数学建模心得体会3篇

合集下载

数学建模学习心得体会范文

数学建模学习心得体会范文

数学建模学习心得体会数学建模学习心得体会范文当我们备受启迪时,不如来好好地做个总结,写一篇心得体会,这样能够让人头脑更加清醒,目标更加明确。

那么你知道心得体会如何写吗?下面是小编精心整理的数学建模学习心得体会范文,仅供参考,大家一起来看看吧。

数学建模学习心得体会1刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的'过程,更是一个思想与方法的产生与选择的过程。

它给学生再现了一种“微型科研”的过程。

数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。

同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

数学建模学习心得感悟5篇

数学建模学习心得感悟5篇

数学建模学习心得感悟5篇数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

这里给大家分享一些关于数学建模学习心得感悟,供大家参考。

数学建模学习心得感悟1为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。

推广月活动的主要形式是:横幅、宣传材料、人工咨询等。

二、组织学生参加每年高教社杯全国大学生数学建模竞赛。

一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。

三、年度会员招收工作。

在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。

四、干事招聘会。

在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。

招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。

五、数学建模专题讲座。

邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。

六、会员大会。

拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴文数学建模学习体会(2) 海等和其他兄弟协会。

届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。

数学建模学习心得体会

数学建模学习心得体会

数学建模学习心得体会数学建模学习心得体会1刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模学习心得体会2刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

xx的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下xx赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而xx的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而xx的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

数学建模心得体会(精选6篇)

数学建模心得体会(精选6篇)

数学建模心得体会(精选6篇)数学建模篇1这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。

在学习的过程中,我获得了很多知识,对我有非常大的提高。

同时我有了一些感想和体会。

本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。

通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。

数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济的作用可谓是如虎添翼。

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。

在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

用数学语言来描述问题。

(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。

数学建模感悟(精选五篇)

数学建模感悟(精选五篇)

数学建模感悟(精选五篇)第一篇:数学建模感悟感想这一门数学建模课,实在是出乎我们的意料。

在上这门课之前,我们心中就惊恐:“建模”?不会吧?我们在担心,曾经高数带给我们的痛苦又要体会一遍。

而后,我们阻挡不了时间的意志,在赶鸭子上架之下,我们走进了3#433,开始了第一节课。

出乎我们的意料的是,老师讲课的方式好像在讲小故事一样,或者说,是在把一个个谜题给我们去解决。

而后,我们心里就释然了,还好,这明显就是在玩嘛。

抱着一颗非常轻松的心情,我们被老师引进了数学建模的世界。

原来数学建模不是一味的记公式讲题做题,而是实际事物的一种数学简化。

这就更好玩了,就跟看侦探故事一样,我们可以在看的时候可以想着怎么去解决问题。

数学建模常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。

而为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

所以,很明显的,这是在解决生活中的问题。

以前我们在学数学的时候,常听到这种言论:数学学不好又怎样,难道你买菜还要用到sin,cos吗?但现在,我们心中的想法是,你能学好建模,甚至用好建模,自己就可以出去牛气一段时间了。

只是,有点奇怪的是,有些同学根本就将这门课当成自习课了,这就明白着表示不重视。

然而就想老师所说的那样,不论是什么课,只要你用心学了,你总会有所收获的。

是的,这也应了石油大王的那句话:不论什么时候,都不要放弃提升自己的机会。

或许,这个道理是我们在这门课上的额外收货。

第二篇:数学建模感悟学完数学建模,使我感触良多,古语云:“经一事,长一智,”然而从我当初参加学校举办的全国大学生数学建模培训开始,到现在的数学建模的结束,我却要感慨万千地说:“一次建模,终生受益。

关于数学建模学习心得体会

关于数学建模学习心得体会

数学建模学习心得体会当我们积累了新的体会时,通常就可以写一篇心得体会将其记下来,从而不断地丰富我们的思想。

那么写心得体会要注意的内容有什么呢?下面是小编帮大家整理的数学建模学习心得体会,仅供参考,欢迎大家阅读。

数学建模学习心得体会1刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。

它给学生再现了一种“微型科研”的过程。

数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的`情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。

同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

数学建模学习心得体会范文

数学建模学习心得体会范文

数学建模学习心得体会范文数学建模学习心得体会范文当我们备受启迪时,不如来好好地做个总结,写一篇心得体会,这样能够让人头脑更加清醒,目标更加明确。

那么你知道心得体会如何写吗?下面是小编精心整理的数学建模学习心得体会范文,仅供参考,大家一起来看看吧。

数学建模学习心得体会1刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的'过程,更是一个思想与方法的产生与选择的过程。

它给学生再现了一种“微型科研”的过程。

数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。

同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

数学建模心得体会(共4篇)

数学建模心得体会(共4篇)

数学建模心得体会(共4篇)篇:数学建模一、在初中数学课堂中开展建模的必要性在生活中,处处存在数学,而有数学应用的地方就有数学建模。

荷兰著名的数学家弗赖登塔尔,国际数学教育权威,他主张“数学源于现实,寓于现实,用于现实”。

在新一轮的课程改革中,数学课本在教学内容方面进行强有力的变革。

加强了数学的应用性、创新性,注意培养学生的应用意识,重视联系学生生活实际和社会实践的要求。

因此,作为数学教师的我们在数学课堂教学上有必要,也必须要向学生渗透数学寓于现实生活这一理念。

我们的数学教学不能离开现实生活而教。

《课标》明确指出:有效的数学学习活动书不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式学生在课题学习过程中接触到一些有研究和探索价值题材和方法,有利于学生全面认识数学、了解数学,使数学在学生未来的职业和生活中发挥重要作用。

二、在初中数学课堂中渗透数学建模数学建模是指根据具体问题,在一定的假设下找出解这个问题数学框架,求出模型的解,并对它进行验证的全过程。

它是一个“迭代”的过程。

即:准备→假设→建模→求解→分析→检验→应用(必要时循环执行)。

数学模型在实际应用的数学问题有时过难,不宜作为教学内容;有时过易,不被人们重视,而中学数学教科书中“现成”的数学建模内容又很少,再加上我国数学建模研究起步较晚,数学建模的氛围在中学尚不浓厚,在这种情况下,只有在教学活动中起主导作用的教师首先具有数学建模的自觉意识,数学建模思想的教学渗透不仅仅是大学生、研究生的教育问题,在中学里逐步进行有关数学建模思想的渗透更是顺应了当前素质教育和教学改革的需要。

如何在初中数学课堂设计建模教学我们在初中数学课堂中渗透数学建模,目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海中解放出来,把学生应用数学的意识的培养贯穿于教学的始终,让学生学得有趣、学得生动活泼。

因此,在数学建模课堂教学设计方面要遵从以下几点:使学生体会数学与生活的密切联系,体会数学的应用价值,培养学生学习数学的应用意识。

参加数学建模心得体会 读数学建模心得体会(9篇)

参加数学建模心得体会 读数学建模心得体会(9篇)

参加数学建模心得体会读数学建模心得体会(实用9篇)心得体会对个人的成长和进展具有重要意义,可以关心个人更好地理解和领悟所经受的事物,发觉自身的不足和问题,提高实践力量和解决问题的力量,促进与他人的沟通和共享。

我们想要好好写一篇心得体会,可是却无从下手吗?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

参与数学建模心得体会篇一数学建模作为一种综合性的力量与技术,近年来深受大众的关注与推崇。

作为一名数学爱好者,我对数学建模这个领域也产生了深厚的爱好。

在阅读关于数学建模的相关书籍、学习课程与参与各类竞赛的过程中,我深刻地领悟到了数学建模的种种魅力,也汇总了一些读数学建模的心得与体会。

其次段:学习阅历。

为了更好地理解数学建模,我通过网上课程等不断学习。

由于数学建模这个领域广泛涉及到的学问面非常广泛,所以学习的内容也非常繁琐。

在学习的过程中,我力求将各个专业领域的学问以及各种方法融合在一起,取长补短,做到融会贯穿。

同时,也需要不断地与竞赛、挑战赛等沟通中,去检验自己的学问水平,并不断地提高自己的学习力量。

第三段:实践体会。

学习归来,我开头了自己的实践之旅。

在应对数学建模的挑战的过程中,我渐渐意识到模型的精确度与应用性是特别重要的。

想要达到这点,必需不断地加强数学学问的学习,提高自己的实际操作力量。

另外,更加注意分析真实场景与数据,了解不同数据之间的关系与差异,并运用不同的数据分析方法,以保证模型的精度与牢靠性。

第四段:对将来的讨论目标。

虽然我在数学建模的学习与实践中有了肯定的收获,但我深知自己仍是一个初学者,将来的路还有很长。

因此,我方案在将来的学习与实践中,更加注意对数学建模理论的深度探究,从更加基础的角度动身去分析模型,从而更好地将理论运用于实践。

另外,我也将连续参与各种数学建模竞赛,不断挑战自己,提高自己的技能水平。

第五段:总结。

回首自己的数学建模之路,我深深体会到数学建模的魅力与难度。

学习数学建模的心得3篇

学习数学建模的心得3篇

学习数学建模的心得学习数学建模的心得精选3篇(一)学习数学建模是一个非常有意义和有挑战性的过程。

在我的学习过程中,我总结了以下几点心得:1. 基础知识的扎实是前提:数学建模需要运用到各种数学理论和方法,因此掌握数学基础知识是非常重要的。

在学习建模之前,要先巩固数学的基本概念和技巧,包括微积分、线性代数、概率统计等,这样才能更好地理解和运用到建模中。

2. 实际问题的挖掘和分析:数学建模的前提是要有一个实际问题或者现象,因此在学习建模的过程中,我们要培养观察和思考问题的能力,学会从现实中捕捉一些有趣和有价值的问题。

在挖掘问题的过程中,要善于思考问题的背后原因和影响因素,分析问题的本质和特点,这对于后续的建模和求解是非常重要的。

3. 模型的建立和假设:在进行数学建模时,我们需要根据实际问题建立数学模型。

模型的建立要建立在对问题的充分理解和分析基础之上,要选择恰当的数学方法和理论来描述问题。

同时,由于实际问题的复杂性,建模过程中会存在很多不确定的因素和参数,因此需要合理地做出一些假设和简化,使问题能够得到合理的描述和求解。

4. 模型的求解和验证:在建立完模型之后,我们需要运用数学工具和方法来求解模型,并通过验证和比较模型的结果和实际数据来评估模型的准确性和可行性。

在求解过程中,要熟练掌握常用的数学工具和计算软件,同时还要具备一定的编程和算法设计能力,这样才能高效地求解复杂的模型。

总之,数学建模是一门非常综合和实践性很强的学科,它需要我们掌握扎实的数学基础知识,培养问题思考和分析的能力,同时要学会合理地建立模型和求解模型。

通过不断地实践和学习,我们可以不断提高数学建模的能力和水平。

学习数学建模的心得精选3篇(二)学习数学的心得体会:1. 理解概念的重要性:数学是一个基于逻辑推理的学科,概念的理解是非常关键的。

只有真正理解了概念,才能够运用它们解决问题。

2. 建立扎实的基础:数学的学习是一个渐进的过程,每个新的概念都依赖于前面所学的知识。

数学建模心得体会3篇

数学建模心得体会3篇

数学建模心得体会3篇通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。

知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。

同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。

当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。

实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。

数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。

探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。

我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。

数学建模学习心得体会许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

数学建模心得体会

数学建模心得体会

数学建模心得体会心得体会是我们每一个人在生活或者学习中所产生的所思所想所感,写下这些心得体会可以帮助我们更好的认识事物。

下面是由小编为大家整理的“数学建模心得体会”,仅供参考,欢迎大家阅读。

数学建模心得体会(一)数学建模是利用数学方法解决实际问题的一种实践应用。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式来表达,建立起数学模型,然后运用先进的数学方法和计算机技术进行求解。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。

一、数学建模在国内的兴起与发展数学建模是在上世纪六七十年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。

经过30多年的发展,现在,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。

大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。

可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。

全国大学生数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,创办于1992年,每年一届,目前也是世界上规模最大的数学建模竞赛。

20xx年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。

二、数学建模的过程与方法数学建模是一种数学的思想方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。

其过程主要包括以下六个阶段:1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

用数学语言来描述问题。

数学建模学习心得

数学建模学习心得

数学建模学习心得数学建模也激发我们学习数学的兴趣,丰富了数学探索的情感体验。

小编整理了学习数学建模心得体会范文,希望对你有帮助!数学建模学习心得篇【1】以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。

因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。

选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。

但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。

百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。

经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。

数学建模心得体会文档3篇

数学建模心得体会文档3篇

数学建模心得体会文档3篇Experience document of mathematical modeling编订:JinTai College数学建模心得体会文档3篇小泰温馨提示:心得体会是指一种读书、实践后所写的感受性文字。

语言类读书心得同数学札记相近;体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。

本文档根据主题的心得体会内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。

本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:数学建模心得体会文档2、篇章2:数学建模学习文档3、篇章3:数学建模心得体会文档篇章1:数学建模心得体会文档通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。

知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。

同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。

当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。

实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。

关于学习数学建模的感想5篇

关于学习数学建模的感想5篇

关于学习数学建模的感想5篇第一篇:关于学习数学建模的感想姓名:魏绍云班级:08数控关于学习数学建模的感想通过这一学期的数学建模课程的学习,使我对数学建模有了一定的认知和了解。

在我们生活中很多的物体模型,以及数学和物理方面一些定理和公理,都是通过数学建模而建立的。

学习数学建模就应该了解数学建模的基本概念、方法、步骤,并且以几个典型的例题来加深我们对数学建模的认识。

接下来就是我对学习数学建模的一些基本认识。

一、数学建模数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学认识方法。

运用这种科学方法,必须从实际问题出发,遵循从实践到认识再到实践的认识规律,围绕建模的目的,运用观察力、想象力和抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决问题的数学模型。

因此,数学建模是来一种定量解决实际问题的创新过过程。

二、数学模型的概念模型是人们对所研究的客观事物有关属性的模拟。

例如在力学中描述力、质量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。

一般地,可以给数学模型下这样的定义:数学模型是关于以部分现实世界为一定目的而做的抽象、简化的数学结构。

通俗而言,数学模型是为了一定目的对原形所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。

三、建立数学模型的方法和步骤(建立数学模型没有固定模式)1、建模准备建模准备是确立建模课题的过程。

这类课题是众在生产和科研中为了使认识和实践进一步发展必须解决的问题。

因此,我们首先要发现这类需要解决实际问题。

其次要弄清所解决问题的目的要求并着手惧数据。

进行建模筹划,组织必要的人力、物力等,确立建模课题。

2模型假设作为建模课题的实际问题都是错综复杂的、具体的。

如果不对这些实际问题进行抽象和简化,人们就无法准确把握它的本质属性,而模型假设就是根据建的目的对原形进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。

数学建模感悟与展望(5篇)

数学建模感悟与展望(5篇)

数学建模感悟与展望(5篇)第一篇:数学建模感悟与展望数学建模的收获与展望每一件事,只有用心,才能经久不衰;每一个人,只有坚持,才能享受精彩。

这是我通过对《数学建模》的学习,得到的最大感受与领悟。

我走进了新的数学天地,学习与众不同的知识,被它的魅力深深地所吸引,陶醉在知识的海洋。

我认识了数学建模,接触后就爱不释手,从茫然的无所适从到学会用它解决实际问题,我终于知道什么是数学建模,什么是它的特点,逐渐我慢慢能用它解决生活中的问题,我们都知道数学科学的地位也在发生巨大的变化,它正在从经济和科技的后备走到了前沿。

经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。

培养我们应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。

数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

数学建模的内容让我在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子。

线性规划——主要学习线性规划模型、运用MATLAB 优化工具箱解线性规划、运用LINGO解线性规划等。

非线性规划——目标函数或约束条件中至少有一个是非线性函数的最优化问题叫做非线性规划问题。

本章主要学习的是非线性规划的数学模型、非线性规划问题的解、用MATLAB优化工具箱解非线性规划等。

微分方程——微分方程是研究函数变化规律的有力工具,在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。

数学建模学习心得体会

数学建模学习心得体会

数学建模学习心得体会数学建模学习心得体会范文(精选3篇)数学建模学习心得体会1通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。

知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。

同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。

当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。

实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。

数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。

探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。

我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。

数学建模学习心得体会2刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

数学建模心得体会

数学建模心得体会

数学建模心得体会篇一:学习学习这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。

它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。

它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。

数学模型主要是将现实对象的信息加以翻译,归纳的产物。

通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。

其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。

例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案这些问题和建模都有着很大的联系。

而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。

这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。

数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。

它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。

从现在我们的学习来看,我们都是直接受益者。

就拿我此次学习数学建模后写论文。

原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除数学建模心得体会3篇通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。

知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。

同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。

当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。

实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。

数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。

探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。

我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。

数学建模学习心得体会刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

许校的讲座再次激起了我们对这个曾经的相识思考的热情。

同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

首先是对“建模”的理解差异。

那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。

过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模学习心得(2):数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。

它给学生再现了一种“微型科研”的过程。

数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。

同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。

动手实践、自主探索与合作交流是学生学习数学的重要方式。

学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。

因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。

询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。

仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。

2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。

教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。

在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。

3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。

4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。

因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。

而应用数学去解决各类实际问题就必须建立数学模型。

小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。

因此,用建模思想指导小学数学教学显得愈发重要。

数学建模心得体会一年一度的全国数学建模大赛在今年的9月21日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。

1.团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。

切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。

2.有影响力的leader:在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。

3.合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。

你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。

4.正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。

5.论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。

一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。

6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas 等),这里提供十种数学建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo 软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab 进行处理)以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。

相关文档
最新文档