方差分析实例
单因素方差分析和多因素方差分析简单实例
单因素方差分析实例[例6-8]在1990 年秋对“亚运会期间收看电视的时刻”调查结果如下表所示。
问:收看电视的时刻比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有无显著的不同?即要查验从“态度”上看,这三组居民的样本是取自同一整体仍是取自不同的整体在SPSS 中进行方差分析的步骤如下:(1)概念“居民对亚运会的总态度得分”变量为X(数值型),概念组类变量为G(数值型),G=1、2、3 表示第一组、第二组、第三组。
然后录入相应数据,如图6-66所示图6-66 方差分析数据格式(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对话框(如图6-67所示)。
从主对话框左侧的变量列表当选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。
单击[OK]按钮完成。
图6-67 方差分析对话框(3)分析结果如下:因此,收看电视时刻不同的三个组其对亚运会的态度是属于三个不同的整体。
多因素方差分析[例6-11]从由五名操作者操作的三台机械每小时产量中别离各抽取1 个不同时段的产量,观测到的产量如表6-31所示。
试进行产量是不是依托于机械类型和操作者的方差分析。
SPSS 的操作步骤为:(1)概念“操作者的产量”变量为X(数值型),概念机械因素变量为G1(数值型)、操作者因素变量为G2(数值型),G1=1、2、3 别离表示第一、二、三台机械,G2=1、2、3、4、5 别离表示第1、2、3、4、5 位操作者。
录入相应数据,如图6-68所示。
图6-68 双因素方差分析数据格式(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。
7-2(方差分析)
基本操作 【Contrast钮】 钮 用于对比检验,对各个控制变量不同水平下 用于对比检验 对各个控制变量不同水平下 的均值是否与某个检验值存在差异进行比 较,检验值的指定有 检验值的指定有 Deviation:观测变量的均值 观测变量的均值 Simple:第一水平或最后一水平观测变量的 第一水平或最后一水平观测变量的 均值 Difference:前一水平观测变量的均值 前一水平观测变量的均值 Helmert:后一水平观测变量的均值 后一水平观测变量的均值
基本操作 【Plots】 】 因素变量交互作用图形分析 【Post Hoc】 】 多重比较检验 【Save钮】 钮 将模型拟合时产生的中间结果或参数 保存为新变量供继续分析时用, 保存为新变量供继续分析时用,可保 存的东西有预测值、残差、 存的东西有预测值、残差、异常值诊 断。
基本操作 【Options钮】 钮 选项 Estimated Marginal Means:估计边际均值 估计边际均值
S A× B S A× B = 交互作用 S A× B ( r − 1)( s − 1) ( r − 1)( s − 1)
误
差 SE 和 ST
rs( t − 1)
rst − 1
SE SE = rs( t − 1)
总
二、双因素无重复试验的方差分析
检验两个因素的交互效应,对两个因素的每一 检验两个因素的交互效应 对两个因素的每一 组合至少要做两次试验. 组合至少要做两次试验 如果已知不存在交互作用,或已知交互作用对 如果已知不存在交互作用 或已知交互作用对 试验的指标影响很小,则可以不考虑交互作用 则可以不考虑交互作用. 试验的指标影响很小 则可以不考虑交互作用 对两个因素的每一组合只做一次试验,也可以 对两个因素的每一组合只做一次试验 也可以 对各因素的效应进行分析——双因素无重复试验 双因素无重复试验 对各因素的效应进行分析 的方差分析. 的方差分析
单因素方差分析和多因素方差分析简单实例
单因素方差分析和多因素方差分析简单实例
单因素方差分析与多因素方差分析(即分析方差分析,简称 ANOVA)是统计学中常用
的一种方法。
它可以用来评估相关变量之间的差异程度,以确定这些变量对数据集的影响
程度。
本文将对两种方法进行简单介绍,并通过一个实例来帮助大家更好地理解。
1、单因素方差分析
单因素方差分析是统计学中最常见的研究方法之一,可以用来评估一个单独变量的影响。
在这种情况下,我们分别将多个样本分为两组或以上,每组有不同的自变量。
然后使
用单因素处方差分析检验来检验这些样本组之间的均值的差异,从而得出该自变量对样本
组之间的均值的影响大小。
举个例子,假设我们有一个取自不同地区的样本,想要测试该样本收入水平是否受某
个城市所在地区影响,那么我们可以把这些样本分为两组:一组是属于某个城市所在地区,另一组是其他地区,然后使用单因素方法分析测试这两组样本收入水平是否显著不同。
拿前面的例子来说,我们在检验受某个城市影响的收入水平的时候如果只用单因素分
析可能不太准确,因为受某个城市影响的收入水平还可能受到一些其他因素的影响,比如
年龄、阶层等,这时就可以使用多因素方差分析来进行检验和确定不同因素的影响程度。
所以,单因素方差分析和多因素方差分析都是用来评估变量之间差异程度的统计方法,但并不能确定变量之间的关联性和互动作用。
至于哪一个方法更适合于某种特定情况,需
要结合实际情况,根据具体分析需求而定。
方差分析三重复测量资料的方差分析
缺点
实验成本高
需要进行多次测量,增加了实验成本和时间。
数据处理复杂
三重复测量资料的方差分析需要处理大量的数据,并且需要进行复 杂的统计分析,对数据分析的要求较高。
样本量要求高
为了获得更可靠的结果,需要较大的样本量,增加了实验难度。
06
三重复测量资料的方差分析的未来 发展
研究方向
1 2
拓展应用领域
通过比较组间方差和组内 方差的差异,判断各组之
间的差异是否显著。
01
02
03
04
05
1. 建立假设
确定要检验的原假设(H0) 和备择假设(H1)。
3. 计算方差
根据数据计算组间方差和 组内方差。
5. 解读结果
根据统计结果解释实验结 果,确定处理因素对实验 结果的影响是否显著。
03
三重复测量资料的方差分析
感谢您的观看
THANKS
5. 结果解释
根据模型的拟合结果, 解释三重复测量资料 的变化情况,并给出 相应的结论和建议。
04
三重复测量资料的方差分析实例
实例一:药物效果研究
总结词
药物效果研究是三重复测量资料方差分析的重要应用领域之一,主要用于评估药物治疗前后的效果差 异。
详细描述
在药物效果研究中,通常会对同一组受试者在药物治疗前、治疗中、以及治疗后的不同时间点进行测 量,以评估药物对受试者的影响。通过三重复测量资料的方差分析,可以比较不同时间点上受试者的 生理指标、症状改善程度等方面的差异,从而为药物的疗效提供科学依据。
02
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方 法,用于比较两个或多个组之间的平 均值差异是否显著。
方差分析实例
之阳早格格创做让4名教死前后干3份考验卷,得到如下表的分数,使用圆好分解法不妨估计分解的问题是:3份考验卷尝试的效验是可有隐著性好别?1、决定典型由于4名教死前后干3份试卷,是共一组被试前后介进三次考查,4位教死的考查结果可瞅成是从共一总体中抽出的4个区组,它们正在三个考验上的得分是相闭样原.2、用圆好分解要领对于三个总体仄衡数好别举止概括性天F考验考验步调如下:第一步,提出假设:第二步,估计F考验统计量的值:果为是共一组被试前后介进三次考查,4位教死的考查结果可瞅成是从共一总体中抽出的4个区组,它们正在三个考验上的得分是相闭样原,所以可将区组间的各别好别从组内好别中分散出去,剩下的是真验缺点,那样便不妨采用公式(6.6)组间圆好取缺点圆好的F比值去考验三个考验卷的总体仄衡数好别的隐著性.①根据表6.4的数据估计百般仄圆战为:总仄圆战:组间仄圆战:区组仄圆战:缺点仄圆战:②估计自由度总自由度:组间自由度:区组自由度:缺点自由度:③估计圆好组间圆好:区组圆好:缺点圆好:④估计F值第三步,统计决断根据,α=0.01,查F值表,得到,而本质估计的F考验统计量的值为,即P (F >10.9)<0.01,样原统计量的值降正在了中断域内,所以中断整假设,交受备择假设,即三个考验中起码有二个总体仄衡数没有相等.3、用q考验法对于逐对于总体仄衡数好别举止考验考验步调如下:第一步,提出假设:第二步,果为是多个相闭样原,所以采用公式(6.8)估计q考验统计量的值:正在为果然条件下,将一次样原的有闭数据及代进上式中,得到A战B二组的仄衡数之好的q 值,即:以此类推,便可得到每对于样原仄衡数之间好别比较的q值,如下表所示:第三步,统计决断为了举止统计决断,正在原例中,将A,B,C共3组教死英语单词汇考验结果的等第排列为:A取C之间战B取C之间包罗有1,2二个组,a=2;A 取B之间包罗有1,2,3三个组,a=3.根据,得到当a=2时,q考验的临界值为;当a=3时,q考验的临界值为;将表(6.5)中的q考验统计量的值取q临界值举止比较,得到表(6.6)中的3次考验结果各对于仄衡数之间的比较截止:表6.6 3次尝试各对于样原仄衡数之好q值的比较截止*表示正在α=0.05隐著性火仄上有好别,**表示正在α=0.01隐著性火仄上有好别)从表中不妨瞅出,三个考验中每二个之间的总体仄衡数皆没有相等.果为是共一组被试前后介进三次考查,所得到的样原是相闭样原,那些样原所属总体的圆好基本相等,所以没有需要对于二个相闭样原所属总体的圆好举止齐性考验.通过以上估计分解,咱们不妨知讲:三份考验卷尝试的效验有隐著性好别,而且每二份考验卷尝试的效验之间皆有隐著性好别.。
析因设计的方差分析
SS SS SS 如AB的交互效应:AB=[(a1b1-a2b1)-(a1b2-a2b2)]/2=(0.
总 处 理 H0:染毒与不染毒的大鼠吞噬指数的总体均数相等 误 差
确定P值,作出推断结论
SS SS SS SS 01 ,提示染毒对吞噬指数有影响,可以降低大鼠吞噬指数。
其方法有很多种,析因设计就是其中的一种。
研究目的
当研究的因素不止一个时,这种研究设计就称为 多因素的实验设计 。其方法有很多种,析因设计 就是其中的一种。
研究目的:不仅分析单个因素不同水平效应之间 的差异,还要知道两个因素各水平间效应的相互 影响。
分析方法:采用多因素方差分析。
方差分析的根本思想
• 变异分解: --固定因子〔处理因素〕:A、B
定义3个列变量: 1个因变量〔y〕,2个处理因素分组变量 〔A,B〕,设置值标签。 主要分析过程
1〕Analyze ->General Linear Model ->Univariate ,弹出单变量对 话框:
--因变量名称:y --固定因子〔处理因素〕:A、B 2〕点击“模型〞按钮,弹出重复度量模型对话框。 --指定模型:本例选择全模型,即分析所有主效应及交 互效应〔系统默认〕。假设选择定制,可以自由选择进入 分析模型的主效应及交互效应。
假设i :表示因素A的水平〔i=1,2,…,a〕, 指两个或多个研究因素间的效应互不独立,当某一因素在各水平间变化时,另一个或多个因素各水平的效应也相应地发生改变。
建立检验假设,确定检验水准 〔2〕A因素主效应的P>0.
4〕 Post Hocj〔:比照表〕按示钮:因素B的水平〔j=1,2,…,b〕,
相等 H1:给药与不给药的大鼠吞噬指数的总体均数
EXCEL方差分析实例
EXCEL方差分析实例在Excel中进行方差分析可以使用数据分析工具包中的Anova: Single Factor分析工具。
下面我们使用一个实例来演示如何进行方差分析。
假设有一个实验,研究不同品牌汽车轮胎的寿命是否有差异。
我们随机选择了3个品牌的轮胎,每个品牌选择了10个样本。
寿命的数据如下所示:品牌1:500,510,505,495,485,490,500,495,505,500品牌2:490,485,480,495,500,495,505,500,510,495品牌3:505,500,495,490,485,500,500,495,500,505首先,将数据输入到Excel的工作表中。
在A列中输入"品牌1", "品牌2", "品牌3",在B列中分别输入对应品牌的寿命数据,共30个数据点。
然后,在Excel的菜单栏中选择"数据",点击"数据分析"按钮。
如果"数据分析"按钮没有显示,可以在Excel选项中打开数据分析工具包。
在"数据分析"对话框中选择"Anova:Single Factor",点击"确定"。
在"Anova: Single Factor"对话框中,将输入范围设置为包含我们的数据,即B1:B30。
选择"纵向位置"为第一列。
点击"确定"。
Excel将显示方差分析的结果。
在"Anova: Single Factor"结果窗口中,我们可以看到各个组的平均值、方差、观测次数等信息。
方差分析的结果也可以在工作表中显示。
在C1单元格中输入"组间平方和",在D1单元格中输入"组内平方和",在E1单元格中输入"总平方和",在F1单元格中输入"自由度组间",在G1单元格中输入"自由度组内",在H1单元格中输入"自由度总",在I1单元格中输入"组间均方",在J1单元格中输入"组内均方",在K1单元格中输入"F值",在L1单元格中输入"P值"。
高级统计学:第七章方差分析
第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。
一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。
新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。
A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。
可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。
二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。
如,颜色水平:将因素中不同的现象称为水平。
(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。
多因素方差分析:同时针对多个因素进行分析。
观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。
方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。
如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。
如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。
对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。
单因素方差分析完整实例
单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。
为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。
第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。
在治疗开始前,研究人员记录了每个患者的收缩压数据。
第一步是对数据进行描述性统计分析。
研究人员计算了每一组的平均值、标准差和样本量。
结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。
研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。
备择假设是至少有一组的平均收缩压不同。
为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。
组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。
组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。
组间方差的计算方法是对所有组的平均值进行方差分析。
我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。
F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。
根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。
假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。
这意味着至少有一组的平均收缩压与其他组有显著差异。
最后一步是进行事后检验。
由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。
常用的事后检验方法包括Tukey HSD检验、Duncan检验等。
综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。
方差分析--实例
例6.1 测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果列于表6-1。
试比较各地区黄鼬针毛长度的差异显著性。
表6-1 不同地区黄鼬冬季针毛长度(单位:mm)
地区东北内蒙古河北安徽贵州合计
1 32.0 29.
2 25.5 23.
3 22.3
2 32.8 27.4 26.1 25.1 22.5
3 31.2 26.3 25.8 25.1 22.9
4 30.4 26.7 26.7 25.
5 23.7
∑x126.4 109.6 104.1 99.0 91.4 530.5
n 4 4 4 4 4 20
x31.60 27.40 26.03 24.75 22.85 26.53 ∑X23997.44 3007.98 2709.99 2453.16 2089.64 14258.21
例6.2 园艺研究所调查了3个品种草莓的维生素C含量(mg/100g),测定结果列于表6-2。
试分析不同品种之间维生素C含量是否有显著性差异。
表6-2 不同品种草莓维生素C含量(单位:mg/100g)
例6.3 研究三种不同日粮对猪日增重的影响,每种日粮饲喂5头猪,三种日粮分别用TR1、TR2、TR3表示。
相关数据如下表所示:
TR1 TR2 TR3
270 290 290
300 250 340
280 280 330
280 290 300
270 280 300 总和 1400 1390 1560 4350
n 5 5 5 15
y280 278 312 290。
方差分析
方差分析方差分析是对多个总体均值是否相等这一假设进行检验。
下面通过一个例子说明方差分析的内容。
例:某化妆品生产公司研制出一种饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
随机从五家专卖市场上收集了前一期该种饮料的销售量,如表9-1所示。
这是一个方差分析问题,即对四种不同颜色的饮料的销售量均值是否相等进行检验。
我们把四种不同颜色的饮料的销售量均值分别记为,由题意知,要检验假设;不全相等如果检验结果为不全相等,则表明饮料颜色对销售量产生影响。
反之,如果检验结果为不存在显著影响,则可以认为饮料颜色对销售量没有影响,他们来自于相同的总体。
方差分析的基本概念在方差分析中,常常用到一些术语。
我们把要考察的对象的某种特征称为指标。
试验条件分为可控制的和不可控制的两类,称可控制的试验条件为因素;因素所处的状态称为该因素的水平。
如果在一项试验中只有一个因素在变化,称他为单因素试验。
若试验中变化因素多于一个,称他为双因素以及多因素试验。
在上例中,饮料的销售量为指标,饮料的颜色为因素,饮料的四种颜色为该因素的四个水平,该例是一个单因素四水平试验。
上一章所讲的对两个总体均值的比较,实际上就是单因素两水平试验。
下面,我们简单阐述单因素方差分析的基本原理。
1.2单因素方差分析1.2.1 单因素方差分析的基本原理单因素方差分析是研究一个因素的变化对试验指标的影响是否显著的统计分析方法,是方差分析中最简单的情形。
设因素A有r个水平在水平下进行次独立试验,试验记录如表9-2其中表示第i水平进行第j次试验的可能结果。
假设,。
待检假设为:,不全相等。
如果成立,那么r个总体间无显著差异,即是说因素A对试验结果的影响不显著,所有可视为来自同一个总体,各间的差异只是由随机因素引起的。
若不成立,则在所有的总变差中,除随机波动引起的变差外,还应包括由于因素A的不同水平作用产生的差异。
如果不同水平作用产生的差异比随机因素引起的差异大得多,就认为因素A 对试验结果有显著影响,否则就认为因素A对试验的影响不显著。
单因素方差分析
2.
对前面的例子
H0: µ1 = µ2 = µ3 = µ4 • 颜色对销售量没有影响 H0: µ1 ,µ2 ,µ3, µ4不全相等 • 颜色对销售量有影响
方差分析的基本思想和原理
(两类方差) 两类方差)
1.
组内方差
因素的同一水平(同一个总体) 因素的同一水平(同一个总体)下样本数据的方差 比如,无色饮料A 比如,无色饮料A1在5家超市销售数量的方差 组内方差只包含随机误差
构造检验的统计量
(计算检验的统计量 F )
1. 将 MSA 和 MSE 进行对比,即得到所需要的检 MSA和 MSE进行对比 , 2.
验统计量F 验统计量F 当H0为真时,二者的比值服从分子自由度为 为真时, k-1、分母自由度为 n-k 的 F 分布,即 分布, MSA F= ~ F(k −1, n − k) MSE
k 2 k i=1 j =1 i=1 ni 2
前例的计算结果:SSA 前例的计算结果:SSA = 76.8455
构造检验的统计量
(三个平方和的关系) 三个平方和的关系 的关系)
总离差平方和(SST) 总离差平方和 (SST) 、 误差项离差平方和 (SSE)、水平项离差平方和 (SSA) 之间的关系 SSE) SSA)
对于因素的每一个水平, 对于因素的每一个水平,其观察值是来自服从正态分 布总体的简单随机样本 比如, 比如,每种颜色饮料的销售量必需服从正态分布
2.
各个总体的方差必须相同
对于各组观察数据, 对于各组观察数据,是从具有相同方差的总体中抽取 的 比如, 比如,四种颜色饮料的销售量的方差都相同
3.
观察值是独立的
误差的大小;SSA反映了随机误差和系统误差的大小 误差的大小;SSA反映了随机误差和系统误差的大小 2. 如果原假设成立,即H1= H2 =…= Hk为真,则表明 如果原假设成立, 为真, 没有系统误差,组间平方和SSA除以自由度后的均方 没有系统误差,组间平方和SSA除以自由度后的均方 与组内平方和SSE和除以自由度后的均方 与组内平方和SSE和除以自由度后的均方差异就不会 均方差异就不会 太大;如果组间均方 太大;如果 组间均方 显著地大于组内均方 , 说明各 组间均方显著地大于 组内均方 组内均方, 水平(总体)之间的差异不仅有随机误差, 水平(总体)之间的差异不仅有随机误差,还有系统误 差 3. 判断因素的水平是否对其观察值有影响 , 实际上就 判断因素的水平是否对其观察值有影响, 是比较组间方差 组内方差之间差异的大小 是比较组间方差与组内方差之间差异的大小 组间方差与 4. 为检验这种差异,需要构造一个用于检验的统计量 为检验这种差异,
方差分析实例
方差分析实例
案例分析一:
方差分析实例
某化工厂化验室检验过程中要确定温度(记为因子A)对检验结果的影响。
现让同一个检验人员从同一批样品中随机抽取三个样品,用同一种测量方法、同一台仪器,在四个温度水平(记为A1、A2、A3、A4)下对三个样品主要成分进行测量,数据如下表,其中,含量的单位为%,温度单位为℃,测定结果的显著性水平α=0.05。
温度和含量的数据分析图含量(%)
从数据图可清晰得知,温度对样品中主要成分的含量的测量结果有着显著的影响,即温度越高,样品含量越大。
为了减少决策风险,对于
该结论还需进行方差分析。
(二)组间方差齐性检验
1、计算A1~A4的极差R1~R4,
2、平均极差R ,
3、根据α=0.05,m=3,查“均值-极差控制图系数表”得D3、D4,
4、计算上临界值:D4*R;下临界值:D3*R
5、验证R1~R4是否在上下临界值直间,即D3R﹤R1,R2,R3,R4﹤D4R,则证明每个水平内样品的测定数据方差是一致的。
(三)计算因子A在每一温度水平下不同样本测定数据的和Ti及总和Tn
(四)依次计算平方和Sr、S A、Se及自由度fr、f A、fe
(五)计算各均方及F比值并列出方差分析表
F=105.685
(六)根据F=105.685,对于给定的显著性水平α=0.05,查F 分布表F1-α(F A,Fe),可得1-α=0.95,F0.95(3,8)=4.07,F﹥F0.95(3,8),因此,温度对含量测定结果的影响是显著的。
市场研究的方差分析实例
实例分析一、单因子分析一项研究三个电视广告(A、B、C)效果的研究,安排了10个消费者观看每个我们利用SPSS对数据进行方差分析,得到以下结果0.000<0.05,即是,样本均值相等的零假设被拒绝。
即三个电视广告不是同样有效的。
二、N因子方差分析1、研究课题:职业、性别对周薪水的影响2、数据统计: (1)(2)(1)在Levene检验中,显著性p=0.856,显著性水平a=0.05,p值远大于a值,落在大概率范围内,处于接受域,因此接受H0假设,误差与方差相等。
得到了方差分析的前提,可以继续进行方差分析。
(2)在表2中,主体间效应的检验,发现因子1性别,p1=0.000小于a=0.05,落在拒绝域上,因此拒绝H01,可得性别对于周薪水的影响是显著的。
因子2职业,p2=0.000小于a=0.05,同样落在拒绝域上,因此拒绝H02,可得职业对于周薪水的影响是显著的。
因子1与因子2的交互效应,p3=0.011小于a值,落在拒绝域上,因此拒绝H03,可得性别与职业间的交互效应是显著的。
三、协方差分析1、课题:考虑年龄因素下,体重对胆固醇含量有无影响体重超重组标识为2,体重正常组标识为12、数据统计(2)(3)(4)3、数据分析(1)在图表2中,以x=年龄,y=胆固醇,得到散点图,从图中可以明显看出,年龄与胆固醇含量存在明显线性关系。
因此,需要将连续变量年龄列入影响胆固醇含量的因素中,所以,年龄应作为协变量进行分析。
(2)在Levene检验中,显著性p=0.375,显著性水平a=0.05,p值远大于a值,落在大概率范围内,处于接受域,因此接受H0假设,误差与方差相等。
得到了方差分析的前提,可以继续进行协方差分析。
(3)表4中,主体间效应的检验,发现因子体重,p1=0.038小于a=0.05,落在拒绝域上,因此拒绝H01,可得体重对于胆固醇含量的影响是显著的。
协变量年龄,p2=0.000小于a=0.05,落在拒绝域上,因此拒绝H02,可得年龄对于胆固醇含量的影响也是显著的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异?
1、确定类型
由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。
2、用方差分析方法对三个总体平均数差异进行综合性地F检验
检验步骤如下:
第一步,提出假设:
第二步,计算F检验统计量的值:
因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。
①根据表6.4的数据计算各种平方和为:
总平方和:
组间平方和:
区组平方和:
误差平方和:
②计算自由度
总自由度:
组间自由度:
区组自由度:
误差自由度:
③计算方差
组间方差:
区组方差:
误差方差:
④计算F值
第三步,统计决断
根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的
值为,即P(F >10.9)<0.01,
样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。
3、用q检验法对逐对总体平均数差异进行检验
检验步骤如下:
第一步,提出假设:
第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:
在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即:
以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示:
第三步,统计决断
为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为:
A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。
根据,得到当a=2时,q检验的临界值为
;
当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.6 3次测试各对样本平均数之差q值的比较结果
*表示在α=0.05显著性水平上有差异,**表示在α=0.01显著性水平上有差异)
从表中可以看出,三个测验中每两个之间的总体平均数都不相等。
因为是同一组被试前后参加三次考试,所得到的样本是相关样本,这些样本所属总体的方差基本相等,所以不需要对两个相关样本所属总体的方差进行齐性检验。
通过以上推断分析,我们可以知道:三份测验卷测试的效果有显著性差异,并且每两份测验卷测试的效果之间都有显著性差异。
Love is not a maybe thing. You know when you love someone.。