二次函数表达式三种形式练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数表达式三种形式
一.选择题(共12小题)
1.(2015•永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是()
A.y=(x﹣2)2+5B.y=(x﹣2)2+1C.y=(x﹣2)2+9D.y=(x﹣1)2+1
2.(2014•模拟)将y=(2x﹣1)•(x+2)+1化成y=a(x+m)2+n的形式为()A.B.
C.D.
3.(2015秋•校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为()
A.y=1+x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2
4.(2015秋•校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()
A.y=﹣2(x+2)2+4B.y=﹣2(x﹣2)2+4
C.y=2(x+2)2﹣4D.y=2(x﹣2)2﹣4
5.(2015秋•禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为()
A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3
C.y=﹣3(x+1)2+3D.y=3(x+1)2+3
6.(2014秋•岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()
A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2
7.(2014秋•招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()
A.y=﹣6x2+3x+4B.y=﹣2x2+3x﹣4C.y=x2+2x﹣4D.y=2x2+3x﹣4
(2013秋•青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()8.
A.﹣1B.1C.D.2
9.(2013秋•江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()
A.y=x2﹣x﹣2B.y=﹣x2﹣x﹣2或y=x2+x+2
C.y=﹣x2+x+2D.y=x2﹣x﹣2或y=﹣x2+x+2
10.(2014•县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()
A.8B.14C.8或14D.﹣8或﹣14
11.(2015•模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()
A.3.125B.4C.2D.0
12.(2015•宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为()
A.或﹣B.或﹣C.2或﹣D.或﹣
二.填空题(共9小题)
13.(2015•东光县校级二模)如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它的解析式为.
14.(2015•一模)二次函数的图象如图所示,则其解析式为.
15.(2015春•校级期中)若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则m=.
16.(2015秋•丰县校级月考)已知二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2,则该二次函数的解析式为.
17.(2014•一模)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.
第17题图第20题图
18.(2015秋•校级月考)二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出抛物线解析式.
19.(2014•校级二模)二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为.
20.(2014•永嘉县校级模拟)如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是.
21.(2014秋•化德县校级期末)坐标平面向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a的值是.
三.解答题(共9小题)
22.(2015•)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、
BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
23.(2015•)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值;
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.
24.(2015•模拟)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.
25.(2015•瑶海区三模)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,﹣3).
(1)求出b、c的值,并写出此二次函数的解析式;
(2)根据图象,直接写出函数值y为正数时,自变量x的取值围.
26.(2015•模拟)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.
27.(2015•模拟)如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).
(1)求此二次函数解析式及顶点B的坐标;
(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.
28.(2015•模拟)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),A(﹣1,0),B(3,0),与y轴交于点C(0,3)连接BC.
(1)求抛物线的解析式;
(2)点D与点C关于抛物线对称轴对称,连接DB、DC,直线PD交直线BC于点P,且直线PD把△BCD分成面积相等的两部分,请直接写出直线PD的解析式.