计量经济学重点(简答题)
计量经济学简答题
1.为什么在计量经济模型中要引入随机扰动项?影响因素过多模型中的X不能完全解释Y。
2.什么是内生变量和外生变量,有什么联系?内生变量,是指模型要解释的变量。
外生变量指由模型以外的因素所决定的已知变量,它是模型据以建立的外部条件。
外生变量决定内生变量,外生变量的变化会引起内生变量的变化。
3.什么是线性模型和非线性模型?线性:所有的变量都是一次的,非线性:模型中的方程中的变量至少有1个是以高于1次方的形式出现的4.计量经济学方法研究经济问题的完整步骤是什么?1)建立模型2)估计参数 3)验证理论4)使用模型。
5.对随机扰动项作了哪些基本(古典)假定?这些假定有何作用?1、条件均值假设;2、严格外生性假设;3、同方差假设;其余两个假设(随机抽样和非完全线性相关)与随机误差项无关。
假设1、2是对参数估计一致性的要求,即中心极限定理的规定;假设3是对假设检验做的基本要求,不满足则假设检验失效6.在多元线性回归模型估计中,判定系数2R可用于衡量拟合优度,为什么还要计算修正判定系数2R?因为随着模型中解释变量的增多,人们认为要使模型拟合的好,就必须增加解释变量。
但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问。
为此用修正的决定系数来估计模型对样本观测的拟合优度。
7.修正判定系数2R?回归参数的显著性检验(t检验)和回归方程的显著性检验(F检验)的区别是什么?是为了克服多重决定系数会随着解释变量的增加而增大的缺陷提出来的,(1)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
(2)方程的总体线性关系显著每个解释变量对被解释变量的影响都是显著的。
(3)因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中,这一检验是由对变量的 t 检验完成的。
8.回归模型的总体显著性检验与参数显著性检验相同吗?是否可以互相替代?答:t检验与F 检验都是检验解释变量对被解释变量的显著性,不同的是t检验是检验单个解释变量的显著性,而F检验则检验的是所有解释变量对被解释变量的显著性,是对整体拟合的一种检验。
计量经济学简答题及答案
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。
答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小∑=n i i e12min 。
只有在满足了线性回归模型的古典假设时候,采用OLS 才能保证参数估计结果的可靠性。
在不满足基本假设时,如出现异方差,就不能采用OLS 。
加权最小二乘法是对原模型加权,对较小残差平方和2i e 赋予较大的权重,对较大2i e 赋予较小的权重,消除异方差,然后在采用OLS 估计其参数。
在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法。
最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列。
6、虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
7、联立方程计量经济学模型中结构式方程的结构参数为什么不能直接应用OLS 估计?答:主要的原因有三:第一,结构方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。
2、计量经济模型有哪些应用。
答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。
(完整word版)计量经济学简答题(经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)统计检答:1在解释变量中被忽略的因素的影响(影响不显着的因素、未知的影响因素、无法获得数据的因素);变量观测值的观测误差的影响;模型关系的设定误差的影响;其它随机因素的影响。
11.为什么要计算调整后的可决系数?在应用过程中发现,如果在模型中增加一个解释变量,?往往增大。
这是因为残差平方和往往随着解释变量的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,需调整。
=0.89表示被解释变量Y的变异性的89%能用估计的回归方程解释。
12.叙述多重共线性的概念、后果和补救措施。
概念:如果两个或多于两个解释变量之间出现了相关性,则称模型存在多重共线性。
后果:1、估计量仍然是无偏的2、参数估计量的方差和标准差增大3、置信区间变宽4、t统计量会变小5、估计量对模型设定的变化及其敏感6、对方程的整体拟合程度几乎没有影响7、回归系数符号有误补救措施:1、什么都不做2、去掉多余的变量3、增大样本容量13.叙述异方差性的概念、后果和补救措施。
概念:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
后果:参数估计非有效,变量的显着性检验失去意义,模型的预测失效补救措施:1、加权最小二乘法(WLS)(对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数)。
计量经济学简答题
1.计量经济学与经济理论、统计学、数学的联系是什么?计量经济学与经济理论、统计学、数学的联系主要体现在计量经济学对经济理论、统计学、数学的应用方面,分别如下:1)计量经济学对经济理论的利用主要体现在以下几个方面(1)计量经济模型的选择和确定(2)对经济模型的修改和调整(3)对计量经济分析结果的解读和应用2)计量经济学对统计学的应用(1)数据的收集、处理、(2)参数估计(3)参数估计值、模型和预测结果的可靠性的判断3)计量经济学对数学的应用(1)关于函数性质、特征等方面的知识(2)对函数进行对数变换、求导以及级数展开(3)参数估计(4)计量经济理论和方法的研究2.模型的检验包括哪几个方面?具体含义是什么?模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合;②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
1.为什么计量经济学模型的理论方程中必须包含随机干扰项?计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式。
由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响。
这样,理论模型中就必须使用一个称为随机干扰项的变量来代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性。
3.为什么用可决系数R2评价拟合优度,而不是用残差平方和作为评价标准?可决系数R2=ESS/TSS=1-RSS/TSS,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合的越好;而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能做比较的。
计量经济学简答题
计量经济学简答题1、什么是普通最小二乘法?为什么估计参数时不用Σ|e i |(min)作为估计准则?答:依据最小二乘准则去估计回归模型中参数的方法就称为普通最小二乘法。
为了使样本回归函数总体上尽可能接近总体回归函数,考虑用残差绝对值的和Σ|e i |来度量样本回归函数Y i ?与Y i 的总体近似程度。
为了得到具有良好性质的参数估计量以及便于数学工具的应用,通常采用残差平方和∑=n i i e 12替换Σ|e i |(min)来度量这一接近程度。
2、在计量经济模型中,引入虚拟变量时,虚拟变量数量的设置规则是什么?虚拟变量的作用有哪些?答:一般地,若一个定性因素具有m (≥2)个相互排斥的类型,在含有截距项的线性回归模型中,只能引入m-1个虚拟变量。
否则会落入虚拟变量陷阱。
作用:1、测量截距变化;2、测量斜率变化;3、调节季节的波动;4、作为数值因素的代表;5、作为非数值因素的代表。
拓展:什么是虚拟变量陷阱?答:在建立含有截距项的线性回归模型时,引入m 个虚拟变量会使模型存在完全多重共线性,这种情形称为陷入“多重共线性陷阱”。
3、什么是异方差?什么数据估计模型容易产生异方差?如何解决异方差?叙述异方差性戈德菲尔特——夸特检验的步骤。
答:在回归模型中,随机误差项的方差随解释变量的变化而变化,则称模型具有异方差性。
采用横截面样本数据建模,容易产生异方差。
采用加权最小二乘法或怀特异方差——稳健性估计程序解决异方差。
步骤:1、将观测值X j 按照从小到大顺序排列,并把排在中间的c (约n/4)个数据去掉,再将剩余数据分为前后两个子样本,每个子样本的样本容量为(n-c )/2(整数)。
2、对每个子样本分别进行OLS 回归,并计算各自的残差平方和。
3、构造F=12RSS RSS ~F (2c n --k-1,2c n --k-1) 4、若F>F (2c n --k-1,2c n --k-1),则u i 存在异方差性,并且是递增型的;若F<="" n="" p="" (2c="">n --k-1),则u i 具有同方差性。
计量经济学重点(简答论述题)
计量经济学重点(简答论述题)计量经济学简答题重点一、计量经济学的定义及作用计量经济学,又称经济计量学,是基于经济理论和实际统计资料,利用数学、统计学和计算机技术建立模型,定量分析经济变量之间的随机因果关系的学科。
其作用在于提供科学的方法和工具,帮助经济学家和政策制定者更好地理解和预测经济现象,评估政策效果,推动经济理论的发展。
二、计量经济学研究步骤计量经济学研究步骤包括理论模型的设计、数据获取、模型参数估计、模型检验和模型应用。
其中,理论模型的设计需要明确理论或假说的陈述,建立数学模型和计量经济模型。
数据获取需要注意完整性、准确性、可比性和一致性。
模型参数估计采用普通最小二乘法。
模型检验包括经济学检验、统计学检验和计量经济学检验。
模型应用包括结构分析、经济预测、政策评价和经济理论的检验与发展。
三、统计数据的类别及注意事项统计数据的类别包括时间序列数据、截面数据、混合数据和虚变量数据。
时间序列数据是按时间先后排列收集的数据,需要注意样本区间的经济行为一致性、可比性和集中性以及随机误差项序列相关问题。
截面数据是一批发生在同一时间截面上的调查数据,需要注意样本与母体的一致性和随机误差项的异方差问题。
混合数据既有时间序列数据又有截面数据。
虚变量数据只能取和1两个值,表示某个对象的质量特征。
四、模型的检验内容及含义模型的检验包括经济学检验、统计学检验和计量经济学检验。
经济学检验主要检验参数的符合和大致取值。
统计学检验包括拟合优度检验、模型的显著性检验和参数的显著性检验。
计量经济学检验包括序列相关性、异方差检验和多重共线性检验。
模型的预测检验可通过扩大样本容量或变换样本重新估价模型,或利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系与区别回归分析是一种数学方法,用于研究变量之间的依赖关系,以解释变量和解释变量为基础。
相关分析也是研究变量间关系的方法,但不考虑因果关系,只关注变量之间的相关程度。
计量经济学简答题整理版word精品
1. 请问自回归模型的估计存在什么困难?如何来解决这些苦难?答:主要存在两个问题:(1) 出现了随机解释变量Y,而可能与随机扰动项相关;(2) 随机扰动项可能存在自相关,库伊克模型和自适应预期模型的随机扰动项都会导致自相关,只有局部调整模型的随机扰动项无自相关。
对于第一个问题的解决可以使用工具变量法;对于第二个问题的检验可以用德宾h检验法,目前还没有很好的解决办法,唯一能做的就是模型尽可能的设定正确。
2. 为什么要进行广义差分变换?写出其过程。
答:进行广义差分变换是为了处理自相关,写出其过程如下:以一元模型为例:Y t = b o + b i X t +u t假设误差项服从AR(1)过程:U t = p u t-i +v t —1 <p < 1其中,v满足OLS假定,并且是已知的。
为了弄清楚如何使变换后模型的误差项不具有自相关性,我们将回归方程中的变量滞后一期,写为:Y t-1 = b o + b 1 X t-1 +u t-1方程的两边同时乘以p,得到:p Y t-1 = p b o + p b1 X t-1 + p u t-1现在将两方程相减,得到:(Y t —p Y t-1 ) = b o ( 1 —p ) + b 1 (X t —p X t-1 ) + v t由于方程中的误差项v t满足标准OLS假定,方程就是一种变换形式,使得变换后的模型无序列相关。
如果我们将方程写成:Y t = b0 + b1 X t +v t,其中,Y t = (Y t- p Y t-1 ) , X t =*(X t - p X t-1 ) , b o = b o ( 1 - p )o3. 什么是递归模型?答:递归模型是指在该模型中,第一个方程的内生变量丫1仅由前定变量表示,而无其它内生变量;第二个方程内生变量丫2表示成前定变量和一个内生变量丫1的函数;第三个方程内生变量丫3表示成前定变量和两个内生变量丫1与丫2的函数;按此规律下去,最后一个方程内生变量Y m可表示成前定变量和m —1个丫1, 丫2、,丫3,…、Y m-1的函数。
计量经济学知识点总结+名词解释重点+简答题
计量经济学知识点总结什么是OLS估计?原理ols估计是指样本回归函数尽可能好的拟合这组织,即样本回归线上的点与真实观测点的总体误差尽可能小的估计方法。
一、什么是计量经济学?答:计量经济学以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与及经济活动数量规律的研究,并以建立和应用随机性的经济计量模型为核心的一门经济学科。
计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数量方程加以描述。
二、建立计量经济学模型的步骤和要点1.理论模型的设计(确定模型所包含的变量,确定模型的数量形式,拟定理论模型中的待估参数的理论期望值)2.样本数据的收集(常用的样本数据:时间序列数据,截面数据,虚变量数据)3.模型参数的估计(选择模型参数估计方法,应用软件的使用)4.模型的检验模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
经济意义检验——需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;统计检验——需要检验模型参数估计值的可靠性,即检验模型的统计学性质;计量经济学检验——需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验——主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
5.模型成功的三要素:理论、方法、数据三、计量经济学模型的应用方面(功能)答:结构分析,经济预测,政策评价,检验与发展经济理论四、引入随机干扰项的原因,内容?原因:1.代表未知的影响因素2.代表数据观测误差3.代表残缺数据4.代表模型设定误差5.代表众多细小影响因素6.变量的内在随机性内容:1.被遗漏的影响因素(由于研究者对客观经济现象了解不充分,或是由于经济理论上的不完善,以至于使研究者在建立模型时遗漏了一些对被解释变量有重要影响的变量);2.变量的测量误差(在观察和测量变量时,种种原因使观测值并不等于他的真实值而造成的误差);3.随机误差(在影响被解释变量的诸因素中,还有一些不能控制的因素);4.模型的设定误差(在建立模型时,由于把非线性关系线性化,或者略去模型)五、什么是随机误差项和残差,他们之间的区别是什么随机误差项u=Y-E(Y/X),而总体回归函数Y=Y^+e,其中e就是残差,利用Y^估计Y时带来的误差e=Y-Y^是对随机变量u的估计六、一元线性回归模型的基本假设主要有哪些?违背基本假设是否就不能进行估计1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。
计量经济学简答题
(2)模型回归系数估计量的方差会很大,从而使模型参数的显著性检验失效。
(3)模型参数的估计量对删除或增添少量的观测值及删除一个不显著的解释变量都可能非常敏感。
5.计量模型的检验包括几个方面?
模型的检验主要包括经济意义检验,统计检验,计量经济学检验和模型的预测检验四个方面。
过程是:(1)利用OLS法估计结构方程中所有内生变量的简化式方程。
(2)利用估计出的简化式方程计算内生变量的估计值。
(3)用内生变量的估计值替代解释变量中的内生变量,再利用OLS法估计变量替代后的结构方程。
4.模型存在多重共线性可能产生的后果主要有哪些?
2.在计量经济模型中为什么要引入随机误差项?
(1)对模型中省略的变量用随机误差项来统统反映。
(2)用随机误差项来反映一些随机因素的影响。
(3)用随机误差项来反映统计误差。
(4)模型形式的误差。
3.试述联立方程模型的参数估计的二段最小二乘估计法的原理与估计过程。
原理是:寻找一个变量Y^来替代模型方程中解释变量中的内生变量Y,然后对替代后的结构方程用OLS法进行估计。
(2)t检验的可靠性降低
(3)增大模型的预测误差
8.什么是序列相关性,其表现形式是什么?
(1)序列相关性是对模型的随机误差项来说的,当模型的随机误差项在不同的样本点之间不相互独立的,也即模型违背了基本假定3的时候,则此就称模型存在序列相关性。
(2)序列相关性表现于一阶序列相关性和高阶序列相关性,此二种情况下的表现形式可以表示如下
6.一元线性回归模型的基础假设主要有哪些?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有,解释变量是非随机的,如果是随机变量,则与随即干扰项不相关。
计量经济学简答题经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)经济意义检验,即根据拟定的符号、大小、关系,对参数估计结果的可靠性进行判断(2)统计检验,由数理统计理论决定。
包括:拟合优度检验、总体显著性检验。
(3)计量经济学检验,由计量经济学理论决定。
包括:异方差性检验、序列相关性检验、多重共线性检验。
(4)模型预测检验,由模型应用要求决定。
包括:稳定性检验:扩大样本重新估计;预测性能检验:对样本外一点进行实际预测。
4.计量经济学方法与一般经济数学方法有什么区别?答:计量经济学揭示经济活动中各因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各因素之间的理论关系,用确定性的数学方程加以描述。
5.计量经济学模型研究的经济关系有那两个基本特征?答:一是随机关系,二是因果关系6.计量经济学研究的对象和核心内容是什么?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律。
计量经济学的核心内容包括两个方面:一是方法论,即计量经济学方法或者理论计量经济学。
二是应用,即应用计量经济学。
无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
7.计量经济学中应用的数据类型怎样?举例解释其中三种数据类型的结构。
答:计量经济模型:WAGE=f(EDU,EXP,GEND,μ)1)时间序列数据是按时间周期收集的数据,如年度或季度的国民生产总值。
计量经济学简答题(经典)
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)统计检答:1在解释变量中被忽略的因素的影响(影响不显着的因素、未知的影响因素、无法获得数据的因素);变量观测值的观测误差的影响;模型关系的设定误差的影响;其它随机因素的影响。
11.为什么要计算调整后的可决系数?在应用过程中发现,如果在模型中增加一个解释变量,?往往增大。
这是因为残差平方和往往随着解释变量的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,需调整。
=0.89表示被解释变量Y的变异性的89%能用估计的回归方程解释。
12.叙述多重共线性的概念、后果和补救措施。
概念:如果两个或多于两个解释变量之间出现了相关性,则称模型存在多重共线性。
后果:1、估计量仍然是无偏的2、参数估计量的方差和标准差增大3、置信区间变宽4、t统计量会变小5、估计量对模型设定的变化及其敏感6、对方程的整体拟合程度几乎没有影响7、回归系数符号有误补救措施:1、什么都不做2、去掉多余的变量3、增大样本容量13.叙述异方差性的概念、后果和补救措施。
概念:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
后果:参数估计非有效,变量的显着性检验失去意义,模型的预测失效补救措施:1、加权最小二乘法(WLS)(对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数)。
计量经济学简答题
第一章三、简答题1. 简述计量经济学与经济学、统计学、数理统计学学科间的关系。
答:计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
2. 计量经济模型有哪些应用。
答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。
②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。
③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。
④检验和发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律。
3. 简述建立与应用计量经济模型的主要步骤。
答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集;③估计参数;④模型的检验;⑤计量经济模型的应用。
4. 对计量经济模型的检验应从几个方面入手。
答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检验。
第二章三、简答题1. 简述用普通最小二乘法求解模型ii i X Y μββ++=10的参数估计量的过程。
答:一元线性回归模型i i i X Y μββ++=10,采用普通最小二乘法进行参数估计的基本准则:22010111ˆˆˆˆmin (,)()nni i i i i Q e Y X ββββ====--∑∑ (1) 利用微积分多元函数极值原理,要使01ˆˆ(,)Q ββ达到最小,(1)式对01ˆˆββ、的一阶偏导数都等于零,即:010011ˆˆ(,)=0ˆˆˆ(,)=0ˆQ Q ββββββ⎧∂⎪∂⎪⎨∂⎪⎪∂⎩ 201010100201010111ˆˆ()ˆˆ(,)ˆˆ==2()ˆˆˆˆ()ˆˆ(,)ˆˆ==2()ˆˆi i i ii i i i i Y X Q Y X Y X Q Y X X ββββββββββββββββ⎧⎡⎤∂--∂⎣⎦⎪---⎪∂∂⎪⎨⎡⎤∂--⎪∂⎣⎦---⎪∂∂⎪⎩∑∑∑∑ 0101ˆˆ()0ˆˆ()=0 i i i i i Y X Y X X ββββ⎧--=⎪⎨--⎪⎩∑∑(2)(3) 由(2)式可知,01011ˆˆ01ˆ ˆˆ()11== (4)iii i i i Y n X Y X Y X n Y Y X X n nβββββ+-=⇒=-=-∑∑∑∑∑∑(令,)并将式(4)代入(3),可得:2011122111221ˆˆˆ ˆ0()()ˆˆ()0ˆ ()i i ii i i i i i i i i i i i i i i i i i Y X X X Y Y X X X n n X Y X Y X n X n X Y X Y n X X βββββββ=--=---⇒-+⇒-=-=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑ 或0111112ˆˆˆˆ0()()ˆ()()()()()ˆ=()()()(==)0?i i i i i i i i i i iiiii iiiiiii i i i Y X X Y Y X X X Y Y X X X X X Y Y X X Y Y x y X X X X X X X xx X X y Y Y ββββββ=--=-+-⇒------==-----=⇒∑∑∑∑∑∑∑∑∑∑令,因此,可得0101112221ˆˆˆˆ()()()ˆˆ()()()i i i i i i i i i i i i i i i Y X Y X nn X Y X Y X X Y Y x y n X X X X X X x ββββββ=-=----===---∑∑∑∑∑∑∑∑∑∑∑或或2. 计量经济学模型中随机误差项一般包括哪几个因素?答: ①内在随机性的因素,有人们的随机行为和客观存在的随机因素;②模型中被忽略掉的影响因素造成的误差;③模型的设定误差;④经济变量之间的合并误差;⑤变量的测量误差(数据观测误差);⑥未知的影响因素。
计量经济学简答题及答案
计量经济学简答题及答案计量经济学简答题及答案1、⽐较普通最⼩⼆乘法、加权最⼩⼆乘法与⼴义最⼩⼆乘法得异同。
答:普通最⼩⼆乘法得思想就是使样本回归函数尽可能好得拟合样本数据,反映在图上就就是就是样本点偏离样本回归线得距离总体上最⼩,即残差平⽅与最⼩∑=n i i e12min 。
只有在满⾜了线性回归模型得古典假设时候,采⽤OLS 才能保证参数估计结果得可靠性。
在不满⾜基本假设时,如出现异⽅差,就不能采⽤OLS 。
加权最⼩⼆乘法就是对原模型加权,对较⼩残差平⽅与2i e 赋予较⼤得权重,对较⼤2i e 赋予较⼩得权重,消除异⽅差,然后在采⽤OLS 估计其参数。
在出现序列相关时,可以采⽤⼴义最⼩⼆乘法,这就是最具有普遍意义得最⼩⼆乘法。
最⼩⼆乘法就是加权最⼩⼆乘法得特例,普通最⼩⼆乘法与加权最⼩⼆乘法就是⼴义最⼩⼆乘法得特列。
6、虚拟变量有哪⼏种基本得引⼊⽅式? 它们各适⽤于什么情况?答: 在模型中引⼊虚拟变量得主要⽅式有加法⽅式与乘法⽅式,前者主要适⽤于定性因素对截距项产⽣影响得情况,后者主要适⽤于定性因素对斜率项产⽣影响得情况。
除此外,还可以加法与乘法组合得⽅式引⼊虚拟变量,这时可测度定性因素对截距项与斜率项同时产⽣影响得情况。
7、联⽴⽅程计量经济学模型中结构式⽅程得结构参数为什么不能直接应⽤OLS估计?答:主要得原因有三:第⼀,结构⽅程解释变量中得内⽣解释变量就是随机解释变量,不能直接⽤OLS 来估计;第⼆,在估计联⽴⽅程系统中某⼀个随机⽅程参数时,需要考虑没有包含在该⽅程中得变量得数据信息,⽽单⽅程得OLS 估计做不到这⼀点;第三,联⽴⽅程计量经济学模型系统中每个随机⽅程之间往往存在某种相关性,表现于不同⽅程随机⼲扰项之间,如果采⽤单⽅程⽅法估计某⼀个⽅程,就是不可能考虑这种相关性得,造成信息得损失。
2、计量经济模型有哪些应⽤。
答:①结构分析,即就是利⽤模型对经济变量之间得相互关系做出研究,分析当其她条件不变时,模型中得解释变量发⽣⼀定得变动对被解释变量得影响程度。
计量经济学简答题整理.(精选)
计量经济学简答题整理.(精选)简答题一、计量经济学的步骤答:选择变量和数学关系式——模型设定确定变量间的数量关系——估计参数检验所得结论的可靠性——模型检验作经济分析和经济预测——模型应用二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。
对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。
2、统计推断检验。
3、计量经济学检验。
4、模型预测检验。
三、模型应用答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。
(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。
(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。
(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。
四、普通OLS方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数Yi=B1+B2Xi+ui,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。
为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。
例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。
称为最小二乘法则。
为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。
可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即min ∑=min ∑-min ∑五、简单线性回归模型基本假定Y X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。
(完整版)计量经济学重点(简答题)
计量经济学要点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以必定的经济理论和实质统计资料为依照,运用数学、统计学和计算机技术,经过成立计量经济学模型,定量剖析经济变量之间的随机因果关系 .。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈说;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机偏差项中;ii.制定待估参数的理论希望值。
2)获得数据数据根源:网络、统计年鉴、报纸、杂志数据类型:时间序列数据、截面数据、混淆数据、虚变量数据。
数据要求:完好性、正确性、可比性、一致性i.完好性:模型中包含的所有变量都一定获得相同容量的样本察看值。
ii.正确性:统计数据或检查数据自己是正确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数预计:一般最小二乘法。
4)模型的查验:经济学查验;统计学查验;计量经济学查验;模型的展望查验。
5)模型的应用:构造剖析;经济展望;政策评论;经济理论的查验与发展。
三、简述统计数据的类型?时间序列数据、截面数据、混淆数据、虚变量数据。
1)时间序列数据:准时间先后摆列采集的数据。
采用时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不一样样本点之间的可比性问题。
C.样本数据过于集中的问题。
不可以反应经济变量间的构造关系,应增大察看区间。
D.模型的随机偏差项序列有关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的检查数据。
研究某时点上的变化状况。
采用截面数据的注意事项:A.样本与母体的一致性问题。
B.随机偏差项的异方差问题。
3)混淆数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只好取0 和 1 两个值,表示的是某个对象的质量特点。
四、模型的查验包含哪几个方面?详细含义是什么?1)经济学查验:参数的切合和大概取值。
计量经济学简答题与答案
计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。
答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小n2min。
只有在满足了线性回归模型的古典假设时候,采用OLS才能保证eii1参数估计结果的可靠性。
在不满足根本假设时,如出现异方差,就不能采用OLS。
加权最小二乘法是对原模型加权,对较小残差平方和 2 e赋予较大的权重,对较大i2e赋予较小的权i重,消除异方差,然后在采用OLS估计其参数。
在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法。
最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列。
6、虚拟变量有哪几种根本的引入方式?它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
7、联立方程计量经济学模型中构造式方程的构造参数为什么不能直接应用OLS估计?答:主要的原因有三:第一,构造方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。
2、计量经济模型有哪些应用。
答:①构造分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系.。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。
ii.准确性:统计数据或调查数据本身是准确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数估计:普通最小二乘法。
4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。
5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。
三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集的数据。
采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不同样本点之间的可比性问题。
C.样本数据过于集中的问题。
不能反映经济变量间的结构关系,应增大观察区间。
D.模型的随机误差项序列相关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。
研究某时点上的变化情况。
采纳截面数据的注意事项:A.样本与母体的一致性问题。
B.随机误差项的异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只能取0和1两个值,表示的是某个对象的质量特征。
四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。
2)统计学检验:拟合优度检验;模型的显著性检验;参数的显著性检验。
3)计量经济学检验:序列相关性;异方差检验;多重共线性检验。
4)模型的预测检验:a,扩大样本容量或变换样本重新估价模型;b,利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系和区别是什么?回归分析是处理变量与变量之间关系的一种数学方法,是研究一个变量关于另一个(些)变量的依赖关系的计算理论和方法。
其目的在于通过后者的已知或设定值,去估计或预测前者的(总体)均值。
前一个变量被称为被解释变量,后一个(些)变量称为解释变量。
回归分析与相关分析的联系:都是对变量间非确定相关关系的研究,均能通过一定的方法对变量之间的线性依赖程度进行测定。
回归分析与相关分析的区别:1相关分析研究的是两个随机变量之间的相关形式及相关程度,是通过相关系数来测定的,不考虑变量之间是否存在因果关系;而回归分析是以因果分析为基础的,变量之间的地位是不对称的,有解释变量与被解释变量之分,被解释变量是随机变量,而解释变量在一般情况下假定是确定性变量。
2相关分析所采用的相关系数,是一种纯粹的数学计算,相关分析关注的是变量之间的相互关联的程度,而回归分析在应用之间就对变量之间是否存在依赖关系进行了因果分析,在此基础上进行的回归分析,达到了深入分析变量间依存关系、掌握其运动规律的目的。
六、经典假设条件的内容是什么?(应用最小二乘法应满足的古典假定?)1)解释变量x1,x2,…,xk是确定性变量,不是随机变量;而且解释变量之间互不相关。
2)随机误差项具有0均值和同方差。
3)随机误差项在不同样本点之间是独立的,不存在序列相关。
4)随机误差项与解释变量之间不相关。
5)随机误差项服从0均值,同方差的正态分布。
七、总体回归函数和样本回归函数之间有哪些区别与联系?总体回归函数是将总体被解释变量的条件期望表示为解释变量的某种函数。
样本回归函数是将被解释变量Y的样本观测值的拟和值表示为解释变量的某种函数。
二者区别:描述的对象不同;模型建立的依据不同。
二者联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
八、什么是随机误差项?随机误差项包括哪些因素?设定随机误差项的原因有哪些?随机误差项是模型设定中省略下来而又集体地影响着被解释变量Y的全部变量的替代物。
随机误差项包括以下因素:在解释变量中被忽略的因素的影响。
变量观测值的观察误差的影响。
模型关系的设定误差的影响。
其它随机因素的影响。
设定随机误差项的原因:理论的含糊性;数据的欠缺;节省的原则。
九、最小二乘估计量有哪些特性?高斯-马尔科夫定理的内容是什么?判断一个估计量是否为优良估计量需要考察的统计性质:线性,考察估计量是否是另一个随机变量的线性函数;无偏性,考察估计量的期望是否等于其真值;有效性,考察估计量在所有的无偏估计量中是否有最小方差。
上述三个统计特性称为估计量的小样本性质。
具有这类性质的估计量是最佳的线性无偏估计量。
在模型假定条件成立的情况下,根据普通最小二乘估计法得到的估计量具有BLUE的性质,这就是高斯-马尔科夫定理定理。
上述三个性质针对的是小样本,针对大样本还有三个渐近性质:渐近无偏性:表示当样本容量趋于无穷大时,估计量的均值趋于总体均值。
一致性:表示当样本容量趋于无穷时,估计量依概率收敛于总体的真值。
渐近有效性:样本容量趋于无穷时,估计量在所有的一致估计中,具有最小的渐近方差。
十、为什么用可决系数R2评价拟合优度,而不是用残差平方和作为评价标准?可决系数和相关系数有什么区别与联系?样本可决系数R2反映了回归平方和占总离差平方和的比重,表示由解释变量引起被解释变量的变化占被解释变量总的变化的比重,因而可用来判定回归直线拟合程度的优劣,该值大表示回归直线对样本店的拟合程度好。
残差平方和反映随机误差项包含因素对被解释变量变化影响的绝对程度,它与样本容量有关,样本容量大时,残差平方和一般也大,样本容量小时,残差平方和也小,因此样本容量不同时得到的残差平方和不能用于比较。
此外,检验统计量一般应是相对量而不能是绝对量,因而不宜使用残差平方和判断模型的拟合优度。
可决系数和相关系数的联系和区别:A.相关系数是建立在相关分析基础上的,研究的是随机变量之间的关系;可决系数则是建立在回归分析基础上,研究的是非随机变量X对随机变量Y的解释程度。
B.在取值上,可决系数是样本相关系数的平方。
C.样本相关系数是由随机的X和Y抽样计算得到,因而相关关系是否显著,还需进行检验。
十一、说明显著性检验的过程。
提出原假设和备择假设。
选择并计算在原假设成立情况下的统计量。
给定显著水平a,查临界值表进行判断。
十二、影响预测精度的主要因素是什么?样本容量;模拟的拟合优度。
十三什么是正规方程组?并说明多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?正规方程组是根据最小二乘原理得到的关于参数估计值的线性代数方程组。
从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,样本容量必须不少于模型中解释变量的数目(包括常数项),即n ≥ k + 1。
十三、在多元线性回归分析中,为什么用调整的可决系数衡量估计模型对样本观测值的拟合优度?未调整可决系数R2的一个总要特征是:随着样本解释变量个数的增加,R2的值越来越高,(即R2是解释变量个数的增函数)。
也就是说,在样本容量不变的情况,在模型中增加新的解释变量不会改变总离差平方和(TSS),但可能增加回归平方和(ESS),减少残差平方和(RSS),从而可能改变模型的解释功能。
因此在多元线性回归模型之间比较拟合优度时,R2不是一个合适的指标,需加以调整。
而修正的可决系数:其值不会随着解释变量个数k的增加而增加,因此在用于估计多元回归模型方面要优于未调整的可决系数。
十四、在多元线性回归分析中,可决系数R2与总体线性关系显著性检验统计量F之间有何关系?t检验与F检验有何不同?是否可以替代?在一元线性回归分析中二者是否有等价作用?在多元线性回归分析中,可决系数R2与总体线性关系显著性检验统计量F 关系如下:可决系数是用于检验回归方程的拟合优度的,F检验是用于检验回归方程总体显著性的。
两检验是从不同原理出发的两类检验,前者是从已经得到的模型出发,检验它对样本观测值的拟合程度,后者是从样本观测值出发检验模型总体线性关系的显著性。
但两者是关联的,这一点也可以从上面两者的关系式看出,回归方程对样本拟和程度高,模型总体线性关系的显著性就强。
在多元线性回归模型分析中,t检验常被用于检验回归方程各个参数的显著性,是单一检验;而F检验则被用作检验整个回归关系的显著性,是对回归参数的联合检验。
在多元线性回归中,若F检验拒绝原假设,意味着解释变量与被解释变量之间的线性关系是显著的,但具体是哪个解释变量与被解释变量之间关系显著则需要通过t检验来进一步验证,但若F检验接受原假设,则意味着所有的t检验均不显著。
两者是不可互相替代的。
在一元线性回归模型中,由于解释变量只有一个,因此F检验的联合假设等同于t检验的单一假设,两检验作用是等价的。
十五、什么是异方差?异方差产生的原因是什么?如何检验和处理?1)线性回归模型为Yt = b0 + b1X1t + b2X2t + ……+ bkXkt +ut经典回归中所谓同方差是指不同随机误差项Ut(t =1,2,…,n) 的方差相同,即Var(Ut) = 戴尔塔方(怎么打?)如果随机误差项的方差不是常数,则称随机项Ut具有异方差性。
Var(Ut) = 戴尔塔方≠常数2)异方差性产生的原因:A.模型中遗漏了某些逐渐增大的因素的影响。
B.模型函数形式的误定误差。
C.随机因素的影响。
3)检验异方差性的方法:图解法、帕克检验、格莱泽检验、斯皮尔曼的等级相关检验、哥德费尔德-匡特检验。
4)修正异方差性的主要方法:加权最小二乘法,通过赋予不同观测点以不同的权数,从而提高估计精度,即重视小误差的作用,轻视大误差的作用。
十六、模型存在异方差时,会对回归参数的估计与的检验产生什么影响?1)最小二乘估计不再是有效估计。
2)无法确定估计系数的标准误差。
3)T检验的可靠性降低。
4)增大模型的预测误差。
当模型存在异方差时,根据普通最小二乘法估计出的参数估计量仍具有线性特性和无偏性,但不再具有有效性;用于参数显著性的检验统计量,要涉及到参数估计量的标准差,因而参数检验也失去意义。
十七、序列相关违背了哪些基本假定?其来源有哪些?检验方法有哪些,都适用于何种形式的序列相关检验?模型的序列相关违背的基本假定是Cov(ui,uj) = 0 (i ≠j)。
序列相关的来源有:A.经济变量固有的惯性;B.模型设定的偏误;C.模型中遗漏了重要的带有自相关的解释变量;D.数据的“编造”。