在原滑移面上受阻时,从滑移面转移到与之相交的另一滑移面上的过程叫做交滑移。

位错的攀移:刃型位错在垂直于滑移面的方向上运动,把多余半原子面向上或向下运动的过程。

位错的交割:一个位错在某一滑移面上运动时,会与穿过滑移面的其他位错发生相互作用的过程。

割阶:垂直于位错滑移面得曲折滑移曲线。

扭折:在滑移面上的曲折滑移曲线。

位错密度:单位体积晶体中所含的位错线的总长度。

位错增殖:晶体在受力过程中,位错发生运动,位错数目增加,位错密度变大的过程。

扩展位错:通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错组称为扩展位错。

层错能:层错破坏晶体的完整结构和争产的周期性,使电子发生反常的衍射效应,使晶体增加的能量。

扩展位错交滑移:位错束集呈全螺型位错,然后再由该全位错滑移到另一个滑移面上的过程。

晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。

亚晶界:相邻亚晶粒之间的界面称为亚晶界。

晶界能:形成单位面积界面时系统的自由能变化。

孪晶界:两个晶体沿一个公共晶面构成晶面对称的位向关系,这两个晶体的公共晶面就称为孪晶面。

相界:具有不同结构的两相之间的分界面称为相界。

按结构特点,相界面可分为共格相界、半共格相界和非共格相界三种类型。

第四章固体中原子及分子的运动质量浓度单位体积混合物中某组分的质量称为该组分的质量浓度。

扩散物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。

间隙扩散原子从一个晶格中间隙位置迁移到另一个间隙位置。

空位扩散通过空位进行跳动的扩散称为空位扩散。

下坡扩散物质从高浓度向低浓度的扩散。

上坡扩散物质从低浓度向高浓度的扩散。

稳态扩散质量浓度不随时间变化而变化的扩散称为稳态扩散。

非稳态扩散质量浓度随时间变化而变化的扩散称为非稳态扩散。

扩散系数扩散系数是描述物质扩散难易程度的重要参量。

扩散通量表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量。

(J表示)表面扩散在样品自由表面发生的扩散称为表面扩散。

第五章材料的形变和再结晶1、弹性变形:指外力去除后能够完全恢复的那部分,可从原子间结合力的角度来了解它的物质本性。

2、弹性模量:材料(金属、陶瓷和部分高分子材料)不论是加载还是卸载时,只要在弹性形变的比称为弹性模量。

3、包申格效应::材料经预先加载产生少量塑性变形(小于4%),而后通向加载则σ升高,反向加载则σ下降,此现象称之为包申格效应。

4、弹后效应:一些实际晶体,在加载或卸载时,应变不是瞬时达到其平衡,而是通过一种驰豫过程来完成其变化,在弹性极限σ范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或弹滞性。

5、粘弹性:一些晶体,有时甚至多晶体,在比较小的应力时可以同时表现出弹性和黏性,这就是黏弹性现象。

6、塑性变形:应力超过弹性极限,材料发生塑性变形,即产生不可逆的永久变形。

孪生:孪生是塑性变形的另一种形式,它常作为滑移不易进行时的补充。

孪晶面:发生均匀切变的那组晶面称为孪晶面(即(111面))。

孪生方向:孪生面的移动方向称为孪生方向。

孪晶:变形与未变形两部分晶体合称为孪晶。

扭折:在孪生过程中阻力很大,如果继续增大压力,则为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折。

固溶强化:溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。

加工硬化:金属材料经过另加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。

弥散强化:当第二相以细小弥散的微粒均匀分布于基体当中时,将会产生显著的强化作用,称为弥散强化。

形变织构:在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构。

相关文档
最新文档