北师大版-数学-八年级下册-6.2 定义与命题 B卷及答案

合集下载

北师版八年级下6.2定义与命题

北师版八年级下6.2定义与命题

“定义”与“命题”
定义: 定义:对名称和术语的含义加 以描述,作出明确的规定, 以描述,作出明确的规定,也就 是给出它们的定义 命题:判断一件事情的句子, 命题:判断一件事情的句子,叫 做命题
问题导学1 问题导学1(3分钟) 分钟)
观察下列命题, 观察下列命题,猜测这些命题的共同的结构 特征. 特征. (1)如果两个三角形的三条边对应相等 如果两个三角形的三条边对应相等, (1)如果两个三角形的三条边对应相等,那 么这两个三角形全等; 么这两个三角形全等; (2)如果一个四边形的一组对边平行且相等 如果一个四边形的一组对边平行且相等, (2)如果一个四边形的一组对边平行且相等, 那么这个四边形是平行四边形; 那么这个四边形是平行四边形; (3)如果一个三角形是等腰三角形 如果一个三角形是等腰三角形, (3)如果一个三角形是等腰三角形,那么这 个三角形的两个底角相等; 个三角形的两个底角相等; (4)如果一个四边形的对角线相等 如果一个四边形的对角线相等, (4)如果一个四边形的对角线相等,那么这 个四边形是矩形; 个四边形是矩形; (5)如果一个四边形的两条对角线互相垂直 如果一个四边形的两条对角线互相垂直, (5)如果一个四边形的两条对角线互相垂直, 那么这个四边形是菱形. 那么这个四边形是菱形.
训练反馈1 训练反馈1
课本227页数学理解第一题 页数学理解第一题 课本 数学助学填一填的( ) 数学助学填一填的(2) )(4)( (3)( )( ) )( )(5)
问题导学2( 分钟) 问题导学 (5分钟)
看课本222页到225页 看课本222页到225页 思考 222页到225 命题由哪两部分组成? (1)命题由哪两部分组成?如何判 断一个命题是假命题还是真命题? 断一个命题是假命题还是真命题? 什么是原名,公理, (2)什么是原名,公理,定理与 证明?思考我们教材中有哪些公理? 证明?思考我们教材中有哪些公理? 命题与公理,命题与定理, (3)命题与公理,命题与定理, 定理与公理的相互关系是什么? 定理与公理的相互关系是什么?

北师大版-数学-八年级下册-6.2 定义与命题 课时1

北师大版-数学-八年级下册-6.2  定义与命题  课时1

◆教学过程设计[师]在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?[生甲]“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.[生乙]“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义.[生丙]“两组对边分别平行的四边形叫做平行四边形”是“平行四边形”的定义.[生丁]“角是由两条具有公共端点的射线组成的图形”是“角”的定义.……[师]同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.接下来,我们来做一做(出示投影片§6.2.1 A)如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.图6-6如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.[生甲]如果B处工厂排放污水,那么a、b、c、d处便会受到污染.[生乙]如果B处工厂排放污水,那么e、f、g处也会受到污染的.[生丙]如果C处受到污染,那么a、b、c处便受到污染.[生丁]如果C处受到污染,那么d处也会受到污染的.[生戊]如果E处受到污染,那么a、b处便会受到污染.[生己]如果h处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……[师]很好.同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n 为任意的自然数,式子n 2-n +11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB =a .平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.接下来我们做练习来熟悉掌握命题的概念.课堂练习(一)课本P 180随堂练习 1、2.1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB =3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA 上,任取两点B 、C.等等.(二)看课本P 177~180,然后小结.活动与探究1.现有正方形纸若干:假设正方形纸面积为1,你会折满足下列条件的正方形吗?(1)折面积为21的正方形 (2)折面积为31的正方形 (3)折面积为51的正方形 (4)折面积为71的正方形 (5)折面积为91的正方形 [过程]让学生在折纸过程中,体会数学的快乐、灵活,从而培养他们的动手、动脑能力.[结果]解:(1)折面积为21的正方形 方法:如图①①将正方形两次对折,得到各边中点E 、F 、G 、H .②连HE 、EF 、FG 和GH .则正方形EFGH 即为所求.图6-7注:图②、③的方法可折得面积为41、81的正方形. (2)折面积为31的正方形. 方法:如图④①将正方形对折,得折痕EF .②将BC 折至BG ,使G 在EF 上,得折痕BH ,则以CH 为边长的正方形即为所求. 证明:易知△GBC 为正三角形,∠HBC =30°.CH =BC tan30°=33,所以S 正方形=CH 2=31.图6-8(3)折面积为51的正方形. 方法:如图⑤①将正方形两次对折,得各边中点E 、F 、G 、H .②以AF 、HC 、ED 和BG 为折痕,交点为O 、P 、Q 、R .则正方形OPQR 即为所求.证明:易证:AF =25)21(122=+. 又△ABF ∽△AP B.所以AB AF AP AB = 即1251=AP 则:AP =52 OP =55512==AP 故: S 正方形=OP 2=51 (4)折面积为71的正方形 方法:如图⑥ ①先参照(2)中折法,折出CE =33 ②取CE 中点F ,再折EG =EF .③取BC 中点M ,折出MN ⊥BG ,N 为折痕BG 与MN 的交点,则以BN 为边长的正方形即为所求.证明:∵EG =EF =FC =63 ∴CG =23,BG =27)23(122=+由△BNM ∽△BCG .得BGBC BM BN =. 即:27121=BN ∴BN =77 S 正方形=BN 2=71图6-9(5)折面积为91的正方形方法:如图⑦.①将正方形对折,得折痕EF .②以AC 、BE 为折痕,交点为P .③过点P 折出平行于AD 的折痕MN .则以AM 为边长的正方形即为所求.证明:由△P AE ∽△PC B.得21===CE AE PC AP MB AM 所以AM =31 S 正方形=AM 2=91 课时小结本节课我们通过具体实例,说明了定义在生活中的重要性.在具体实例中,了解了命题的概念.命题:判断一件事情的句子.◆课堂板书设计。

数学初二下北师大版6.2定义与命题练习

数学初二下北师大版6.2定义与命题练习

数学初二下北师大版6.2定义与命题练习1.以下句子中,不是命题的是〔〕A.三角形的内角和等于180度;B.对顶角相等;C.过一点作直线的平行线;D.两点确定一条直线.2.以下句子中,是命题的是〔〕A.今天的天气好吗B.作线段AB∥CD;C.连接A、B两点D.正数大于负数3.以下命题是真命题的是〔〕A.假如两个角不相等,那么这两个角不是对顶角;B.两互补的角一定是邻补角C.假如a2=b2,那么a=b;D.假如两角是同位角,那么这两角一定相等4.以下命题是假命题的是〔〕A.假如a∥b,b∥c,那么a∥c;B.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等;D.矩形的对角线相等且互相平分5.以下表达错误的选项是〔〕A.所有的命题都有条件和结论;B.所有的命题基本上定理;C.所有的定理基本上命题;D.所有的公理基本上真命题.6.以下命题中,真命题有〔〕①假如△A1B1C1∽△A2B2C2,△A2B2C2∽△A3B3C3,那么△A1B1C1∽△A3B3C3;②直线外一点到这条直线的垂线段,叫做那个点到这条直线的距离;③假如242xx--=0,那么x=±2;④假如a=•b,那么a3=b3A.1个B.2个C.3个D.4个【二】计算题:1.写出以下命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;〔2〕假如两个三角形全等,那么它们对应边上的高也相等。

2.判断以下命题的真假:(1)一个三角形假如有两个角互余,那么那个三角形是直角三角形;〔2〕假如│a│=│b│,那么a3=b3。

3.举出反例说明“假如AB=BC,那么点C是AB的中点”是个假命题。

【三】指出以下命题的条件和结论,并判断命题的真假,假如是假命题,•请举出反例。

假如等腰三角形的两条边长为5和7,那么那个等腰三角形的周长为17。

【四】在讨论“对顶角不相等”是不是命题的问题时,甲认为:这不是命题,•因为这句话是错误的;乙认为:这是命题,因为它作出了判断,只只是这一判断是错误的,因此它是假命题,你认为谁的说法是正确的?【五】把以下命题改写成“假如……,那么……”的形式。

北师大版-数学-八年级下册--6.2 定义与命题 第二课时 作业

北师大版-数学-八年级下册--6.2  定义与命题  第二课时 作业

◆练习作业设计(课堂作业设计、课下作业设计)课堂作业设计1、判断下列命题是真命题还是假命题.(1)若|a|=|b|,则a=b;(2)若a=b,则a3=b3;(3)若x=a,则x2-(a+b)x+ab=0;(4)如果a2=ab,则a=b;(5)若在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,则△ABC≌△AB′C′.(6)若x>3,则x>2.2、写出下列命题的条件及结论.(1)等角的余角相等;(2)等角的补角相等;(3)两直线平行,同位角相等;(4)如果两条直线相交,那么它们只有一个交点.答案1、(1)假(2)真(3)真(4)假(5)假(6)真2、(1)条件:两个角是同一个角的余角,结论:这两个角相等(2)~(4)略课下作业设计1.下列命题中,是真命题的是( )A.内错角相等B.同位角相等,两直线平行C.互补的两角必有一条公共边D.一个角的补角大于这个角2.下列命题中,假命题是( )A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则b⊥cC.互补的角是邻补角D.邻补角是互补的角3.命题“对顶角相等”是( )A.角的定义B.假命题C.公理D.定理于直角4.命题“直角都相等”的条件是____________________,结论是____________________.5.“互补的两个角一定是一个锐角一个钝角”是________命题,可举出反例:________________________________________.6________________________________称为公理,________________________称为定理,________________________________称为证明.7.把下列命题改写成“如果……,那么……”的形式:(1)平行于同一直线的两条直线平行.(2)同角的余角相等.(3)绝对值相等的两个数一定相等.8.判断下列命题是真命题,还是假命题;如果是假命题,举一个反例.(1)若a2>b2,则a>b.(2)同位角相等,两直线平行.(3)一个角的余角小于这个角.答案1.B2.C3.D4.两个角都是直角这两个角相等5.假直角的补角仍是直角6.公认的真命题经过证明的真命题推理的过程7.(1)如果两条直线平行于同一条直线,那么这两条直线平行(2)如果两个角都是同一个角的余角,那么这两个角相等(3)如果两个数的绝对值相等,那么这两个数一定相等.8.(1)假命题例如:当a=-3,b=2时,(-3)2>22,但-3<2(2)真命题(3)假命题例如:30°的余角是60°,但60°>30°.。

初中数学北师大版《八年级下》《第六章证明(一)》《6.2定义与

初中数学北师大版《八年级下》《第六章证明(一)》《6.2定义与

初中数学北师大版《八年级下》《第六章证明(一)》《6.2定义与初中数学北京师范大学版“八年级”第6章证明(1)“6.2定义和命题”精选强化训练试题[45题](含答案考点和分析)班:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _姓名:_ _ _ _ _ _ _ _ _ _ _分数:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1。

如果a 3+ab . 5-a > 3-a C . 5a > 3 ad .[答案]C[考点]初中数学知识“方程(群)与不等式(群)”一元不等式[分析]本主题考察不等式的基本性质。

众所周知,不等式的两边同时乘以(或除以)同一个负数。

不等符号的方向变化是解决这一问题的关键。

答案是:a,∫5 > 3,∴5+a > 3+a,所以这个选项是正确的。

b,≇ 5 > 3,∴5-a > 3-a,所以这个选项是正确的。

c∶5 > 3,a D,∫5 > 3,∴,因此该选项是正确的。

因此,选择c2。

在平面直角坐标系中,直线y = kx+3穿过点(-1,1)。

那么解集的不等式kx+3 [答案]x [考点]初中数学知识点函数及其形象初等函数[分析]如图所示,代入(-1,1)成y = kx+3,是:1 =-k+3 ∴k = 2。

也就是说:当y = 0时,y = 2x+3,x =-是交点与x轴的坐标(-,0)。

从图中可以看出,不等式kx+3 3。

求不等式组的正整数解[答案] 1,2,3,4.。

[考点]初中数学知识“方程(群)与不等式(群)”一元初等不等式[分析]考试分析:首先找出不等式组的解集,然后从不等式组的解集中找出一个适合条件的正整数。

测试分析:求解不等式2x+1 > 0,得到:x >-,求解不等式x > 2x-5,得到:x 测试点:一元不等式组的整数解。

4。

如果一个图可以分成几个与其相似的图,我们称之为“相似划分图”。

北师大版八年级下数学6.2定义与命题

北师大版八年级下数学6.2定义与命题

6.2定义与命题第二课时【教学目标】一、教学知识点1.命题的组成.2.命题真假的判断。

二、能力训练要求:1.使学生能够分清命题的条件和结论,能判断命题的真假2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法三、情感与价值观要求:1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一2.帮助学生了解数学发展史,拓展视野,激发学习兴趣3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值【教学重点】准确的找出命题的条件和结论【教学难点】理解判断一个真命题需要证明【教学方法】探讨、合作交流【教具准备】投影片【教学过程】4.菱形的四条边都相等;5.全等三角形的面积相等。

例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

师:正确的命题叫真命题,不正确的命题叫假命题。

要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

三、思维拓展:拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程(1)首先给学生介绍欧几里得的《原本》(2)引出概念:公理、定理,证明已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c生:由此说明:命题1、2是不正确的生:命题3、4、5是正确的学生活动四探索命题的真假——如何证实一个命题是真命题学生交流:生:用我们以前学过的观察、实验、验证特例等方法生:这些方法往往并不可靠生:能够根据已知道的真命题证实呢?。

北师大版-数学-八年级下册--6.2 定义与命题 第一课时 作业

北师大版-数学-八年级下册--6.2  定义与命题  第一课时 作业

定义与命题课堂作业设计一、把下列命题写成“如果……,那么……”的形式,并指出条件和结论.(1)全等三角形的对应角相等;(2)等角的补角相等;(3)同圆或等圆的半径相等;(4)自然数必为有理数;(5)同角的余角相等;二、试描述下列概念的定义,指出定义中所包含的充要条件:(1)偶数;(2)方程;(3)集合;(4)锐角;(5)直角;(6)钝角;(7)角平分线;(8)平行线参考答案一、(1)如果两个三角形是全等三角形,那么它们的对应角相等;(2)如果两个角是相等角的补角,那么这两个角相等;(3)如果几个圆是相等的圆或同一个圆,那么它们的半径相等;(4)如果所给的数是自然数,那么它们必为有理数;(5)如果两个角是同一个角的余角,那么这两个角相等.二、略课下作业设计1.下列语句中,是命题的是( )A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角2.下列命题中,属于定义的是( )A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度3.________________________________叫做命题,每个命题都是由________和________两部分组成.4.命题“两直线平行,内错角相等”中,“两直线平行”是命题的________,“内错角相等”是命题的________.5.命题“直角都相等”的条件是____________________,结论是6.指出下列命题的题设和结论:(1)若a∥b,b∥c,则a∥c.(2)如果两个角相等,那么这两个角是对顶角.(3)同一个角的补角相等.7.把下列命题改写成“如果……,那么……”的形式:(1)平行于同一直线的两条直线平行.(2)同角的余角相等.(3)绝对值相等的两个数一定相等.答案1.D2.D 3判断一件事情的句子题设结论 4.题设结论 5.两个角都是直角这两个角相等 6.(1)题设:a∥b b∥c,结论:a∥c(2)题设:两个角相等,结论:这两个角是对顶角(3)题设:两个角都是同一个角的补角,结论:这两个角相等7.(1)如果两条直线平行于同一条直线,那么这两条直线平行(2)如果两个角都是同一个角的余角,那么这两个角相等(3)如果两个数的绝对值相等,那么这两个数一定相等.。

北师大版八下数学6.2定义与命题(1)

北师大版八下数学6.2定义与命题(1)

独立 作业

P221习题6.2 1,2题.
1.下列句子中哪些是命题? (1)动物都需要水; 是 是 (2)猴子是动物的一种; (3)玫瑰花是动物; 是 (4)美丽的天空; 不是 (5)三个角对应相等的两个三角形一定全等;是 (6)负数都小于零;是 (7)你的作业做完了吗? 不是 (8)所有的质数都是奇数;是 (9)过直线外l一点作直线l的平行线; 不是 (10)如果a>b,a>c,那么b=c. 是 2.在解决“何处水流受到污染”的问题中,找 出几个命题.
(4)等腰三角形的两底角相等; (5)平行四边形的对角线互相平分; (6)连结三角形两边中点的线段叫做三角形 的中位线。
相信自己行,你就行!
三角形:不在同一直线上的三条线段首尾顺次相接形成的图形。 平行四边形:有两组对边互相平行的四边形
梯形:有一组对边互相平行,另一组对边不平行的四边形
做一做P189
那么什么是法 盲?
宋丹丹:他就是~~~ 主动和我接近,没事儿和我唠嗑,不 是给我割草就是给我朗诵诗歌,还总找机会向我 暗送秋波呢!
赵本山:别瞎说,我记着我给你送过笔,送过桌,还给你 家送一口大黑锅,我啥时给你送秋波了?秋波是 啥玩意? 宋丹丹:秋波是啥玩意你咋 都不懂呢,这么没文化
赵本山:啥呀? 宋丹丹:秋波就是秋天的 菠菜。(3)一次函数
(2)直角三角形
(1)无限不循环小数是无理数 (2)有一个角是直角的三角形是直角三角形 (3)函数y=kx+b(k,b为常数,且k≠0)叫 做一次函数
指出下列句子哪些是定义.
(1)两直线平行,内错角相等; (2)两腰相等的梯形叫等腰梯形;
(3)有一个角是钝角的三角形是钝角三角形;
(9)八荣八耻是我们做人的基本准则

北师版八年级数学下册6.第二章专题

北师版八年级数学下册6.第二章专题

北师版八年级数学下册命题点1:不等式(组)中参数的确定◆类型一 根据不等式(组)的解集求参数1.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( ) A .y =-1 B .y =1 C .y =-2 D .y =22.若不等式2(x +3)>1的最小整数解是方程2x -ax =3的解,则a 的值为________. 3.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.4.若关于x 的不等式组⎩⎪⎨⎪⎧x -a >2,b -2x >0的解集是-1<x <1,则(a +b )2018=________.◆类型二 利用整数解求值5.若关于x 的不等式2x +a ≥0的负整数解恰好是-3,-2,-1,则a 应满足条件【方法10】( )A .a =6B .a ≥6C .a ≤6D .6≤a <86.已知关于x 的不等式2x -m <3(x +1)的负整数解只有四个,则m 的取值范围是________.7.(2017·毕节金沙县校级月考)若关于x 的不等式组⎩⎨⎧x +152>x -3①,2x +23<x +a ②只有4个整数解,求a 的取值范围.◆类型三 根据不等式(组)解集的情况确定参数的取值范围8.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是( )A .a >1B .a <1C .a <0D .a >09.(2017·金华中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x <m ,2x -1>3(x -2)的解集是x <5,则m 的取值范围是【易错6】( )A .m ≥5B .m >5C .m ≤5D .m <510.若关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,则m 的取值范围为【易错6】( )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <011.★已知x =2是不等式(x -5)(ax -3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a ≤2C .1<a ≤2D .1≤a ≤2 ◆类型四 方程组与不等式(组)结合求参数12.(2017·毕节咸宁县校级月考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,x ,y 满足x ≥0,y >0,则m 的取值范围在数轴上应表示为( )13.已知实数x ,y 满足2x -3y =4,且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.14.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =m ,5x +3y =31的解是非负数,求整数m 的值.命题点2:利用一次函数解决与不等式应用相关的方案问题15.(2017·恩施中考)为积极响应政府提出的“绿色发展·低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?16.(2017·衢州中考)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据图中信息,解答下列问题.(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元.y1,y2与x的函数关系如图所示,根据图象分别求出y1,y2关于x的函数表达式;(2)请你通过计算帮助小明选择哪个公司合算.17.★贵阳阳光小区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动.A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案与解析1.D 2.72 3.-124.1 解析:解不等式组⎩⎪⎨⎪⎧x -a >2,b -2x >0,得a +2<x <12b .∵该不等式组的解集为-1<x <1,∴a +2=-1,12b =1,∴a =-3,b =2,∴(a +b )2018=(-3+2)2018=(-1)2018=1.5.D 解析:解不等式2x +a ≥0,得x ≥-a 2.根据题意得-4<-a2≤-3,解得6≤a <8.6.1<m ≤27.解:解不等式①得x <21,解不等式②得x >2-3a ,∴不等式组的4个整数解为20,19,18,17.∵不等式组只有4个整数解,∴16≤2-3a <17,解得-5<a ≤-143.8.A 9.A10.A 解析:解不等式x -m <0,得x <m ,解不等式3x -1>2(x -1),得x >-1.∵不等式组无解,∴m ≤-1.故选A.11.C 解析:∵x =2是不等式(x -5)(ax -3a +2)≤0的解,∴(2-5)(2a -3a +2)≤0,解得a ≤2.∵x =1不是这个不等式的解,∴(1-5)(a -3a +2)>0,解得a >1,∴1<a ≤2.12.C 解析:解方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 得⎩⎪⎨⎪⎧x =m +2,y =3-m .根据题意得⎩⎪⎨⎪⎧m +2≥0,3-m >0,解得-2≤m <3.故选C.13.1≤k <3 解析:联立⎩⎪⎨⎪⎧2x -3y =4,x -y =k ,解得⎩⎪⎨⎪⎧x =3k -4,y =2k -4.由x ≥-1,y <2可得⎩⎪⎨⎪⎧3k -4≥-1,2k -4<2,解得1≤k <3. 14.解:解方程组可得⎩⎨⎧x =31-3m2,y =-31+5m 2.∵x ≥0,y ≥0,∴⎩⎨⎧31-3m2≥0,5m -312≥0,解得315≤m ≤313.∵m 为整数,∴m =7,8,9,10.15.解:(1)设男式单车x 元/辆,女式单车y 元/辆,根据题意得⎩⎪⎨⎪⎧3x =4y ,5x +4y =16000,解得⎩⎪⎨⎪⎧x =2000,y =1500.答:男式单车2000元/辆,女式单车1500元/辆.(2)设购置女式单车m 辆,则购置男式单车(m +4)辆,根据题意得⎩⎪⎨⎪⎧m +m +4≥22,2000(m +4)+1500m ≤50000,解得9≤m ≤12.∵m 为整数,∴m 的值可以是9,10,11,12,即该社区有四种购置方案.设购置总费用为W 元,则W =2000(m +4)+1500m =3500m +8000.∵3500>0,∴W 随m 的增大而增大,∴当m =9时,W 取得最小值,最小值为3500×9+8000=39500.答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.16.解:(1)设y 1=k 1x +80,把点(1,95)代入得95=k 1+80,解得k 1=15,∴y 1=15x +80(x ≥0).设y 2=k 2x ,把(1,30)代入得k 2=30,∴y 2=30x (x ≥0).(2)当y 1=y 2时,15x +80=30x ,解得x =163;当y 1>y 2时,15x +80>30x ,解得x <163;当y 1<y 2时,15x +80<30x ,解得x >163,∴当租车时间为163小时时,选择甲、乙公司一样合算;当租车时间小于163小时时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.17.解:(1)y A =(30×10+3×10x )×90%=27x +270,y B =30×10+3(10x -2×10)=30x +240.(2)当y A =y B 时,27x +270=30x +240,解得x =10;当y A >y B 时,27x +270>30x +240,解得x <10;当y A <y B 时,27x +270<30x +240,解得x >10,∴当2≤x <10时,到B 超市购买划算;当x =10时,两家超市都一样;当x >10时,到A 超市购买划算.(3)∵x =15>10,∴①选择在A 超市购买,y A =27×15+270=675(元);②可先在B 超市购买10副羽毛球拍,送20个羽毛球,后在A 超市购买剩下的羽毛球(10×15-20)=130(个),则共需费用为10×30+130×3×0.9=651(元).∵651<675,∴最省钱的购买方案是先在B 超市购买10副羽毛球拍,后在A 超市购买130个羽毛球.。

北师大版八年级下§6-2定义与命题

北师大版八年级下§6-2定义与命题
回顾交流
什么是命题?
判断一件事情的句子,叫做命题
• 下列句子哪些是命题?
1、猫有四只脚; 2、三角形两边之和大于第三边; 3、画一条曲线; 4、四边形都是菱形; 5、潮湿的空气; 6、有三个角是直角的四边形是长方形
情景引入
观察下列命题:
1、如果两个三角形的三条边对应相等, 那么这两个三角形全等; 2、如果一个四边形的一组对边平等且相 等,那么这个四边形是平行四边形; 3、如果一个三角形是等腰三角形,那么 这个三角形的两个底角相等; 4、如果一个四边形的对角线相等,那么 这个四边形是矩形; 5、如果一个四边形的两条对角线互相垂 直,那么这个四边形是菱形。
2、如果a>b,b>c,那么a=c;
3、两角和其中一角的对边对应相等的两 个三角形全等; 4、菱形的四条边都相等; 5、全等三角形的面积相等。
解解解 一 条::角件:1的:32、、、对两改条条边个结结写件对三件论:论:应角:如::相形两果a它等的个>a两们=,两角b个c那角是,b相三么和>对角等这其c顶形,两中,角的个一两三角角角的和形对其全边中等对。
应相等 结论:这两个三角形全等
这几个命题哪些是正确的?哪些不正 确?你是怎么知道它们是不正确的?
1、如果两个角相等,那么它们是对假顶命角题;
2、如果a>b,b>c,那么a=c假;命题
3、两角和其中一角的对边对应相等的两 个三角形全等; 真命题 4、菱形的四条边都相等;真命题 5、全等三角形的面积相等。真命题
说明假命题的方法:
举反例
使之具有命题的条件,而不具有 命题的结论 • P1是真命题呢? 古希腊数学家欧几里得 编写一本书《原本》, 他的方法是:
经过证明的真命 题叫定理
用推理的方法证实其它命题的正确性

北师大版-数学-八年级下册--6.2定义与命题导学案

北师大版-数学-八年级下册--6.2定义与命题导学案

6.2定义与命题学习目标、重点、难点【学习目标】1、 定义和命题的含义;会判断某些语句是不是命题;2、 了解命题的构成,能区分命题中的条件和结论;3、 了解命题中的真命题、假命题、定理的含义;【重点难点】1、定义和命题的含义2、命题的构成,能区分命题中的条件和结论3、命题中的真命题、假命题、定理的含义知识概览图定义与命题⎩⎨⎧在数学中的应用证明的概念定理公理命题的条件与结论命题定义、、、、、新课导引我们前面学习了很多数学语句,如:能使方程成立的未知数的值,叫做方程的解;三角形的内角和等于180°.【问题探究】 阅读上述语句你发现有什么特点?点拨 第一句是对“方程的解”的含义加以描述,作出明确的规定,也就是给出“方程的解”的定义;第二句是判断一件事情的句子,我们把它叫做命题.教材精华知识点1 定义对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义. 例如:“有公共顶点,两边互为反向延长线的两个角叫做对顶角;是“对顶角”的定义. 拓展 在定义中,必须提示该事物与其他事物的本质属性的区别,定义必须严密. 知识点2 命题判断一件事情的句子,叫做命题.例如:张平的爸爸是劳动模范;同位角相等,两直线平行;老虎会爬树;小红每次考数学,成绩都是全班第一.这些都是命题.知识点3 命题的条件和结论每个命题都由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.例如:命题“如果a =b ,b =c ,那么a =c ”中,“a =b ,b =c ”是条件,“a =c ”是结论.又如:命题“矩形的四个顶角都相等”中,“矩形”是条件,“四个顶角都相等”是结论.知识点4 真命题与假命题正确的命题称为真命题,不正确的命题称为假命题.例如:“如果一个三角形中有两个角相等,那么这个三角形是等腰三角形”是真命题;“菱形的四个角都相等”是假命题;“等边三角形的三个内角都是60°”是真命题.要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,而不具有命题的结论,这种例子称为反例.当说明一个命题是假命题时,常举一个反例.例如:“若a2=b2,则a=b”这一命题,我们知道(-2)2=22,但-2≠2,由此可判断“若a2=b2,则a=b”是假命题.知识拓展“错误的命题不是命题”是错误的,实际上错误的命题也是命题.知识点5 公理、定理、证明挑选一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明.经过证明的真命题称为定理.本套教材所选用的公理如下.1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两条平行线被第三条直线所截,同位角相等.3.两边及其夹角对应相等的两个三角形全等.4.两角及其夹边对应相等的两个三角形全等.5.三边对应相等的两个三角形全等.6.全等三角形的对应边相等、对应角相等.此外,等式的有关性质和不等式的有关性质都可以看作公理.例如:“如果直角三角形的直角边分别为a,b,斜边为c“那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方”是定理.又如:“经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等”是定理.如何证明将在以后的几节中介绍.课堂检测基础知识应用题1、判断下列句子是不是命题.(1)人离不开空气;(2)洪水滔滔;(3)若a>b,b>c,则a>c;(4)自然数不是负数;(5)我们现在学习的图形主要是平面图形;(6)延长线段AB;(7)梯形中没有相互平行的线段.2、下列命题的条件是什么?结论是什么?是真命题还是假命题?(1)每一个有理数都对应数轴上的一个点;(2)一个三角形的三个内角中,可能有两个钝角;(3)小红的三角板中有—个钝角;(4)任何一条线段都是由无数个点组成的.综合应用题3、下列语句中,哪些是命题?哪些不是命题?如果是命题.指出它是真命题还是假命题.(1)小于直角的角是锐角;(2)一个角的补角只有一个;(3)∠l与∠2是同旁内角吗?(4)直线AB与CD相交于点C;(5)平面内两条相交直线不可能垂直于同一条直线.探索创新题4、某中学开田径运动会,其中一个项目是由5名运动员进行100米短跑比赛,赛后5名观众介绍了这场比赛结果:甲说:“A是第二名,B是第三名.”乙说:“C是第三名,D是第五名.”丙说:“D是第一名,C是第二名.”丁说;“A是第二名,E是第四名.”戊说:“B是第一名,E是第四名.”他们最后都声明:“我们的话只有一半是真的.”求这5名运动员的名次究竟各是多少.体验中考1、判断下列两个结论:①正三角形是轴对称图形,②正三角形是中心对称图形,正确的是( )A. ①②都正确B.①②都错误C.①正确,②错误D.①错误,②正确2、已知下列命题:①若|x|=3,则x=3;②当a>b时,若c>0,则ac>bc;③直角三角形斜边上的中线等于斜边的一半;④矩形的两条对角线相等.其中原命题与逆命题均为真命题的个数是( )A.1个B.2个C.3个D.4个学后反思附:课堂检测及体验中考答案课堂检测1、分析看一个句子是不是命题,主要看这个句子里是否隐含着条件和结论这两个部分,或者这个句子能否改写咸“如果……那么……”的形式.解:(1)是.(2)不是.(3)是.(4)是.(5)是.(6)不是.(7)是.【解题策略】根据命题的概念及结论来判断2解:(1)条件是“每一个有理数”,结论是“都对应数轴上的一个点”.是真命题.(2)条件是“一个三角形的三个内角中”,结论是“可能有两个钝角”.是假命题.(3)条件是“小红的三角板”,结论是“其中有一个钝角”.是假命题.(4)条件是“任何一条线段”,结论是“都是由无数个点组成的”.是真命题.3、分析命题是判断某一件事情的句子,即命题一定要对某件事情下结论,不管这个结论是正确的还是错误的,因此疑问句或一般陈述句都不是命题,即(3)(4)都不是命题.命题中如果结论正确就是真命题,如果结论错误就是假命题,而不必管其语句的形式是肯定还是否定.在本题所给的语句中,(2)显然是混淆了补角与邻补角的概念,所以(2)是假命题.解:(1)(2)(5)是命题;(1)(5)是真命题;(2)是假命题.【解题策略】首先找出命题,再从命题中指出真命题;学会利用反例来证明一个命题是错误.4、分析我们将5名观众介绍的结果列成表,用打“√”和打“×”来分别表示他们说真话和说假话,由于他们每人的介绍半真半假,故表中每行都应打一“√”和一“×”,从甲的介绍入手讨论,有两种情况(分别见表1和表2).A B C D E甲2√3×乙3√5×丙2×1√丁2√4×戊1√4×A B C D E甲2×3√乙3×5√丙2√1×丁2×4√戊1×4√解:①若甲认为A为第二名是真的,则B为第三名是假的,这样可以依次推出:丙认为D为第一名是真的,丁认为E为第四名是假的,戊认为B是第一名是真的,这样B,D 都是第一名.从而产生了矛盾,这种情况应舍去(见表1).②若甲认为A为第二名是假的,则B为第三名是真的,这样可以依次推出:乙认为D为第五名是真的,丙认为C为第二名是真的,丁认为E为第四名是真的,戊认为B为第一名是假的(见表2).所以A,B,C,D,E的名次分别为1,3,2,5,4.体验中考1、分析本题是考查轴对称图形和中心对称图形的概念,正三角形是轴对称图形,有三条对称轴,但它不是中心对称图形而是旋转对称图形.故选C.解题策略解决本题的关键是把握好轴对称图形和中心对称图形的概念.2、分析原命题与逆命题均为真命题的有②③.故选B.。

北师大版-数学-八年级下册-6.2 定义与命题 作业2

北师大版-数学-八年级下册-6.2 定义与命题 作业2

定义与命题总分:100分 时间45分钟一、选择题(每题5分,共30分)1、下列语句不是命题的是( )A 、两点之间,线段最短B 、不平行的两条直线有一个交点C 、x 与y 的和等于0吗?D 、对顶角不相等。

2、下列命题中真命题是( )A 、两个锐角之和为钝角B 、两个锐角之和为锐角C 、钝角大于它的补角D 、锐角小于它的余角3、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

其中假命题有( )A 、1个B 、2个C 、3个D 、4个4、“同角或等角的补角相等”是( )。

A. 定义B. 公理C. 定理D. 假命题5、“如果两个角的两边互为反向延长线,那么这两个角是对顶角”是( )A. 假命题B. 真命题C. 定义D. 定理6、两个角的两边分别平行,那么这两个角( )A. 相等B. 互补C. 互余D. 相等或互补二、填空题(每题5分,共30分)7、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,题设是 ,结论 。

8、对顶角相等,题设是 ,结论是 。

9、等角的补角相等,题设是 ,结论是 。

10、不相等的两个角不是直角,题设 ,结论是 。

11、有三条直线321,,l l l ,若21l l ,32//l l ,则1l 与3l 的位置关系___________12、用推理的方法判断为正确的命题叫做____________.三、解答题(每题10分,共40分)13、分别指出下列各命题的题设和结论。

(1)如果a ∥b ,b ∥c ,那么a ∥c(2)同旁内角互补,两直线平行。

14、分别把下列命题写成“如果……,那么……”的形式。

(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。

15、试描述下列概念的定义,指出定义中所包含的充要条件:(1)偶数;(2)方程;(3)集合;(4)锐角;(5)直角;(6)钝角;(7)角平分线;(8)平行线16、判断下列命题是真命题还是假命题.(1)若|a |=|b |,则a =b ;(2)若a =b ,则a 3=b 3;(3)若x =a ,则x 2-(a +b )x +ab =0;(4)如果a 2=ab ,则a =b ;(5)若在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,则△ABC ≌△A ′B ′C ′(6)若x >3,则x >2.四、拓展探究(不计入总分)17、如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“⎫⇒⎬⎭”形式,用序号表示): .(2)请选择一个真命题加以证明.你选择的真命题是:⎫⇒⎬⎭.作业2:定义与命题参考答案1、C2、C3、B4、C5、B6、D7、两直线被第三条直线所截同旁内角互补;两直线平行8、对顶角;相等9、等角的补角;相等 10、不相等的两个角;不是直角 11、相交 12、定理13、(1)题设:a ∥b ,b ∥c 结论:a ∥c(2)题设:两条直线被第三条直线所截的同旁内角互补。

6.2 定义与命题 课件6(北师大版八年级下)

6.2 定义与命题 课件6(北师大版八年级下)

新知探究 Ⅰ、分析下列命题:
(2)如果一个三角形是等腰三角形,那么这个三角 形的两个底角相等。 条件 等腰三角形 已知事项
结论 两个底角相等
由已知事项 推断出的事项
新知探究 Ⅰ、分析下列命题:
(3)如果一个四边形的一组对边平行且相等,那么 这个四边形是平行四边形。 条件 一组对边 平行且相等 已知事项 结论 四边形是 平行四边形 由已知事项 推断出的事项
等式的有关性质和不、命题的组成: 每个命题都由条件和结论两部分组成。条件 是已知的事项,结论是由已知事项推断出的事项。
2、真命题、假命题的定义: 正确的命题称为真命题,不正确的命题称为 假命题。 3、反例的定义: 要说明一个命题是假命题,通常可以举出一 个例子,使之具备命题的条件,而又不具备命题 的结论,这种例子称为反例。
新知探究
Ⅳ、公理、定理、概念和证明的关系:
有关概念、公理 定理1 条件1 有关概念、公理 定理2 定理3 … …
条件2
新知探究
Ⅴ、本教材的公理: 1.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行。 2.两条平行线被第三条直线所截,同位角相等。 3.两边及其夹角对应相等的两个三角形全等。 4.两角及其夹边对应相等的两个三角形全等。 5.三边对应相等的两个三角形全等。 6.全等三角形的对应边相等,对应角相等。
新知归纳
反例的定义:
要说明一个命题是假命题,通常可以举出一 个例子,使之具备命题的条件,而又不具备命题 的结论,这种例子称为反例。
巩固练习 2、下列命题中哪些是假命题?为什么? x 5 3 x (1)如果 ,那么 x 4 ; 2 3 (2)各边对应成比例的两个多边形一定相似; (3)如果a≠0,b≠0,那么a2+ab+b2=(a+b)2; (4)两个锐角之和一定是钝角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 定义与命题B卷
一、七彩题:
1.(一题多解)把命题“平行四边形的对角线互相平分”改为“如果……那么……”的形式,并指出这个命题的条件和结论.
2.(多变题)用“如果……那么……”的形式,•改写命题“过一点有且只有一条直线与已知直线垂直”可改写为______________________________________________.
(1)一变:判断下列命题的真假,是假命题的举出反例.
①负数与负数的差是负数;•②线段垂直平分线上的点到线段两个端点的距离相等.
(2)二变:如图,给出下列论断:①AB∥CD;②AD∥BC;③∠B=∠D.•以其中两个作为题设,另一个作为结论,用“如果……那么……”的形式,写出一个你认为正确的命题.
D A
C B
二、知识交叉题;
3.(当堂交叉题)下列命题中,正确的是()
A.任何数的平方都是正数 B.相等的角是对顶角
C.内错角相等 D.直角都相等
4.(科内交叉题)命题“当n是整数时,两个连续整数的平方差(n+1)2-n2等于这两个连续整数的和”正确吗?试着用你学过的知识说明理由.
三、实际应用题
5.甲、乙、丙三位老师,分别来自北京、上海、广州三个城市,•在中学教不同的课程:语文、数学、外语,已知:
(1)甲不是北京人,乙不是上海人;
(2)北京人不教外语,上海人教语文;
(3)乙不教数学.
试问:这三位教师各自的籍贯和所教的课程.
四、经典中考题
6.(2007,厦门,3分)有下列两个命题:①如果两个角是对顶角,•那么这两个角相等;
②如果一个等腰三角形有一个内角是60°,那么这个等腰三角形一定是等边三角形.其
中正确的是()
A.只有命题①正确 B.只有命题②正确
C.命题①,②都正确 D.命题①,②都不正确
7.(2008,南通,4分)下列命题正确的是()
A.对角线相等且互相平分的四边形是菱形;
B.对角线相等且互相垂直的四边形是菱形
C.对角线相等且互相平分的四边形是矩形
D.对角线相等的四边形是等腰梯形
8.(2008,广州,3分)命题“圆的直径所对的圆周角是直角”是______命题.(•填“真”
或“假”)
五、探究学习:
1.(条件开放题)如图所示,点E 在AB 上,AC=AD ,请你添加一个条件,•使图中存在全等三角形,并给予证明. 所以添条件为_________.
你得到的一对全等三角形△____≌△______. 2.(条件开放题)举出一个真命题的例子,使它的条件和结论交换位置,所得命题仍是真命
题.
3.(新定义型题)我们用“
”,“”定义一种新运算,对于任意实数a ,b 都有a b=a 和a
b=b ,例如53=5,5
3=3,求(20062007)(20052004)的值.
4.有A ,B ,C ,D ,E ,F 六人坐在一张圆桌周围打牌,已知B 和A 相隔一人,并在A•的右面,
D 坐在
E 的对面;C 和
F 相隔一人并坐在F 的右面,F 与E 不相邻,你能从A 开始按顺时针方向排出六人的位置吗?
参考答案
一、1.解法一:如果一个四边形是平行四边形,那么这个四边形的对角线互相平分,条件
是:一个四边形是平行四边形;结论是:这个四边形的对角线互相平分.
解法二:如果两条线段是平行四边形的两条对角线,那么这两条线段互相平分. 条件是:两条线段是平行四边形的两条对角线;
结论是:这两条线段互相平分.
2.解:如果过一点作已知直线的垂线,那么能且只能作出一条
(1)①假命题.反例:-1-(-5)=4;②真命题.
(2)如果AB ∥CD ,且AD ∥BC ,那么∠B=∠D .
E A C B
点拨:本题利用一题多变,考查了命题的概念,分类,组成等知识.(2)题还有如下答案:如果AB∥CD,∠B=∠D.那么AD∥BC;如果AD∥BC,∠B=∠D,那么AB∥CD.二、3.D 点拨:要判断一个命题是假命题,只需举出一个反例即可,所以对于命题A,当
这个数是0时,02=0,但0不是正数,所以A是假命题;对于命题B,当两个角是等腰三角形的两底角时,满足两角相等,但不是对顶角,故B也是假命题;对于命题C,•如果两条直线不平行,则内错角不相等,故C也是假命题,正确的命题只有D.4.解:正确,因为(n+1)2-n2=n2+2n+1-n2=2n+1=(n+1)+n.点拨:•要想说明一个命题正确,是真命题,必须经过推理证明,要想说明一个命题不正确,是假命题,•只要举出一个反例即可.
三、5.解:甲是上海人,教语文;乙是广州人,教外语;丙是北京人,教数学.
点拨:由(1)(2)知乙不教语文,又由(3)知乙不教数学,故乙教外语;由(1)(2)•知乙不是北京人,故乙是广州人;由(1)知甲是上海人,教语文;•由以上可知丙是北京人,教数学.
四、6.C 7.C 8.真
五、探究学习
1.解:可选择CE=DE,∠CAB=∠DAB,BC=BD等条件中的一个可得到△ACE≌△ADE或△ACB ≌△ADB,证明过程略.
点拨:此题为条件开放题,所添加的条件灵活多样,•主要考查三角形全等的判定定理.2.解:a,b,c均为实数,若a>b,则a-c>b-c.
3.解:(20062007((20052004)=20072004=2007.
点拨:此类题目是近几年中考题目考查的一个重点,解答此类题目关键是弄清新运算的运算法则.
4.解:从A开始,六人位置按顺时针排列为A,C,D,F,B,E.
点拨:可以用图来表示(如答图6-2-1所示),已知B与A相隔一人并坐在A的右面,便可定出A,B间的位置.D坐在E的对面,则D或E必须夹在A,B两人之间.如果D 夹在A,•B之间,E坐在D的对面,而F的位置只能在E的左边或右边,即F与E相邻,与题设矛盾,•所以D不能夹在A,B之间.如果E夹在A,B之间,D坐在对面,C与F 相隔一人并在F的右边,那么C在A,D之间,F在B的右边.。

相关文档
最新文档