〖集锦17套合集〗江苏省连云港市赣榆区2020-2021学年中考数学模拟试卷含解析
2021年江苏省连云港市中考数学模拟测试试卷附解析
2021年江苏省连云港市中考数学模拟测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )2.在半径为5cm 的⊙O 中,有一点P 满足OP=3cm ,则过P 的整数弦有( ) A .1条B .3条C .4条D .无数条3.在同一坐标系中,函数2y ax bx =+的图象与by x=的图象大致为( )A .B .C .D .4.二次函数2()(0)y a x m m a =++≠,无论m 取什么实数,图象的顶点必在( )A . 直线y=x 上B .直线y= 一x 上C . x 轴上D .y 轴上5.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A .平均数B .众数C .中位数D .方差6.计算43x x ÷结果是( ) A . xB . 1C .7xD .1x7.如图,已知△ABC ≌△CDE ,其中AB=CD ,那么列结论中,不正确的是( ) A .AC=CEB . ∠BAC=∠DCEC .∠ACB=∠ECD D . ∠B=∠D8.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)( B .4)4(442+-=+-x x x x C .)12(55102-=-x x x x D .x x x x x 3)4)(4(3162+-+=+-9.如图△ABC 与△A ′B ′C ′关于直线MN 对称,P 为MN 上任意一点,下列说法不正确的是( ) A .AP=A ′PB .MN 垂直平分AA ′,CC ′ C .这两个三角形面积相等D .直线AB ,A ′B ′的交点不一定在MN 上 10.当2x =-时,分式11x+的值为( ) A .1B .-1C .2D .-211.下列方程中,解是3x =的方程是( ) A .684x x =+B .5(2)7x x -=-C .3(3)23x x -=-D .2110(2)0.1x x -=+ 12.下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .任何实数都有立方根C .任何一个实数必有立方根和平方根D .负数没有立方根二、填空题13.一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= . 14.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.15.如图,已知∠1=∠2=∠3,∠GFA=36°,∠ACB=60°,AQ 平分∠FAC ,则∠HAQ= .16.已知一次函数24y x =+的图象经过点(m ,8),则m= .17.有甲、乙两家出租车公司提供租车服务,收费都与汽车行驶的路程有关.设租车行驶 x(km),甲公司收y 1(元),乙公司收y 2(元),若y 1、y 2关于x 的函数图象如图所示,请完成下列填空:(1)当行驶路程为 km时,两家公司的租车费用相同;(2)当行驶路程在 km以内时,租甲公司的车,费用较省.18.象棋中,有“马走日,象走田……”的规则(列数在前,排数在后)图中“马”可移动到上,“象”可移动到上.19.当2x=时,分式31x kx-=+,则2k+= .20.在如图所示的方格纸中,已知△DEF是由△ABC经相似变换所得的像,则△DEF的每条边都扩大到原来的倍.21.在大小相同的10个信封里,其中有1个信封装有一张三角形纸片,有2个信封各装有一张正方形纸片,其余的信封各装有一张圆形纸片,你从中选出1个信封,取出的信封中装有形纸片的可能性最大.22.二元一次方程270x y-+=,若x= 3,则y= ;若x= ,则3ly=-.23.如图,AD为△ABC中BC边上的中线,则S△ADB S△ADC12S△ABC(填“>”或“<”或“一”号)三、解答题24.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?25.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.26.若y=kx+b ,当x=1时y=-1;当x=3时,y=5,求k 和b 的值.27.如图,已知BD 是△ABC 的中线,延长BD 至E ,使DE =BD ,请说明AB =CE 的理由.28.如图所示,两个大小不同的圆可以组成以下五种图形,请找出每个匿形的对称轴,并说说它们的对称轴有什么共同的特点.29.无论x 取何值,代数式2233x mx nx x -++-+的值总是 3,试求m 、n 的值.AB C DE30.(1)如图①,小明想剪一块面积为 25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为 3cm 的正方形纸板沿对角线剪开,拼成如图②所示的一个大正方形,你能带他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间?图①图②【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.B5.D6.A7.C8.C9.D10.B11.D12.B二、填空题 13. 414.EF ⊥BD (答案不惟一)15.12°16.217.(1)1000;(2)100018.(1,3)或(3,3)或(4,2),(1,8)或(5,8)19.820.221.圆22.13,-523.=,=三、解答题 24.解:(1)根据题意,得S=x x⋅-2260=-x 2+30x ,自变量x 的取之范围是0<x<30. (2)∵a=-1<0,∴S 有最大值,∴x=)1(2302-⨯-=-a b =15,)1(4304422-⨯-=-=a b ac S 最大=225,∴当x=15时 S 最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.25.如图:26.⎩⎨⎧+=+=-b k b k 351,解得:⎩⎨⎧-==43b k . 27.略.28.对称轴均为过两圆圆心的直线29.m=1, n =330.(1)5cm (2)在 4 和 5 之间。
2021年江苏省连云港市中考数学模拟考试试题附解析
2021年江苏省连云港市中考数学模拟考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型. 若圆的半径为 r ,扇形的半径为 R ,扇形的圆心角等于120°,则r 与R 之间的关系是( )A .R=2rB .3R r =C .R=3rD .R =4r2.如图,已知一坡面的坡度1:3i =,则坡角α为( )A .15B .20C .30D .45 3.下列结论错误..的是( ) A .所有的正方形都相似 B .所有的等边三角形都相似C .所有的菱形都相似D .所有的正六边形都相似4.方程22410x x -+=的根是( )A . 222+B . 222+或222-C .222-D .2322± 5.下列各式中不是二次根式的是( )A .12+xB .4-C .0D .()2b a -6.两个完全相间的长方体的长,宽,高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是( )A .188cm 2B .176cm 2C .164cm 2D .158 cm 27.下列图形中,不是正方体的表面展开图的是( )A .B .C .D . 8.如图 ,已知直线 AB 、CD 被直线 EF 所截,则∠AMN 的内错角为( )A . ∠EMB B . ∠BMFC .∠ENCD .∠END9.把分式方程12121=----x x x 的两边同时乘以(x-2),约去分母,得( ) A .1-(1-x )=1B .1+(1-x )=lC .1-(1-x )=x-2D .l+(1-x )=x-210.下列方程的变形是移项的是( )A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3 D .由111223y y -=+,得112123y y -=+ 二、填空题11.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为 .12.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为 .13.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中的等腰三角形分别是 .14.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .15.如图 ,直线a ∥b ,则∠ACB = .16.小红驾驶着摩托车行驶在公路上,他从反光镜中看到后面汽车的车牌为,根据有关数学知识,此汽车的牌照为 .17.如图,∠AOB=90°,它绕点O 旋转30°后得到∠COD ,•则∠AOC=•_____,•∠BOC=_____,∠COD=______.18.多项式21x +加上一个单项式后,能成为一个整式的平方,则加上的单项式可以是 . (填上一个正确的结论即可,不必考虑所有可能的情况) 19.根据条件“x 的 2倍与-9 的差等于x 的15与 6 的和”列出方程 . 20.已知 x= 2007,则22231()(2)122x x x --+-+= .21.若2(2)30a b ++-=,则b a = . 三、解答题22. 如图,它是实物与其三种视图,在三视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.23.如图,已知有一腰长为 2 cm 的等腰直角△ABC 余料,现从中要截下一个半圆,半圆的直径要在三角形的一边上,且与另两边相切. 请设计两种栽截方案,画出示意图,并计算出半圆的半径.24.下表是对某篮球运动员投 3 分球的测试结果:(1)根据上表求出运动员投一次3 分球命中的概率是多少?(2)根据上表,假如运动员有 5 次投 3 分球的机会,估计他能得多少分?投篮次数 10 50 100 150 200 命中次数 9 40 70 108 14425.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)26.如图,如果∠1 是它的补角的5倍,∠2的余角是∠2的2倍,那么AB∥CD吗?为什么?27.转动如图所示的转盘,判断下列事件是不可能事件、不确定事件还是必然事件?(1)指针指到5;(2)指针指到0;(3)指针指到的数字是1~5中的任何一个数.28.一个角的补角比它的余角的2倍还大18°,求这个角.29.计算:(1) -10+8÷(-2)2-3 ×(-4)-15; (2)321()(8)433-⨯-+-; (3)1313[1()24]524864-+-⨯÷ (4)4211(10.5)[2(3)]3---⨯⨯--30.把-12 写成两个整数的积的形式(要求写出所有可能)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.B5.B6.C7.C8.D9.D10.D二、填空题11.1212.813.△ABD ,△CBD,△ABC14.2.715.78°16. 浙17.30° ,60°,90°18.44x ,2x ±等19.12(9)65x x --=+20.121.-8三、解答题22.23.如图的两种裁截方案:方案一:作∠CAB 的角平分线交 CB 于点0,以 0 为圆心,以 OC 为半径画半圆. 作OE⊥AB. 则CO=EO,由面积可得:AC BC AC CO OE AB⋅=⋅+⋅,解得222OC=.方案二:作∠ACB 的角平分线交 AB 于点0,作 OD⊥AC,以 0为圆心,以 OD 为半径画半圆.作 OE⊥CB,则 OD=OE,由面积可得0AC BC AC OD E CB⋅=⋅+⋅,解得 OD=1. 24.(1)投一次 3 分球命中的概率约为1440.72200=(2)估计得分:50.72310.811⨯⨯=≈(分)25.在 Rt△ADF 中,∠D=60°,tanAFDDF=,∴3933tanAFDFD===在 Rt△BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC⋅=++ 331091933=+=+26.AB∥CD.理由:设∠l的度数为x,则x=5×(180°-x),解得x=150°.同理,∠2的度数为30°∵∠l+∠2=150°+30°=180°,∴AB∥CD27.(1)不确定事件;(2)不可能事件;(3)必然事件.28.18°29.(1)3 (2)354(3)5124(4)1630.-12 =1×(-12) =(-1)×12=2×(-6) =(-2)×6=3×(-4)=(-3)×4。
江苏省连云港市2021年中考模拟数学试卷(一)
连云港市2020~2021学年度中考模拟试卷(一)九年级数学一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符 合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在−3,−12,0,0.2这四个数中,最小的数是( ▲ ) A .−3 B .−12 C .0 D .0.22.不等式组⎩⎨⎧->>-)2(3512x x x 的解集是( ▲ ) A .1x > B .31x -<< C .3x >- D .无解3.下列各式计算正确的是( ▲ )A .2x 3•3x 3=6x 9B .(﹣ab )4÷(﹣ab )2=﹣a 2b 2C .3x 2+4x 2=7x 2D .(a +b )2=a 2+b 24.如图所示的几何体的俯视图应该是( ▲ )A .B .C .D .5.如图,把一张长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C ,D 的位置上,EC 交AD 于点G ,已知∠EFG =58°,则∠BEG 等于( ▲ )A .58°B .116°C .64°D .74° 6.下表记录了甲、乙、丙、丁四名八年级学生最近几次校数学竞赛成绩的平均数与方差:甲 乙 丙 丁平均数(分) 115 110 115 110方差 3.4 3.4 7.3 8.5根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加市数学竞赛,应该选择( ▲ ) A .甲B .乙C .丙D .丁7.如图,将△ABC 放在每个小正方形边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面半径是( ▲ )A .5B .6C .2D .528.甲、乙两人以各自的交通工具、相同路线,前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙 分别表示甲、乙前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙 比甲提前12分钟到达;②乙走了8km 后遇到甲;③乙出发6分钟后追上甲;④甲走了28分钟时, 甲乙相距3km .其中正确的是( ▲ )A .只有①B .①③C .②③④D .①③④二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.点P (3,-2)关于x 轴对称点坐标为 ▲10.二次函数23(2)1y x =-+-的最大值是___▲_______.11.我国第七次全国人口普查中,具有大学(指大专以上)文化程度的人口约为120 000 000人,将这 个数据用科学记数法可表示为_______▲_____人.12.若a <0,且|a |=2,则a ﹣1=__▲___.13.从1-中减去34-,所得的差是多少,列式为:__ ▲ __. 14.如图,若//AB CD ,则在图中所标注的角中,一定相等的角是__▲___.15.已知圆锥的底面周长为4cm π,母线长为3cm .则它的侧面展开图的圆心角为___▲_____度. 16.如图,在Rt .ABC 中,.ACB =90°,AC =8,BC =6,点D 是以A 为圆心4为半径D 圆上的一点, 连接BD ,点M 为BD 中点,线段CM 长度的最小值是______________.三、解答题(本大题共10小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.计算:(21)﹣1﹣2tan45°+4sin60°﹣212. 18.解下列方程组: ⎩⎨⎧=--=3331y x y x19.先化简,再求代数式)111(122-+÷+-a a a a 的值,其中12+=a .20.如图,不透明的管中放置着三根完全相同的绳子AA 1、BB 1、CC 1.在不看的情况下,小明从左端A 、 B 、C 三个绳头中随机选一个绳头,小刚从右端A 1、B 1、C 1三个绳头中随机选一个绳头,用画树状 图(或列表)的方法,求小明和小刚选中的两个绳头恰好是同一根绳子的概率.21.阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,依据每个学生阅读时间的长短分为五组:A 组表示“阅读时间不超过0.5小时”,B 组表示“阅读时间超过0.5小时但不超过1小时”,C 组表示“阅读时间超过1小时但不超过1.5小时”,D 组表示“阅读时间超过1.5小时但不超过2小时”,E 组表示“阅读时间超过2小时但不超过2.5小时”,并依据调查结果绘制了不完整的统计图.请根据图表中的信息,解答下列问题:(1)本次共抽取▲名学生进行调查统计,统计数据的中位数落在▲组;(2)扇形统计图中,D组所对应的扇形圆心角的大小是▲;(3)将频数分布直方图补全;(4)估计该校1500名学生中,每周课余阅读时间超过1.5小时的学生大约有多少名?22.如图,用长33米的竹篱笆围成一个矩形院墙,其中一面靠墙,墙长15米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,院墙的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若院墙的面积为143平方米,求x的值;a a<米的门,且面积S的最大值为165平方米,求a的值.(3)若在墙的对面再开一个宽为(3)∆中,已知D是BC的中点,过点D作BC的垂线交∠BAC的平分线于点E,EF⊥AB 23.如图,在ABC于点F,EG⊥AC于点G.(1)求证:BF=CG;(2)若AB=12,AC=8,求线段CG的长.24.如图,⊙O 是ABC ∆的外接圆,60B ∠=︒,3AC =,连接CO 并延长至点P ,使AP AC =,CP 交⊙O 于点D .(1)求证:AP 是⊙O 的切线;(2)求PD 的长.25.如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为()0,0O ,()6,0A ,()4,3B ,()0,3C .动点P 从点O 出发,以每秒32个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒1个单位长度的速度沿边BC 向终点C 运动,设运动的时间为t 秒,2PQ y =.(1)直接写出y 关于t 的函数解析式及t 的取值范围:___▲____;(2)当PQ =t 的值;(3)连接OB 交PQ 于点D ,若双曲线()0k y k x=≠经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.26.爱好思考的小明在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线相互垂直的三角形“中垂三角形”,如图(1)、图(2)、图(3)中,AM 、BN 是.ABC 的中线,AM .BN 于点P ,像.ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC =b ,AB =c .(特例研究)(1)如图1,当tan .P AB =1,c 时,a =b = ▲ ;(归纳证明)(2)请你观察(1)中的计算结果,猜想a 2、b 2、c 2三者之间的关系,用等式表示出来,并利用图2证明你的结论;(拓展证明)(3)如图4,▱ABCD 中,E 、F 分别是AD 、BC 的三等分点,且AD =3AE ,BC =3BF ,连接AF 、BE 、CE ,且BE .CE 于E ,AF 交BE 相较于点G ,AD AB =3,求AF 的长.。
2020届中考模拟连云港市中考数学模拟试卷(含参考答案)
江苏省连云港初中毕业升学考试数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣2的绝对值是 A .﹣2 B .12-C .2D .122x 的取值范围是 A .x ≥1 B .x ≥0 C .x ≥﹣1 D .x ≤0 3.计算下列代数式,结果为5x 的是A .23x x +B .5x x ⋅C .6x x -D .552x x -4.一个几何体的侧面展开图如图所示,则该几何体的底面是5.一组数据3,2,4,2,5的中位数和众数分别是 A .3,2 B .3,3C .4,2D .4,36.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似 A .①处B .②处C .③处D .④处7.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是A .18m 2B .2C .2D 28.如图,在矩形ABCD 中,AD =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =2MP ;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为 A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.64的立方根是. 10.计算2(2)x -=.11.连镇铁路正线工程的投资总额约为46400000000元.数据“46400000000”用科学记数法可表示为. 12.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为. 13.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为.14.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于. 15.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为.16.如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是. 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11(1)2()3--⨯+.18.(本题满分6分)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.19.(本题满分6分)化简:22(1)42m m m ÷+--.19.(本题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本题满分10分)现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球. (1)从A 盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22.(本题满分10分)如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O . (1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.23.(本题满分10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每生产1吨甲产品需要A 原料0.25吨,每生产1吨乙产品需要A 原料0.5吨.受市场影响,该厂能获得的A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本题满分10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号) (参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)25.(本题满分10分)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A(﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3. (1)k =,b =; (2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数ky x=(x <0)的图像上,并说明理由.26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C(0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.27.(本题满分14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长...。
2020年江苏省连云港市中考数学模拟考试试卷附解析
2020年江苏省连云港市中考数学模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,PB 为⊙O的切线,B 为切点,连结 PO交⊙O于点 A,PA =2,PO= 5,则 PB 的长为()A.4 B.10C.26D.432.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()A.S1<S2<S3B.S2<S1<S3 C.S3<S1<S2 D.S1=S2=S33.下列条件,不能识别四边形是平行四边形的条件的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行,另一组对边相等D.一组对边平行且相等4.点(0,1),(12,0),(-1,-2),(-1,0)中,在x轴上的点有()A.1个B.2个C.3个D.4个5.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A.AD与BD B.BD与BC C.AD与BC D.AD,BD与BC6.小王只带2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有()A. 1种B. 2种C.3种D.4种7.第五次全国人13普查资料显示,2000年海南省总人口为786.75万,如图表示海南省2000年接受初中教育这一类别的数据丢失了,那么,结合图中信息,可推知2000年海南省接受初中教育的人数为()A.24.94万B.255.69万C.270.64万D.137.21万2000年海南省受教育程度人口统计图8.下列说法正确的是()A.两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数C.两正数相加,和为正数;两负数相加,和为负数D.两个有理数相加等于它们的绝对值相加二、填空题9.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______.10.两个相似三角形的周长分别为8cm和16cm,则它们的对应高的比为.11.放大镜下的“5”和原来的“5”是,下列各组图形中,属于相似形的是.(填序号).①两个三角形;②两个长方形;③两个平行四边形;④两个正方形;⑤两个圆12.梯形ABCD中,AD∥BC,∠B=60°,∠C=75°,那么A= ,∠D= .13.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=500,则∠BDF= .14.如图,若∠1+∠B=180°,则∥,理由是.15.如图,AB∥CD,EF 交 CD 于 H,EG⊥AB,垂足为 G,若∠CHE=125°,则∠FEG= .16.有 8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为1 4,摸到黄球的概率为14,摸到绿球的概率为0;则白球有个,红球有个,绿球有个.17.若∠1的对顶角是∠2,∠2的补角是∠3,且∠3=54°,则∠l= .三、解答题18.如图①,小然站在残墙前,小亮站在残墙后活动又不被小然看见,请在下面图②中画出小亮的活动区域.19.如图,已知抛物线y=12 x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BC∥x轴.(1)求抛物线的解析式.(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE= 2 ,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求y与x之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.20.如果圆锥的底面周长是20,侧面展开后所得的扇形的圆心角为120°,•求该圆锥的侧面积和全面积.21.如图,已知 AB 是的直径,CD是弦,AE⊥CD,垂足为点 E,BF⊥CD,垂足为点 F,且AE= 3 cm,BF= 5 cm,若⊙O的半径为 5 cm,求 CD 的长.22.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)△ABC的周长;(3)点C到AB边的距离.BCA23.某工厂去年赢利 25 万元,按计划这笔赢利额应是去年和今年赢利总额的 20%,设今年的赢利额是x万元,请你写出 x满足的方程. 你能写出几个方程?其中哪一个是分式方程?24.计算下列各式,并用幂的形式表示结果:(1)22()m m -⋅-;(2) 83(7)7-⨯(3) 233()()a a a ⋅-⋅-(4)2()()x y x y +⋅+ (5)422()()33-⋅- (6)11n n x x ++⋅25.用加减消元法解方程组: (1)252234m n m n ⎧-=⎪⎨⎪+=⎩;(2)6233()2()12x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩26.已知三角形的周长是46 cm ,其中一边比最短边长2 cm ,比最长边短3 cm,求三角形三 边的长.27.解下列方程:(1)3(1)2x x -=; (2)123x x --=.28.计算下列各式:(1)|—8| + | —2.5 | (2)19|3|||320+⨯-(3)312845+÷ (4)326.555⨯-(1)10.5;(2)32;(3)1;(4)3.529.某商场出售的A型冰箱每台售价2190元,每日耗电量为l度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)30.计算9999999999 10100100010000 +++.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.B5.A6.C7.B8.C二、填空题9.110.5111.2相似形, ④、⑤12.120°,l05°13.80014.AD ;BC ;同旁内角互补,两直线平行15.35°16.4,2,017.126°三、解答题18.如图,②中阴影部分即为小亮的活动区域.19.(1)∵抛物线y =12x 2+mx +n 与y 轴交于点C ∴C(0,n) ∵BC ∥x 轴 ∴B 点的纵坐标为n∵B 、A 在y =x 上,且OA =OB ∴B(n ,n),A(-n ,-n) ∴221212n mn n n n mn n n ⎧++=⎪⎪⎨⎪-+=-⎪⎩ 解得:n =0(舍去),n =-2;m =1 ∴所求解析式为:y =12x 2+x -2 (2)作DH ⊥EG 于H∵D 、E 在直线y =x 上 ∴∠EDH =45° ∴DH =EH∵DE = 2 ∴DH =EH =1 ∵D(x ,x) ∴E(x+1,x+1)∴F 的纵坐标:12 x 2+x -2,G 的纵坐标:12(x +1)2+(x +1)-2∴DF =x -(12 x 2+x -2)=2-12 x 2 EG =(x +1)- [12 (x +1)2+(x +1)-2]=2-12(x +1)2 ∴y =12 [2-12 x 2+2-12 (x +1)2]×1, y =-12 x 2-12 x +74 , y =-12 (x +12 )2+158∴x 的取值范围是-2<x<1 ,∵a =-12 <0,∴当x =-12 时,y 最大值=15820.π300、π40021.过点O 作OG ⊥CD 于G ,连结 OC .∵OG 平分 CD ,即OG=GD ,∵AE ⊥CD ,BF ⊥CD ,OG ⊥CD ,∴AE ∥OG ∥BF ,∴OG 是梯形 AEFB 的中位线,11()(35)422OG AE BF =+=+=cm ,∴在 Rt △OCG 中,22543GC =-=, ∴CD= 2CG= 2×3 = 6cm.22.(1)27,(2)13105++,(3)13137 23. 方程(1):252025100x =+;方程(2)20(25)25100x +⨯=;方程(3):252520%x +=÷. 方程(1)是分式方程24.(1)4m -;(2)117;(3)8a ;(4)3()x y +;(5)52()3-;(6)22n x + 25.(1)52m n =⎧⎨=-⎩;71x y =⎧⎨=⎩26.13 cm ,15 cm ,18 cm27.(1) 3x =;(2) 2.5x =28.29.8折30.3. 8889。
2020-2021学年江苏省连云港市九年级中考模拟(一)数学试题及答案解析
中考模拟考试(一)数 学 试 题(请考生在答题纸上作答)温馨提示:1.本试卷共6页,27题.全卷满分150分,考试时间为120分钟. 2.请在答题卡规定的区域内作答,在其它位置作答一律无效.3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列各数中是有理数的是A.3.14B.8C.2π D.22. 据介绍,今年连盐铁路连云港段将完成征地拆迁和工程总投资元.将30亿用科学记数法表示应为A.9103⨯ B. 10103⨯ C. 81030⨯ D.91030⨯ 3.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是A. B. C. D.4.下列计算正确的是 A.+=B .﹣=﹣1C .×=6D .÷=35.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75 跳高人数132351这些运动员跳高成绩的中位数和众数分别是A .1.70,1.65B . 1.65,1.70C .1.70,1.70D .3,56.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,尺寸如图.如果两个三角形的面积分别记作S △ABC 、S △DEF ,那么它们的大小关系是A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定7.如图,将□ABCD 折叠,使顶点D 恰落在AB 边上的点M 处,折痕为AN ,那么对于 结论 ①MN ∥BC ,②MN AM ,下列说法正确的是A. ①②都错B. ①②都对C. ①对②错D. ①错②对8.时钟在正常运行时,时针和分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从3:00开始到3:30止,下列图中能大致表示y 与t 之间的函数关系的图象是( )AB CDE F第6题图ABCD MN 第7题图A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.相反数等于2的数是 ▲ . 10.16的平方根是 ▲ . 11.已知0>x时,函数xky =的图象在第二象限,则k 的值可以是 ▲ . 12.袋中有4个红球,x 个黄球,从中任摸一个恰为黄球的概率为43,则x 的值为 ▲ . 13.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为 ▲ .14.如图,已知AB 、CD 是⊙O 的两条直径,∠ABC=28°,那么∠BAD= ▲ .15.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ▲ .16.如图,矩形ABCD 中,AB=6,BC=8,E 是BC 边上的一定点,P 是CD 边上的一动点(不与点C 、D 重合),M 、N 分别是AE 、 PE 的中点,记MN 的长度为a ,在点P 运动过程中,a 不断第13题图第14题图第15题图MND CE第16题图变化,则a 的取值范围是 ▲ .三、解答题(本题共11小题,共102分.解答时写出必要的文字说明、证明过程或演算步骤) 17.(6分)计算2014130tan 3512)(-︒+--.18.(6分)先化简,再求值:⎝ ⎛⎭⎪⎫x x -1-1x 2-x ÷(x +1),其中x =2.19.(8分)解不等式组254(2)213x x x x +<+⎧⎪⎨-<⎪⎩,并将它的解集在数轴上表示出来.20.(8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题. (1)将条形统计图补充完整;(2)本次抽样调查的样本容量是______▲______;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.21.(8分)如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,翻到黄色杯子的概率是▲;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.第21题图22.(8分)已知:如图,在△ABC中,∠ACB=90°,∠CAB的平分线交BC于D,DE⊥AB,垂足为E,连结CE,交AD于点H.x yO A BD(1)求证:AD ⊥CE ;(2)如果过点E 作EF ∥BC 交AD 于点F ,连结CF ,猜想四边形CDEF 是什么图形?并证明你的猜想.23.(10分)如图,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),经过B 点的直线交抛物线于点D (-2,-3). (1)求抛物线的解析式和直线BD 解析式;(2)过x 轴上点E (a ,0)(E 点在B 点的右侧)作直线EF ∥BD,交抛物线于点F,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.24.(10分)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.我县某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).第23题图第22题图太阳高度角太阳光线窗户高 1米第n层楼窗户高 1米第n层楼窗户高 1米第n层楼太阳高度角 不影响采光 稍微影响 完全影响(1)我县的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度。
2020年江苏省连云港市中考数学综合模拟试卷附解析
2020年江苏省连云港市中考数学综合模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若73a b a b +=-,则ab的值是( ) A .73B .52C .25D .25-2. 计算22(11)|11|11-+--,正确的结果是( ) A .-11B .11C . 22D .-223.王京从点O 出发.先向西走40米,再向南走30米,到达点M.如果点M 的位置用(-40,-30)表示,从点M 继续向东走50米,再向北走50米,到达点N ,那么点N 的坐标是( ) A . (-l0,10)B . (10,-l0)C .(10,-20)D . (10,20)4.某市2008年4月1日至7日每天的降水概率如下表:日期(日) 1 2 3 4 5 6 7 降水概率30%10%10%40%30%10%40%则这七天降水概率的众数和中位数分别为( ) A .30%,30%B .30%,l0%C .10%,30%D .10%,40%5.如图,正方形ABCD 的边长是3 cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC → CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向( ) A .朝左B .朝上C .朝右D .朝下6.当22(3)25x m x +-+是完全平方式时,则 m 的值为( )A .5±B .8C .-2D .8或-2 7.是方程3x +ay =1的一个解,则a 的值是( )A .B .-1C .2D .-2 8.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF9.用计算器求0.35×15时,按键顺序正确的是 ( ) A . B . C .D .以上都不正确二、填空题10.设计一个商标图形(如图所示),在△ABC 中,AB=AC=2cm,∠B=30°,以A 为圆心,AB 为半径作B ⌒EC ,以BC 为直径作半圆B ⌒FC ,则商标图案面积等于________cm 2.ECB11.如果1-+y x 与2)1(+-y x 互为相反数,求)(66923y x +的值.12.一等腰直角三角形的斜边长是 4,则它的面积是 ;一长方形的长是宽的 2 倍,面积是 6,则长方形的对角线长为 .13.甲、乙两人分别从相距S 千米的A 、B 两地同时出发,相向而行,已知甲的速度是每小时m 千米,乙的速度是每小时n 千米,则经过 小时两人相遇. 14.掷一枚均匀的骰子,点数为3的概率是 .15.已知△ABC ≌△A ′B ′C ′,AB+AC=18 cm ,BC=7 cm ,则△A ′B ′C ′的周长是 .16.说出一个可以用252x +表示结果的实际问题: . 17.(1)用度、分、秒表示: ①123.38°= ; ②(3154)°= ; (2)用度表示:①51°25′48″= ; ②128°20′42″= .三、解答题18.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其余都相同. (1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,求两个球都是白球的概率; (3)搅均后从中任意摸出一个球,要使摸出红球的概率为32,应如何添加红球?19.已知抛物线2y mx n =+向下平移2 个单位后得到的函数图象是231y x =-,求m ,n 的值.20.当x =2-10 时,求x 2-4x -6的值.21.如图所示,□ABCD 中,E ,F 分别是CD ,AB 上的点,且AF=CE .求证:∠BFD=∠BED .22.指出下列命题的题设和结论. (1)互为倒数的两数之积为l ; (2)平行于同一条直线的两条直线平行.23.如图,□ABCD 中,已知BC=AB=2 cm ,O 是对角线AC ,BD 的交点,则△AOB 的周长比△BOC的周长短多少?24.四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张卡片.(1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?25.如图所示,已知AB=CD,BE=CF,E、F在直线AD上,并且AF=DE,说明△ABE≌△DCF的理由.26.已知线段a,b,利用尺规,画一条线段AB=2b-a.27.解下列方程:(1)51367x -=- (2)31154x x -=+28.利用计算器探索下列规律:(1)任意给出一个较大的正数,利用计算器对它进行开平方运算,对所得的结果再进行开平方运算,如此进行下去,随着开平方次数的增加,你发现的规律是 . (2)任意给出一个负数,利用计算器将该数除以 5,再将所得结果除以 5,……, 随着运算次数的增加,其结果变化规律是 .(3 )用计算器来计算18()9,28()9,38()9,…8()9n (n 为正整数),试问当n 值越来越大时,8()9n 的值如何变化?你能否找出规律?29.求下列各数的立方根:0,-125, -343,0. 064,-1,1,338-,21630.据测算,我国每天因土地沙漠化造成的经济损失为 1.5亿元,若一年按365天计算,用科学记数法表示我国一年土地沙漠化造成的经济损失为多少元.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题 1. B2.B3.D4.C5.B6.D7.C8.C9.B二、填空题 10.361+π 11.669.12.413.nm S+ 14. 6115. 25 cm16.小明回家做数学作业用了x 分钟,做语文作业用了25分钟,则252x +表示他这两门作业平均每门需要的时间答案不唯一,如:17.(1)①123°22′48″ ②l5°45′ (2)①51.43° ②l28.345°三、解答题 18.(1)不同意小明的说法因为摸出白球的概率是23,摸出红球的概率是13,因此摸出白球和摸出红球不是等可能的.(2)P (两个球都是白球)=13.(3)设应添加x 个红球,由题意得3231=++x x ,解得x=3(经检验是原方程的解) ∴应添加6-3=3个红球.19.2y mx n =+向下平移 2 个单位得到22y mx n =+-∴321m n =⎧⎨-=-⎩,31m n =⎧⎨=⎩20.21.先证明DE ∥BF ,DE=BF ,四边形DFBE 为平行四边形,则∠BFD=∠BED22.(1)题设是“如果两个数互为倒数”,结论是“这两个数的积是l ”;(2)题设是“两条直线平行于同一条直线”,结论是“这两条直线平行”.23.2cm24.(1)略 (2)1525.略26.略27.(1) 1135x =-(2)32x =- 28.(1)值越来越接近 1 (2)值越来越接近 0 (3)值越来越接近 029.依次为 0,-5,-7,0.4, -1, 1 ,32-,630.8101.510365 5.47510⨯⨯=⨯(元)答:我同一年土地沙漠化造成的经济损失为105.47510⨯元。
2020届中考模拟连云港市中考数学模拟试卷(含参考答案)
江苏省连云港初中毕业升学考试数学试题、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中, 请把正确选项前的字母代号填涂在答题卡相应位置上)1 .-2的绝对值是 A - -2 B.-C, 2 D .-2 22 .要使J X "彳有意义,则实数 x 的取值范围是 A . x>1 B . x> 0 C . x>- 1 D . x<03 .计算下列代数式,结果为 x 5的是235655A . x x B. x x C. x x D. 2x x4 . 一个几何体的侧面展开图如图所示,则该几何体的底面是5 . 一组数据3, 2, 4, 2, 5的中位数和众数分别是 A . 3, 2 B . 3, 3C. 4, 2D. 4, 36 .在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与 “帅”、“相”,“兵”所在位置的格点构成的三角形相似A .①处B.②处C.③处D.④处7 .如图,利用一个直角墙角修建一个梯形储料场ABCD 其中/ C= 120° .若新建墙 BC 与CD 总长为12nl则该梯形储料场ABCD 勺最大面积是A . 18mB. 18j3nfc. 24J 318n 2D.8 .如图,在矩形 ABCD43, AD= 2J 2AB.将矢g 形ABCD 寸折,得到折痕 MN 沿着C 晰叠,点D 的对应点为只有一项是正确的,(第6旺I 第7刚E, ME 与BC 的交点为F;再沿着M 所叠,使得 AM 与EM 重合,折痕为 MP 此时点B 的对应点为G.下列结论:①A CM 幅直角三角形;②点 C 、E 、G 不在同一条直线上;③ PC= Y6MP ④BP= — AB;⑤ 22点F 是△CMF#接圆的圆心.其中正确的个数为A. 2个B. 3个C. 4个D. 5个3分,本大题共24分.不需要写出解答过程,只需把答案直接填写 在答题卡相应位置上)9 . 64的立方根是. 10 .计算(2 x)246400000000元.数据“46400000000”用科学记数法可表示为.2、3、4、5、6、7、8,将不同边上的序号和为 8的两点依次连接起来,这样就建立了 “三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的 直线与三边交点的序号来表示(水平方向开始,按顺时针方向) 点B 的坐标可表本为(4,1, 3),按此方法,则点 C 的坐标可表不为.16.如图,在矩形 ABCD43, AB= 4, AD= 3,以点C 为圆心作 OC 与直线BD 相切,点 P 是OC 上一个动点,—八— 2x 418 .(本题满分6分)解不等式组:1 2(x 3) x 1二、填空题(本大题共 8小题,每小题 11.连镇铁路正线工程的投资总额约为 12 . 一圆锥的底面半径为 2,母线长为 3,则这个圆锥的侧面积为.13 .如图,点 A B C 在O 。
2021年江苏省连云港市赣榆区中考数学适应性试卷(解析版)
2021年江苏省连云港市赣榆区中考数学适应性试卷一、选择题(共8小题).1.9的相反数是()A.﹣9B.9C.D.﹣2.下列图标中是中心对称图形的是()A.B.C.D.3.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.4.二次根式中字母x的取值范围是()A.x<3B.x≤3C.x>3D.x≥35.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3 7.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.58.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l 上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.实数27的立方根是.10.2021年1月1日,“学习强国“平台全国上线,截至2021年5月5日,某市党员“学习强国”客户端注册人数约1290000.数据1290000科学记数法表示为.11.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.12.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.13.在正方形网格中,∠AOB如图放置,则tan∠CAO的值为.14.如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α=.15.如图,点E、F在反比例函数y=(x>0)的图象上,直线EF分别与x、y轴交于点A、B,且BE:BF=1:3,则S△OEF=.16.如图,平面直角坐标系中,已知A(2,0),B(4,0),P为y轴正半轴上一个动点,将线段PA绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)17.计算:(﹣4)2+(π﹣3)0﹣23﹣|﹣5|.18.化简:.19.解不等式组:.20.在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.21.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过几封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?22.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.23.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?24.如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C 点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)25.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD ⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.26.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)动手操作如图1,当α=60°时,我们通过用刻度尺和量角器度量发现:的值是1:直线BD与直线CP相交所成的较小角的度数是60°;请证明以上结论正确(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.27.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当以B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.解:9的相反数是﹣9,故选:A.2.下列图标中是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.C.D.【分析】根据主视图的意义和画法可以得出答案.解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.4.二次根式中字母x的取值范围是()A.x<3B.x≤3C.x>3D.x≥3【分析】根据二次根式中的被开方数是非负数列不等式求解即可.【解答】解∵二次根式有意义,∴x﹣3≥0,解得:x≥3.故选:D.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.7.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG 中,根据勾股定理即可求出DE的长.解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.8.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l 上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.实数27的立方根是3.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵3的立方等于27,∴27的立方根等于3.故答案为3.10.2021年1月1日,“学习强国“平台全国上线,截至2021年5月5日,某市党员“学习强国”客户端注册人数约1290000.数据1290000科学记数法表示为 1.29×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:1290000=1.29×106.故答案为:1.29×106.11.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.12.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.13.在正方形网格中,∠AOB如图放置,则tan∠CAO的值为.【分析】根据图形可得△OAC为直角三角形,AC=4,OC=2继而求出tan∠CAO的值.解:由图可得:AC=4,OC=2,∠ACO=90°,∴tan∠CAO===.故答案为:.14.如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α=120°.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到=2π•2,然后解方程即可.解:根据题意得=2π•2,解得α=120,即侧面展开图扇形的圆心角为120°.故答案为120°.15.如图,点E、F在反比例函数y=(x>0)的图象上,直线EF分别与x、y轴交于点A、B,且BE:BF=1:3,则S△OEF=8.【分析】分别过E、F作x轴、y轴的垂线,易证△BPE∽△BHF,利用相似比可得HF =4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=3,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC==3,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=8,故答案为8.16.如图,平面直角坐标系中,已知A(2,0),B(4,0),P为y轴正半轴上一个动点,将线段PA绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是3.【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,在△AOP和△PMQ中,,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∵2>0,∴当m=1时,BQ有最小值3,故答案为:3.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)17.计算:(﹣4)2+(π﹣3)0﹣23﹣|﹣5|.【分析】先根据有理数的乘方、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解:原式=16+1﹣8﹣5=4.18.化简:.【分析】将原式被除数的分子利用平方差公式分解因式,分母利用完全平方公式分解因式,然后将除式括号中的两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到结果.解:÷(1﹣)=÷=•=.19.解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解:,由①得:x>2,由②得:x≤3,∴不等式组的解集为2<x≤3.20.在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.【分析】(1)让白球的个数除以球的总数即可;(2)2次实验,每次都是4种结果,列举出所有情况即可.解:(1)摸出白球的概率是;(2)列举所有等可能的结果,画树状图:∴两次都摸出白球的概率为P(两白)==.21.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过几封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).22.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,由图可知:AG﹣AF=FG,∴BF﹣DG=FG.23.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x (元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.24.如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C 点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED 的长,由EC﹣ED求出DC的长即可解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,∵∠EAD=45°,∴AE=DE=BC=40m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣40≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.25.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD ⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是5.【分析】(1)连接OC,由切线的性质可得OC⊥MN,即可证得OC∥BD,由平行线的性质和等腰三角形的性质可得∠CBD=∠BCO=∠ABC,即可证得结论;(2)连接AC,由勾股定理求得BD,然后通过证得△ABC∽△CBD,求得直径AB,从而求得半径.【解答】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即=,∴AB=10,∴⊙O的半径是5,故答案为5.26.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)动手操作如图1,当α=60°时,我们通过用刻度尺和量角器度量发现:的值是1:直线BD与直线CP相交所成的较小角的度数是60°;请证明以上结论正确(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.【分析】(1)如图1中,假设直线PC与直线BD交于点O,直线PC交AB于E.证明△CAP≌△BAD(SAS),利用全等三角形的性质即可解决问题.(2)结论:=,直线BD与直线CP相交所成的较小角的度数为45°.如图2中,设直线BD交CP于M,AC交BD于N.利用全等三角形的性质解决问题即可.解:(1)∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴CA=AB,∠CAB=60°,由旋转的性质可知:PA=PD,∠APD=60°,∴△APD是等边三角形,∴AP=AD,∠PAD=∠CAB=60°,∴∠CAP=∠BAD,∴△CAP≌△BAD(SAS),∴CP=BD,∴=1.如图1中,假设直线PC与直线BD交于点O,直线PC交AB于E.∵△CAP≌△BAD,∴∠ACE=∠OBE,∵∠AEC=∠OEB,∴∠CAE=∠EOB=60°,∴直线BD与直线CP相交所成的较小角的度数是60°.(2)结论:=,直线BD与直线CP相交所成的较小角的度数为45°.理由:如图2中,设直线BD交CP于M,AC交BD于N.由题意:△PAD是等腰直角三角形,∴∠DAP=45°,=,∵CA=CB,∠ACB=α=90°,∴△ACB是等腰直角三角形,∴∠CAB=45°,=,∴∠CAB=∠PAD,∴∠DAB=∠PAC,∵==,∴△APC∽△ADB,∴==,∠PCA=∠ABD,∵∠ANB=∠DNC,∴∠CMN=∠CAB=45°,即直线BD与直线CP相交所成的较小角的度数为45°.综上所述,=,直线BD与直线CP相交所成的较小角的度数为45°.27.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当以B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.【分析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB 为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE的垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=∴=,即解得x1=0(舍去),x2=2当x=2时,=3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m1=2,,当BO为对角线时,OB与EF互相平分过点O作OF∥AB,直线OF:交抛物线于点F()和()求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或∴E点的坐标为(2,1)或(,)或()或()或()。
2020-2021学年江苏省连云港市九年级中考模拟(二)数学试题及答案解析
中考模拟考试(二)数学试题(请考生在答题纸上作答)温馨提示:1.本试卷共6页,27题.全卷满分150分,考试时间为120分钟.2.请在答题卡规定的区域内作答,在其它位置作答一律无效.3.作答前,请考生务必将自己的姓名、考试号和座位号用0.5毫米黑色签字笔填写在答题卡及试题指定的位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. -2的相反数是A.2-B.12C.12- D.22.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为3.地球上水的总储量为1.39×1018立方米,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018立方米,因此我们要节约用水.请将0.0107×1018用科学记数法表示是A . 1.07×1016B . 0.107×1017C . 10.7×1015D . 1.07×1017 4.下列各式的运算结果为a 6的是A . (a 3)3B . a 9÷a 3C . a 2•a 3D . a 3+a 35.下列函数中,自变量x 可以取1和2的函数是A .y = 1 x -2B .y = 1 x -1C .y =x -2D .y =x -1 6.若正比例函数y=3x 与反比例函数y=k x(k ≠0)的图像相交,则当x >0时,交点位于 A . 第一象限 B . 第二象限C . 第三象限D . 第四象限 7.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90º,则“蘑菇罐头”字样的长度为)A.4πcmB.74πcmC.72πcm D.7πcm8.如图,⊙O 是以原点为圆心,为半径的圆,点P 是直线y=﹣x+6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为A .3B .4C . 6﹣D .3﹣1二.填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写(第8题图) 罐头横截面 (第7题图)在答题卡相应位置上)9.16的平方根是 ▲ . 10.分解因式:=+-a ax ax 22 ▲ .11. 某科研机构对欧龙小区400户有两个孩子的家庭进行了调查,得到了右边表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计欧龙小区两个孩子家庭中男孩与女孩的人数比为 ▲ :▲ .12.请任意写出一个既是轴对称,又是中心对称的图形是 ▲ . 13.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 ▲ °.14.如图,⊙O 的半径是5,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF .若OG =2,则EF 为 ▲ .15. 某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w (元)与降价x (元)的函数关系如图所示.这种工艺品的销售量为 ▲ 件(用含x 的代数式表示).16. 如图,线段AC=n+1(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作正方形ABMN及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2类别 数量(户) (男,男) 101 (男,女) 99 (女,男) 116 (女,女) 84合计400 (第12题) (第14题图) G FOA E BC x (元) w (元) O60 w =mx 2+n 30 2700 (第15题图) (第13题图)(第16题图)时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;…;当AB=n 时,△AME 的面积记为S n .当n ≥2时,S n ﹣S n ﹣1= ▲ .三.解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:201tan 603-⎛⎫︒+ ⎪⎝⎭18.(8分)解不等式组:⎩⎪⎨⎪⎧2-3(x -3) ≤5,1+2x 3>x -1.并把解集在数轴上表示出来.19.(8分)先化简,再求值:21111x x x x ⎛⎫⎛⎫+÷- ⎪ ⎪-+⎝⎭⎝⎭,其中x =.20.(8分)已知:如图,在正方形ABCD 中,点E 、F 在对角线BD 上,且BF =DE .(1)求证:四边形AECF 是菱形.(2)若AB =2,BF =1,求四边形AECF 的面积.A B C D F E21.(8分)春夏交接之际,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了 ▲ 个班级,并将该条形统计图补充完整;(2)扇形图中患流感人数为4名所在扇形的圆心角的度数为 ▲ ;(3)若该校有60个班级,请估计该校此次患流感的人数.2班2名1名0123456各种患流感人数情况的班级数 占抽查班级总数的百分比分布图班级个数抽查班级患流感人数条形图22.(8分)如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺......,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.23.(8分)第二届夏季青奥会将于08月16日在中国江苏南京市举行,运动会期间将从A 大学2名和B 大学4名的大学生志愿者中,随机抽取2人到体操比赛场馆服务,(1)求所抽的2人都是A 大学志愿者的概率;(2)求所抽的2人是不同大学志愿者的概率.24.(10分)某地发生台风,山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。
连云港2020中考数学综合模拟测试卷(含答案)
连云港市2020高中段学校招生模拟考试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中是正数的为()A.3B.-C.-D.02.计算a2·a4的结果是()A.a8B.a6C.2a6D.2a83.将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()4.为了传承和弘扬港口变化,我市将投入6000万元建设一座港口博物馆.其中“6000万”用科学记数法可表示为()A.0.6×108B.6×108C.6×107D.60×1065.在Rt△ABC中,∠C=90°,若sin A=,则cos A的值为()A. B. C. D.6.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>bB.|a|>|b|C.-a<bD.a+b<07.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…,如此大量摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4-2D.3-4第Ⅱ卷(非选择题,共126分)二、填空题(本大题共有8小题,每小题3分,共24分)9.计算:()2=.10.使有意义的x的取值范围是.11.分解因式:4-x2=.12.若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是.(写出一个即可)13.据市房管局统计,今年某周我市8个县区的普通住宅成交量如下表:则该周普通住宅成交量的中位数为套.14.如图,一束平行太阳光线照射到正五边形上,则∠1=°.15.如图,△ABC内接于☉O,∠ACB=35°,则∠OAB=°.16.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.三、解答题(本大题共11小题,共102分.解答时写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算:-+(-1)0+2×(-3).18.(本题满分6分)解不等式组--19.(本题满分6分)先化简,再求值:-÷-,其中m=-3,n=5.20.(本题满分8分)某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”“良好”“合格”“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?21.(本题满分8分)甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.22.(本题满分10分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD 于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.23.(本题满分10分)小林准备进行如下操作试验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?等于48cm2.”他的说法对吗?请说明理由.(2)小峰对小林说:“这两个正方形的面积之和不可能...24.(本题满分10分)如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=(x>0)的图象交于点D(n,-2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一点F,使得△BDF∽△ACE?若存在,求出点F的坐标;若不存在,请说明理由.25.(本题满分12分)我市某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图,折线段O—A—B表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律.已知救援船返程速度是前往速度的.根据图象提供的信息,解答下列问题:(1)救援船行驶了海里与故障渔船会合;(2)求救援船的前往速度;(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全.26.(本题满分12分)如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的☉P与AB、OA 的另一个交点分别为点C、D,连结CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若☉P与线段QC只有一个交点,请直接写出t的取值范围.27.(本题满分14分)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=S△ABF.(S表示面积)图1问题迁移:如图2,在已知锐角∠AOB内有一定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.图2实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)图3拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、、(4,2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.图4答案全解全析:1.A -和-是负数,0既不是正数也不是负数,故选A.2.B 同底数幂相乘底数不变,指数相加,故a2·a4=a6.3.D 由立体图形的特征及所放位置可知其俯视图为圆环,故选D.4.C 6 000万=60 000 000,将其写成a×10n的形式,其中1≤|a|<10,n=8-1=7,故用科学记数法可表示为6×107,故选C.5.D 在Rt△ABC中,∠C=90°,sin2A+cos2A=1,又sin A=,所以cos A=.故选D.6.C 由数轴上实数a、b所在的位置,可知a<0<b,|a|<|b|,a+b>0,所以选项A、B、D错,故选C.7.B ①1-20%-50%=30%正确;②50%>30%>20%,故摸出黑球的概率最大;③再摸球100次不一定有20次摸出的是红球,故选B.8.C 在正方形ABCD中,连结AC交BD于点O,则∠BOA=90°,∠BAC=45°,∵∠BAE=22.5°,∴AE平分∠BAC.又∵EF⊥AB,∴EF=EO,设EF=x,则FB=x,∵BD=AD=4,∴BE=BD-EO=2-x.在等腰直角三角形EFB中,BE=x,∴x=2-x,∴x==4-2,即EF=4-2,故选C. 评析本题考查正方形的性质,角平分线的性质,勾股定理等知识,属较难题.9.答案 3解析()2=3.10.答案x≥-1解析当有意义时,x+1≥0,∴x≥-1.11.答案(2+x)(2-x)解析4-x2=(2+x)(2-x).12.答案答案不唯一,如-1(只要k<0即可)解析正比例函数y=kx(k为常数,且k≠0),当k<0时,y随x的增大而减小,所以k可取小于0的任何实数.13.答案80解析将8个数据从小到大排列为50,53,56,72,88,101,105,110,中间两个数为72和88,故中位数是=80(套).14.答案30解析因为正五边形的每个内角为108°,又两直线平行同旁内角互补,则∠1+108°+42°=180°, 所以∠1=30°.15.答案55解析在☉O中,∠AOB=2∠ACB=2×35°=70°,∵OA=OB,∴∠OAB=°-=55°.16.答案 5 050π+101解析由题意得动点到达A101点处时,在直线AB上共经过了101个实线段,其长度为101;在弧上运动时,共经过了100个半圆,每个半圆的半径依次为1,2,3,…,100.所以经过的总弧长为π+2π+3π+…+100π=5 050π,则点M经过的路径长为(5 050π+101),时间为(5 050π+101)秒.评析本题为规律探究题,分清楚点M的运动周期是解题关键,可划分为O→A1→B1,B1→B2→A2,A2→A3→B3,…,B99→B100→A100,A100→A101,进而得出结论.17.解析原式=5+1-6=0.18.解析不等式组-,①-.②解不等式①得x<6,(2分)解不等式②得x≥3.(4分)所以原不等式组的解集为3≤x<6.(6分)19.解析原式=-·(-)=-.(4分)当m=-3,n=5时,原式=-(-)=.(6分) 20.解析(1)60;补全条形统计图如图.(5分)(2)600×=580(人),估计测试成绩等级在合格以上(包括合格)的学生约有580人.(8分)21.解析(1)画树状图如图:可看出三次传球有8种等可能结果,其中传回甲手中的有2种.所以P(传球三次回到甲手中)==.(5分)(2)由(1)可知从甲开始传球,传球三次后,球传到甲手中的概率为,球传到乙、丙手中的概率分别为,所以三次传球后,球回到乙手中的概率最大值为.所以乙会让球开始时在甲手中或丙手中.(8分)22.解析(1)证明:在矩形ABCD中,AB∥DC,ED∥BF,所以∠ABD=∠CDB.由题意可知∠EBD=∠ABD,∠BDF=∠BDC,所以∠EBD=∠BDF.所以BE∥DF.所以四边形BFDE为平行四边形.(6分)(2)连结EF.因为四边形BFDE为菱形,所以EF⊥BD.由题意得EM⊥BD,FN⊥BD,所以M、N两点重合,且M,N两点在EF上,故BD=2BM,又由题知AB=BM=2,所以BD=4.在Rt△BDC中,BC=-=-=2.(10分)评析本题考查平行四边形的判定方法及特殊平行四边形的性质,利用折叠设计试题背景,题目新颖,属容易题.23.解析(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x)cm.由题意得x2+(10-x)2=58,解得x1=3,x2=7.4×3=12,4×7=28.所以小林应把铁丝剪成12 cm和28 cm的两段.(6分)(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0.因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.(10分)24.解析(1)因为点A(1,m)在直线y=2x+2上,所以m=4,即A(1,4).将A点坐标代入y=,得k1=4.(2分)过点A、D分别作y轴的垂线,垂足分别为点M、N.由题可得B(0,2),又D(n,-2),则BN=4,BM=2,AM=1.又因为AB⊥BD,所以易得△ABM∽△BDN.则=,即=,DN=8,所以D(8,-2).将D点坐标代入y=,得k2=-16.(6分)(2)存在符合条件的点F.理由如下:由y=2x+2,得C(-1,0).因为OB=ON=2,DN=8,所以OE=4.易知AE=5,CE=5,AC=2,BD=4,若△BDF∽△ACE,则=,即=.所以BF=10,所以F(0,-8).(10分)评析本题考查反比例函数及一次函数的性质,在直角坐标系中,要求学生根据图形的特征求出某个点的坐标,数形结合思想也是本题考查的重点,属中等难度题.25.解析(1)16.(2分)(2)设救援船的前往速度为每分钟V海里,则返程速度为每分钟海里.由题意得=-16,解得V=0.5.经检验V=0.5是原方程的解.答:救援船的前往速度为每分钟0.5海里(或写成每小时30海里).(7分)(3)由(2)知x=16÷0.5=32,则A(32,16).将A(32,16)和C(0,12)代入y=ax2+k,可求得y=x2+12.当x=40时,y=×402+12=.÷=(海里).所以救援船的前往速度每小时至少是海里.(12分)评析本题考查分式方程和二次函数的应用,正确理解题意,构造数学模型是关键,属中等难度题.26.解析(1)因为CA是☉P的直径,所以CD⊥OA,所以CD∥BO.所以△ACD∽△ABO,所以=.因为OA=8,OB=6,所以AB=10,又CA=2t,所以AD=t,当点Q与点D重合时,OQ+AD=OA,所以t+t=8,t=.(3分)(2)由△ACD∽△ABO,易得CD=t.当0<t<时,S=×t×--=-t2+t.因为-=,0<<,所以当t=时,S有最大值为;当<t≤5时,S=×t×-=t2-t.因为-=,<,所以S随t的增大而增大.所以当t=5时,S有最大值为15>.综上所述,S的最大值为15.(8分)(3)0<t≤或<t≤5.(12分)评析本题以点P、Q地不断运动,引发不同的几何图形变化背景,考查相似形、二次函数的性质,属中等难度题.27.解析问题情境:证明:因为AD∥BC,所以∠ADE=∠FCE.又因为DE=CE,∠AED=∠FEC,所以△ADE≌△FCE,所以S△ADE=S△FCE.所以S四边形ABCD=S四边形ABCE+S△ADE=S四边形ABCE+S△FCE=S△ABF.(2分)问题迁移:当直线旋转到点P是线段MN的中点时,△MON的面积最小.如图,过P点的另外一条直线EF交OA、OB于点E、F.不妨设PF<PE,过点M作MG∥OB交EF于G.由“问题情境”的结论可知,当点P是线段MN的中点时,有S四边形MOFG=S△MON.因为S四边形MOFG<S△EOF,所以S△MON<S△EOF.所以当点P是线段MN的中点时,△MON的面积最小.(5分)实际应用:如图,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1.在Rt△OPP 1中,PP 1=OPsin 30°=2 km,OP 1=OPcos 30°=2 km. 由“问题迁移”的结论知,当PM=PN 时,△MON 的面积最小. 此时MM 1=2PP 1=4 km,M 1P 1=P 1N.在Rt△OMM 1中,OM 1= °≈ . = km,M 1P 1=OP 1-OM 1= -km, ON=OM 1+M 1P 1+P 1N= -km.所以S △MON =MM 1·ON=8 -≈10.28≈10.3(km 2).(9分)拓展延伸:(1)当过点P 的直线l 与四边形OABC 的一组对边OC 、AB 分别交于点M 、N.延长OC 、AB 交于点D,易知AD=6,S △OAD =18.由“问题迁移”的结论知,当PM=PN 时,△MND 的面积最小,所以此时四边形OANM 的面积最大.如图,过点P,M 分别作PP 1⊥OA,MM 1⊥OA,垂足分别为P 1,M 1.由题意易得M 1P 1=P 1A=2,从而OM 1=MM 1=2.所以MN∥OA.所以S 四边形OANM = △ + 四边形 =×2×2+2×4=10. (2)当过点P 的直线l 与四边形OABC 的另一组对边CB 、OA 分别交于点M 、N. 延长CB 交x 轴于T 点,由B 、C 的坐标可得直线BC 对应的函数关系式为y=-x+9. 则T 点的坐标为(9,0),所以S △OCT =×9× =.由“问题迁移”的结论知:当PM=PN时,△MNT的面积最小,所以四边形OCMN的面积最大. 如图,过P,M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1,从而NP1=P1M1,MM1=2PP1=4.所以点M的横坐标为5,P1M1=NP1=1,TN=6.所以S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT=-12=<10.综上所述,截得四边形面积的最大值为10.(14分)(备注:各题如有其他解法,只要正确,均可参照给分).评析本题是综合实践类试题,要求学生根据图形的不同变化,会灵活计算△MON的面积,并探索△MON和四边形OANM面积的最大值情况,属难题.。
2020年江苏省连云港市中考数学模拟试题(解析版)
连云港市2020年中考数学模拟试卷一、填空题(本大题共12小题,每小题2分,共计24分)1.﹣12的绝对值是_____. 【答案】12【解析】 【分析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b -a|或|a -b|表示数轴上表示a 的点和表示b 的点的距离. 【详解】﹣12的绝对值是|﹣12|=12【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键. 2.已知一组数据3、x 、4、5、6的众数是6,则x 的值是_____. 【答案】6 【解析】 【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案. 【详解】这组数据中的众数是6,即出现次数最多的数据为:6. 故x=6. 故答案为6.【点睛】本题考查了众数的知识,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.3.计算231()2a b -=________. 【答案】6318a b -【解析】 【分析】根据积的乘方运算法则计算即可.【详解】236311()28a b a b -=-. 故答案为6318a b -.【点睛】本题考查了积的乘方运算,熟练掌握积的乘方法则是解答本题的关键.积的乘方等于各因数乘方的积,即()mm m ab a b =.m 为正整数). 4.因式分解:294a -=____. 【答案】(3a +2)(3a -2) 【解析】试题解析:9a 2-4=(3a )2-22=.3a +2.(3a -2)5.x 的取值范围是_____. 【答案】4x ≠ 【解析】 【分析】根据分式有意义的条件进行求解即可. 【详解】由题意,得x -4≠0, 解得:x ≠4, 故答案为4x ≠.【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不为0时,分式有意义是解题的关键.6._____. 【答案】2 【解析】 【分析】根据二次根式乘法法则进行计算.2==. 故答案是:2.【点睛】考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算. 7.已知圆锥的底面半径为20,侧面积为600π,则这个圆锥的母线长为__. 【答案】30 【解析】 【分析】用到的等量关系为:圆锥的侧面积=底面周长×母线长÷2. 【详解】设母线长为R ,底面半径为10,则底面周长=20π,侧面积=1406002R ππ⨯=,∴R=30. 故答案为30.【点睛】本题考查的知识点是圆锥的计算,解题关键是利用了圆的周长公式和扇形面积公式求解. 8.已知反比例函数ky x=(k 为常数,0k ≠),函数y 与自变量x 的部分对应值如下表:则当41y -<<-时,x 的取值范围是______. 【答案】82x -<<- 【解析】 【分析】由反比例函数图象上点的坐标特征得到k=xy=8,所以将y=-4和y=-1代入函数解析式,即可得到相应的x 的值,即x 的极值,从而得到x 的取值范围. 【详解】从表格中的数据知,k=xy=8, 则该反比例函数解析式为:y=8x. 把y=-4代入得到:x=-2, 把y=-1代入得到:x=-8, 故x 的取值范围为:-8<x <-2. 故答案是:-8<x <-2.【点睛】考查了反比例函数图象上点的坐标特征和反比例函数的性质.图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .9.如图,小杨将一个三角板放在O e 上,使三角板的一直角边经过圆心O ,测得5AC cm =,3AB cm =,则O e 的半径长为______cm .【答案】3.4 【解析】 【分析】作OH ⊥BC 于H ,如图,则CH=BH ,先利用勾股定理计算出BC=,则CH=2,再证明Rt △COH ∽Rt △CBA ,然后利用相似比计算OC 即可. 【详解】连接BC ,作OH ⊥BC 于H ,则CH=BH ,在Rt △ACB 中,∴CH=12BC =, ∵∠OCH=∠BCA , ∴Rt △COH ∽Rt △CBA ,∴OC CH CB CA=25=, 解得,OC=3.4. 故答案为:3.4.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和相似三角形的判定与性质.10.抛物线()22y ax a =++的顶点在x 轴的下方,且当0x >时,y 随x 的增大而减小,则a 的取值范围是_____. 【答案】2a <- 【解析】【分析】由“当x >0时,y 随x 的增大而减小”结合二次函数的性质即可得出a <0,①再根据抛物线y=ax 2+(a+2)的顶点在x 轴的下方,即可得出a+2<0②,联立①②即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】∵当x >0时,y 随x 的增大而减小, ∴a <0①.∵抛物线y=ax 2+(a+2)的顶点在x 轴的下方, ∴a+2<0②.联立①②得:020a a ⎩+⎧⎨<<,解得:a <-2. 故答案为:a <-2.【点睛】本题考查了二次函数的性质、二次函数图象与系数的关系以及解一元一次不等式组,根据二次函数的性质结合二次函数图象与系数的关系,找出关于a 的一元一次不等式组是解题的关键. 11.如图,将Rt ABC ∆绕点C 按顺时针方向旋转90°到' ' A B C∆位置,已知斜边10AB cm =,6BC cm =, 设' 'A B 的中点是M ,连接AM ,则AM =_____cm .【解析】 【分析】作MH ⊥AC 于H ,根据垂直平分线的性质可得HM 的大小,又因为B′H=3,HM=4;计算可得AH 的值,根据勾股定理可得AM 的大小. 【详解】作MH ⊥AC 于H ,的因为M为A′B′的中点,故HM=12A′C,又因为=8,则HM=12A′C=12×8=4,B′H=3,又因为AB′=8-6=2,所以AH=3+2=5,cm.【点睛】根据图形的翻折不变性,结合勾股定理和中位线定理解答.12.如图1是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图.MN为衣架的墙体固定端,A为固定支点,B为滑动支点,四边形DFGI和四边形EIJH是菱形,且AF BF CH DF EH====.点AF BF CH DF EH====在AN上滑动时,衣架外延钢体发生角度形变,其外延长度(点A和点C间的距离)也随之变化,形成衣架伸缩效果.伸缩衣架为初始状态时,衣架外延长度为42cm.当点AF BF CH===DF EH=向点A移动8cm时,外延长度为9cm.如图3,当外延长度为120cm时,则BD和GE的间距PQ长为_______.【答案】24cm【解析】【分析】三节段式伸缩晾衣架,相当于三个菱形构成,前半个和后半个组成一个整体,中间共有两个.本题需用到菱形的性质和勾股定理,根据横向对角线的长度等先计算出菱形的边长,然后根据菱形的面积公式容易求出结果.【详解】如图,作FK⊥AB于K,设AB=2xcm,由题意,FK=7cm,当AB=(2x-8)cm时,FK=15cm.则有AF2=x2+72=(x-4)2+152,∴x=24(cm),∴(cm ),如图,当OF=20时,在Rt △DFO 中,(cm ),∵PQ ⊥GI ,∴12FI•DG=DF•PQ , ∴PQ=14030225⨯⨯=24(cm ).故答案为:24 cm .【点睛】本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.二.选择题(本大题共有6小题,每小题3分,共计18分)13.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A. 0.25×10﹣5 B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣6【答案】D 【解析】 分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D .14.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A. B.C. D.【答案】D 【解析】 【分析】找到从左面看到的图形即可.【详解】从左面上看是D 项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.15.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ).A.15B.14C.13D.12【答案】C 【解析】试题解析:指针指向()1中2的概率是3601202,3603-=o o o指针指向()2中2的概率是1,2 指针所指区域内的数字之和为4的概率是:211.323⨯= 故选C.16.若()22222()230a b a b +-+-=,则代数式22ab +的值( )A. -1B. 3C. -1或3D. 1或-3【答案】B 【解析】 【分析】利用换元法解方程即可.【详解】设22a b +=x ,原方程变为:2230x x --=,解得x=3或-1, ∵22a b +≥0, ∴22 3.a b += 故选B.【点睛】本题考查了用换元法解一元二次方程,设22a b +=x ,把原方程转化为2230x x --=是解题的关键.17.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A. 小丽从家到达公园共用时间20分钟B. 公园离小丽家的距离为2000米C. 小丽在便利店时间为15分钟D. 便利店离小丽家的距离为1000米【答案】C 【解析】解.A.小丽从家到达公园共用时间20分钟,正确; B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误; D.便利店离小丽家的距离为1000米,正确. 故选C .18.如图,在平面直角坐标系中,()C 0,4,()A 3,0,A e 半径为2,P 为A e 上任意一点,E 是PC 的中点,则OE 的最小值是( )A. 1B.32C. 2D.【答案】B 【解析】 【分析】如图,连接AC ,取AC 的中点H ,连接EH ,OH 利用三角形的中位线定理可得EH=1,推出点E 的运动轨迹是以H 为圆心半径为1的圆.【详解】解:如图,连接AC ,取AC 的中点H ,连接EH ,OH .CE EP =Q ,CH AH =,1EH PA 12∴==, ∴点E 的运动轨迹是以H 为圆心半径为1的圆,()C 0,4Q ,()A 3,0, ()H 1.5,2∴,OH 2.5∴==,OE ∴的最小值OH EH 2.51 1.5=-=-=,故选B .【点睛】本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,正确寻找点E 的运动轨迹,属于中考选择题中的压轴题.三、解答题(本大题共10小题,共78分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.计算或化简:(1(12)﹣1﹣4cos45°+﹣π)0. (2)(x ﹣2)2﹣x (x ﹣3). 【答案】(1)3;(2)﹣x +4. 【解析】 【分析】(1)先化简二次根式、负整数指数幂、代入三角函数值及零指数幂,再先后计算乘法和加减运算即可; (2)先计算完全平方式和单项式乘多项式的积,再合并同类项即可得.详解】(1)原式=+2﹣4×2+1=﹣+1 =3;(2)原式=x 2﹣4x +4﹣x 2+3x =﹣x +4.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数和整式的混合运算顺序和运算法则.20.(1)解方程:11322x x x--=---.(2)解不等式组:312215(1)x x x x -⎧<-⎪⎨⎪+≥-⎩【答案】(1)无解;(2)﹣1<x≤2. 【解析】 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 【详解】(1)去分母得:1﹣x+1=﹣3x+6, 解得:x=2,经检验x=2是增根,分式方程无解;(2)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②, 由①得:x >﹣1, 由②得:x≤2,则不等式组的解集为﹣1<x≤2.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动,有A.B 两组卡片,每组各三张,A 组卡片上分别写有0,1,2.B 组卡片上分别写有-3.-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组随机抽取一张记为x ,乙从B 组随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数字是-1,它们恰好是方程ax -y=5的解,求a 的值; (2)求甲、乙随机抽取一次的数恰好是方程ax -y=3的解得概率(请用树状图或列表法求解 【答案】(1)2;(2)13【解析】 试题分析:(1)把x ,y 的值代入到方程ax-y=5中求解;(2)用列表法列出所有的组合,从中找出是方程ax-y=3的解的组合的个数,再根据概率的定义求解. 试题解析:解:(1)将x=2.y=-1代入方程得:2a+1=5,即a=2.(2)列表得:所有等可能的情况有9种,其中(x.y )恰好为方程2x -y=3的解的情况有(0.-3).(1.-1),(2,-1)共3种情况,则P=3193=. 22.如图,在四边形ABCD 中,//AD BC ,O 是CD 的中点,延长AO 交BC 的延长线于点E ,且BC CE =.(1)求证:AOD EOC ∆∆≌;(2)若90BAE ∠=︒, 6AB =,4OE =,求AD 的长. 【答案】(1)见解析;(2)5AD =. 【解析】 【分析】(1)证△AOD ≌△EOC ,由条件推理可用AAS 证明求解;(2)求AD 的长,由第(1)可知AD=EC ,求CE 的长需求BE ,BE 可由勾股定理和三角形的中位线定理可求.【详解】如图所示:(1)∵AD ∥BE , ∴∠DAE=∠AEB , 又∵O 是CD 的中点,∴CO=DO ,在△AOD 和△EOC 中,AOD EOC DAE CEO OD OC ∠∠∠∠⎧⎪⎨⎪⎩===, ∴△AOD ≌△EOC (AAS ). (2)∵BC=CE ,AO=EO∴点C 、O 分别是BE 和AE 的中点,即CO 是△ABE 的中位线; ∵OE=4,∴AE=8, 又∵AB=6,∴在Rt △ABE 中,由勾股定理得: BE,CE=BE -BC=10-5=5. 又∵AD=EC ∴AD=5.【点睛】本题考查了平行线的性质,线段的中点,三角中位线,三角形的全等和勾股定理,是一基础性几何综合题,有利于学生对所学的基础知识的巩固训练题.23.据《北京晚报》介绍,自2009年故宫博物院年度接待观众首次突破1000万人次之后,每年接待量持续增长,到2018年突破1700万人次,成为世界上接待量最多的博物馆.特别是随着《我在故宫修文物》、《上新了,故宫》等一批电视文博节目的播出,社会上再次掀起故宫热.于是故宫文创营销人员为开发针对不同年龄群体的文创产品,随机调查了部分参观故宫的观众的年龄,整理并绘制了如下统计图表. 2018年参观故宫观众年龄频数分布表(1)求表中a,b,c的值;(2)补全频数分布直方图;(3)从数据上看,年轻观众(20≤x<40)已经成为参观故宫的主要群体.如果今年参观故宫人数达到2000万人次,那么其中年轻观众预计约有万人次.【答案】(1)a=48,b=0.4,c=0.185;(2)见解析;(3)1280.【解析】【分析】(1)根据频数=总数×频率,频率=频数÷总数求解可得;(2)利用以上所求结果可得;(3)利用样本估计总体思想求解可得.【详解】解:(1)a=200×0.240=48,b=80÷200=0.4,c=37÷200=0.185;(2)补全直方图如下:(3)其中年轻观众预计约有2000×(0.4+0.24)=1280(万人次),故答案为1280.【点睛】本题考查的是直方图和频数分布表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度,该楼底层为车库,高2.5米;上面五层居住,每层高度相等,测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米,求居民楼的高度.(精确到0.1【答案】18.4米 【解析】 【分析】设每层楼高为x 米,由MC ﹣CC′求出MC′的长,进而表示出DC′与EC′的长,在直角三角形DC′A′中,利用锐角三角函数定义表示出C′A′,同理表示出C′B′,由C′B′﹣C′A′求出AB 的长即可. 【详解】解:设每层楼高为x 米,由题意得:MC′=MC ﹣CC′=2.5﹣1.5=1米, ∴DC′=5x+1,EC′=4x+1, 在Rt△DC′A′中,∠DA′C′=60°,∴C′A′=tan 60DC '︒=5x+1), 在Rt△EC′B′中,∠EB′C′=30°,∴C′B′=tan 30EC '︒=(4x+1), ∵A′B′=C′B′﹣C′A′=AB ,(4x+15x+1)=14,解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4米. 考点:解直角三角形的应用﹣仰角俯角问题25.如图,ABC ∆中,以AB 为直径作⊙O ,交BC 于点D ,E 为弧BD 上一点,连接AD 、DE 、AE ,交BD 于点F .(1)若CAD AED ∠=∠,求证:AC 为⊙O 的切线; (2)若2DE EF EA =g ,求证:AE 平分BAD ∠;(3)在(2)的条件下,若4,2AD DF ==,求⊙O 的半径. 【答案】(1)详见解析;(2)详见解析;(3)103. 【解析】 【分析】(1)根据AB 为⊙O 直径,得出ADB ∠=90°,即90ABD BAD ∠+∠=°,CAD AED ∠=∠,ABD AED ∠=∠,推出CAD ABD ∠=∠,即90CAD BAD ∠+∠=°,所以BAC ∠=CAD BAD ∠+∠=90°,得出AC 为⊙O 的切线;(2)证明DEF AED ∆∆:, 得到FDE DAE ∠=∠,因为FDE BAE ∠=∠,所以DAE BAE ∠=∠,即可得到AE 平分BAD ∠;(3)过点F 作FH ⊥AB 于H 可证ADF AHF ∆≅∆,可得AH=AD=4,FH=DF=2;可证FBH ABD ∆∆:故2142BH FH BD AD ===;BH=x ,则BD=2x ,BF=2x-2,利用勾股定理可得222BFD BH FH BF ∆+=中,,()22422x x +=-;解得BH=83,AB=BH+AH=820433+=,由AO=12AB=103,即可得⊙O 的半径. 【详解】(1)证明:∵AB 为⊙O 直径, ∴ADB ∠=90°,∴90ABD BAD ∠+∠=°,∵CAD AED ∠=∠,ABD AED ∠=∠, ∴CAD ABD ∠=∠, ∴90CAD BAD ∠+∠=°, 即90BAC ∠=°, ∴AC 为⊙O 的切线;(2)证明:∵2DE EF EA =g , ∴DE EAEF DE=; ∵DEF AED ∠=∠, ∴DEF AED ∆∆:; ∴FDE DAE ∠=∠, ∵FDE BAE ∠=∠, ∴DAE BAE ∠=∠; 即AE 平分BAD ∠.(3)解:过点F 作FH ⊥AB 于H.∴90AHF ADB ∠=∠=°; 又∵DAE BAE ∠=∠,AF=AF , ∴ADF AHF ∆≅∆; ∴AH=AD=4,FH=DF=2;∵90BHF ADB ∠=∠=°,HBF DBA ∠=∠, ∴FBH ABD ∆∆:, ∴2142BH FH BD AD ===; 设BH=x ,则BD=2x ,BF=2x-2,∴222BFD BH FH BF ∆+=中,, ∴()22422x x +=-; ∴x=0(舍)或x=83;∴BH=83,AB=BH+AH=820433+=;∴AO=12AB=103; ∴⊙O 的半径为103.【点睛】本题考查了圆与相切,相似,勾股等知识,掌握相似与圆的性质是解题的关键. 26.如图1,A (1,0)、B (0,2),双曲线y =kx(x >0) (1)若将线段AB 绕A 点顺时针旋转90°后B 的对应点恰好落在双曲线y =kx(x >0)上 ①则k 的值为 ;②将直线AB 平移与双曲线y =k x (x >0)交于E 、F ,EF 的中点为M (a ,b ),求b a 的值; (2)将直线AB 平移与双曲线y =kx(x >0)交于E 、F ,连接AE .若AB ⊥AE ,且EF =2AB ,如图2,直接写出k 的值 .【答案】(1)①k =3;②2;(2)k =149. 【解析】 【分析】(1)先求出A 、B 点的坐标,再求出旋转后B 点的坐标,进而由待定系数法求出k 便可; (2)设出EF 的解析式,再求出点E 、F 的坐标,由中点坐标公式求得M 点的坐标,进而求b a; (3)由△ABO ∽△EHA 得:12EH OA AH OB ==,设EH=m ,则AH=2m ,求出EF 的表达式并与反比例函数表达式联立求出点F 坐标,即可求解【详解】(1)①设旋转后点B 的对应点为点C ,过点C 作CD ⊥x 轴于点D ,如图所示∵∠BAC =90°, ∴∠BAO +∠CAD =90°, ∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAD , △OAB 和△DCA 中,90ABO CDA AOB CDA AB CA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△OAB ≌△DCA (AAS ), ∴CD =OA =1, AD =OB =2, ∴OD =OA +AD =3, ∴C (3,1), 把C (3,1)代入y =kx中,得k =3, 故答案为3;②直线AB 表达式中的k 值为﹣2,AB ∥EF ,则直线EF 表达式中的k 值为﹣2, 设点E (m ,n ),mn =3, 直线EF 的表达式为:y =﹣2x +t , 将点E 坐标代入上式并解得,直线EF表达式为y =﹣2x +2m +n ,将直线EF 表达式与反比例函数表达式联立并整理得: 2x 2﹣(2m +n )x +3=0,x 1+x 2=22m n +,x 1x 2=32,则点F (12n ,6n),则a =12(22m n +),b =12(n +6n ), 22222(6)2(6)26b n n a mn n n ++==++=2; (2)故点E 作EH ⊥x 轴交于点H ,由(1)知:△ABO ∽△EHA , ∴12EH OA AH OB ==,设EH =m ,则AH =2m , 则点E (2m +1,m ),且k =m (2m +1)=2m 2+m ,直线AB 表达式中的k 值为﹣2,AB ∥EF ,则直线EF 表达式中的k 值为﹣2,设直线EF 的表达式为:y =﹣2x +b ,将点E 坐标代入并求解得:b =5m +2,故直线EF 的表达式为:y =﹣2x +5m +2,将上式与反比例函数表达式联立并整理得:2x 2﹣(5m +2)x +3=0,用韦达定理解得:x F +x E =522m +,则x F =2m , 则点F (12m ,4m +2),则EF =2AB =整理得:3m 2+4m ﹣4=0,解得:m =23或﹣2(舍去负值), k =m (2m +1)=2m 2+m =149. 【点睛】本题考查了反比例函数综合运用,涉及到一次函数、三角形全等、相似等知识点,其中,用韦达定理求解复杂数据是本题的关键.27.如图,矩形ABCD 中,AB =4,BC =6,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设P A =x .(1)求证:△PF A ∽△ABE ;(2)当点P 在线段AD 上运动时,设P A =x ,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出x 满足的条件: .【答案】(1)证明见解析;(2)3或256.(3)65x =或0<1x < 【解析】【分析】.1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;.2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当PEF EAB ∠=∠ 时,则得到四边形ABEP 为矩形,从而求得x 的值;当PEF AEB ∠=∠时,再结合(1)中的结论,得到等腰APE V .再根据等腰三角形的三线合一得到F 是AE 的中点,运用勾股定理和相似三角形的性质进行求解. .3)此题首先应针对点P 的位置分为两种大情况:①D e 与AE 相切,② D e 与线段AE 只有一个公共点,不一定必须相切,只要保证和线段AE 只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段AE 外的情况即是x 的取值范围.【详解】(1)证明:∵矩形ABCD .∴AD ∥BC .90.ABE ∴∠=o ∴∠P AF =∠AEB .又∵PF ⊥AE .90.PFA ABE ∴∠=∠=o ∴△PF A ∽△ABE .(2)情况1,当△EFP ∽△ABE ,且∠PEF =∠EAB 时,则有PE ∥AB∴四边形ABEP 为矩形,∴P A =EB =3,即x =3.情况2,当△PFE ∽△ABE ,且∠PEF =∠AEB 时,∵∠P AF =∠AEB .∴∠PEF =∠P AF .∴PE =P A .∵PF ⊥AE .∴点F 为AE 的中点,5AE ==Q ,15.22EF AE ∴== ,PE EF AE EB =Q 即5253PE =, 25.6PE ∴= ∴满足条件的x 的值为3或25.6(3) 65x =或0 1.x << 【点睛】两组角对应相等,两三角形相似.28.已知抛物线1l :212y ax =-的项点为P ,交x 轴于A 、B 两点(A 点在B 点左侧),且sin 5ABP ∠=.(1)求抛物线1l 的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若ABC ∆的面积被y 轴分为1: 4两个部分,求直线AC 的解析式;(3)在(2)的情况下,将抛物线1l 绕点P 逆时针旋转180°得到抛物线2l ,点M 为抛物线2l 上一点,当点M 的横坐标为何值时,BDM ∆为直角三角形?【答案】(1)21128y x =-;(2)直线AC 的解析式为114y x =+;(3)点M 横坐标为16-+或16--16-+16--时,BDM ∆为Rt ∆.【解析】【分析】(1)求抛物线l 1的顶点P (0,-2)得OP=2,由sin 5OP ABP BP ∠==求得BP 的长,进而求得OB 即点B 坐标,代入抛物线l 1的解析式即求得a 的值.(2)求点A 坐标为(-4,0),设直线AC 解析式为y=kx+b ,把点A 代入得b=4k ,所以能用k 表示点D 坐标,进而用k 表示△AOD 和△BOD 的面积.把直线AC 解析式与抛物线l 1解析式联立方程,即y 相等时得到一个关于x 的一元二次方程,解即为点A 、C 横坐标,利用根与系数的关系求出点C 横坐标(用k 表示),进而可用k 表示C 的纵坐标,再得到用k 表示的△ABC 面积.当k >0时,显然S △AOD :S 四边形OBCD =1:4,即S △AOD =15S △ABC ,故得到关于k 的方程,求解即得k 的值.当k <0,则得到的方程与k >0时相同,求得的k 不满足题意.综合即求得直线AC 的解析式.(3)由于不确定点B 、D 、M 哪个为直角顶点,故需分三种情况讨论.设点M 横坐标为m ,①若∠BDM=90°,过M 作MN ⊥y 轴于点N ,可证△BDO ∽△DMN ,用m 表示MN 、DN 的长,代入相似三角形对应边成比例即列得方程求m 的值.②若∠DBM=90°,过点M 作MQ ⊥x 轴于点Q ,可证△BMQ ∽△DBO ,用m 表示BQ 、MQ 的长,代入相似三角形对应边成比例即列得方程求m 的值.③若∠BMD=90°,则点M 在以BD 为直径的圆除点B 、D 外的圆周上,但显然以AB 为直径的圆与抛物线l 2无交点,故此情况不存在满足的m .【详解】(1)当0x =时,2122y ax =-=-∴顶点()0,2P -,2OP =∵90BOP ∠=︒,∴sin 5OP ABP BP ∠==∴BP ==∴4OB ==∴()4,0B ,代入抛物线1l 得:1620a -=,解得18a =,∴抛物线1l 的函数解析式为21128y x =- (2)∵知抛物线1l 交x 轴于A 、B 两点∴A 、B 关于y 轴对称,即()4,0-A∴8AB =设直线AC 解析式:y kx b =+点A 代入得:40k b -+=∴4b k =∴直线AC :4y kx k =+,()0,4D k ∴14|4|8||2AOD BOD S S k k ∆∆==⨯⨯= ∵21248x kx k -=+,整理得:2832160x kx k ---= ∴128x x k +=∵14x =-∴284C x x k ==+,()284488C y k k k k k =++=+∴2(84,88)C k k k ++ ∴21||32||2ABC C S AB y k k ∆=⋅=+ ①若0k >,则:=1:4AOD OBCD S S ∆四边形 ∴15AOD ABC S S ∆∆= ∴()218325k k k =⨯+ 解得:10k =(舍去),214k =∴直线AC 的解析式为114y x =+ ②若k 0<,则8AOD BOD S S k ∆∆==-,()232ABC S k k ∆=-+∴()218|32|5k k k -=⨯-+解得:10k =(舍去),214k =(舍去) 综上所述,直线AC 的解析式为114y x =+. (3)由(2)得:()0,1D ,()4,0B∵抛物线1l 绕点P 逆时针旋转180︒得到抛物线2l∴抛物线2l 解析式为:22128y x =-- 设点M 坐标为21(,2)8m m --①若90BDM ∠=︒,如图1,则0m < 过M 作MN y ⊥轴于点N∴90MND BOD BDM ∠=∠=∠=︒,MN m =-,22111(2)388DN m m =---=+ ∴90MDN BDO MDN DMN ∠+∠=∠+∠=︒∴BDO DMN ∠=∠∴BDO DMN ∆∆: ∴BO OD DN MN=,即BO MN DN OD ⋅=⋅ ∴21438m m -=+解得:116m =-+216m =--②若90DBM ∠=︒,如图2,过点M 作MQ x ⊥轴于点Q∴90BQM DBM BDM ∠=∠=∠=︒,4BQ m =-,2211(2)288MQ m m =---=+ ∴90BMQ MBQ MBQ DBO ∠+∠=∠+∠=︒∴BMQ DBO ∠=∠∴BMQ DBO ∆∆: ∴BQ MQ DO BO=,即BQ BO MQ OD ⋅=⋅∴()214428m m -=+解得:116m =-+216m =-- ③若90BMD ∠=︒,则点M 在以BD 为直径的圆除点B 、D 外的圆周上显然以AB 为真径的圆与抛物线2l 无交点,故此情况不存在满足的m综上所述,点M 横坐标为16-+或16--16-+16--BDM ∆为Rt ∆.【点睛】本题考查了二次函数的图象与性质,三角函数的应用,一次函数的图象与性质,求一次函数与二次函数图象交点,解一元二次方程,一元二次方程根与系数的关系,相似三角形的判定和性质.第(2)题由于直线AC 中k 的值不确定需分类讨论计算;第(3)题直角三角形的分类讨论,常规解题方法包括构造相似三角形进行计算和圆周角定理的应用.。
2021年江苏省连云港市中考数学模拟试卷
江苏省连云港市2020-2021学年模拟试卷九年级数学一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.|-2|的相反数与2 的和是( ▲ )A .2B .-2C .0D .4 2.(13)-2等于(▲) A .3 B .-3 C .19 D .93.如图是由7个相同的小正方体组合而成的几何体.这个几何体的左视图是( ▲ )A .B .C .D . 4.如果a (a >0)的平方根是±m ,那么( ▲ )A .a 2=±mB .a =±m 2C .a =±mD .±a =±m 5.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是(▲ )A .y =2x 2+3B .y =2x 2﹣3C .y =2(x+3)2D .y =2(x ﹣3)26.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ABC=120°,则劣弧AC 的长为( ▲ )A .2πB .4πC .5πD .6π7.如图,在△ABC 中,AC=BC=4,∠ACB=90°,若点D 是AB 的中点,分别以点A ,B 为圆心,12AB 长为半径画弧,交AC 于点E ,交BC 于点F ,则图中阴 影部分的面积是( ▲ )A .162π-B .16π-C .82π-D .8π-8.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则点O 到AD 1的距离为( ▲ )A .3B .35C .65D .5二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.将多项式3x x -因式分解,结果是___▲_____.10.当2a =-时,二次根式2a -的值是_______▲____.11.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.所挂质量/x kg 0 1 2 3 4 5 弹簧长度/y cm18 20 22 24 26 28若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为____▲____cm .12.在ABC ∆中,AB AC =,AC 的垂直平分线交AC 于D ,交BC 于E ,若ABE ∆的 周长为10,6BC =,则=AC ___▲___.13.关于x 的方程220--=x x k 有两个相等的实数根,那么k 的值为_____▲____. 14.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以 D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为__▲___.15. 如图是按一定规律排成的三角形数阵,按图中的数阵排列规律,第9行从左至右第5个数是___▲___.16.如图,(n+1)个边长为2的等边三角形△B 1AC 1,△B 2C 1C 2、△B 2C 2C 3,…,△B n+1C n C n+1有一条边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,△B 4D 3C 3的面积为S 3,…,△B n+1D n C n 的面积为S n ,则S 2016=__▲_.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算(2020141142π-⎛⎫--+-- ⎪⎝⎭ 18.(6分)解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解. 19. (6分)在我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B 项目的人数百分比是 ▲ ,其所在扇形统计图中的圆心角的度数是 ▲(2)把条形统计图补充完整;(3)已知该校有750人,估计全校喜欢乒乓球的人数是多少?20.(8分)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是 ▲ ;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)21.(10分)如图ABC 中,60,,ABC AD CE ︒∠=分别平分,BAC ACB AD CE ∠∠、、相交于点P .(1)求CPD ∠的度数;(2)求证:AE CD AC +=22.(10分在全国预防“新冠肺炎”时期,某厂接受了生产一批高质量医用口罩的任务.要求8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只.该厂的生产能力是:每天只能生产一种型号的口罩,若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只.已知生产6只A 型和10只B 型口罩一共获利6元,生产4只A 型和5只B 型口罩一共获利3.5元(1)生产一只A 型口罩和B 型口罩分别获利多少钱?(2)若生产A 型口罩x 万只,该厂这次生产口罩的总利润为y 万元,请求出y 关于x 的函数关系式;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大?最大利润是多少?23.(10分如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE(1)求证:EH=EC;(2)若AB=4,sinA=23,求AD的长.24.(10分已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回,如图是它们离A城的距离y(干米)与行驶时间x(小时)之间的函数图象.(1)求甲车在行驶过程中y与x之间的函数关系式,并写出自变量x的取值范围.(2)说明图中F点的实际意义,并求当F的横坐标为7时,乙车到达B城所用的时间.25.(12分如图是太阳能电池板支撑架的截面图,其中AB=300cm,AB的倾斜角为30°,BE=CA=50cm,FE⊥AB于点E.点D、F到地面的垂直距离均为30cm,点A到地面的垂直距离为50cm.求CD和EF的长度各是多少cm(结果保留根号).26.(12分如图,在平面直角坐标系中,已知抛物线C1:y=32x2+6x+2的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2,直线l:y=kx+b经过M,N两点.(1)求点M的坐标,并结合图象直接写出不等式32x2+6x+2<kx+b的解集;(2)若抛物线C2的顶点D与点M关于原点对称,求p的值及抛物线C2的解析式;(3)若抛物线C1与x轴的交点为E、F,试问四边形EMBD是何种特殊四边形?并说明其理由.。
2021年江苏省连云港市中考数学复习模拟真题试卷附解析
2021年江苏省连云港市中考数学复习模拟真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A .1 B .2 C .3 D .4 2.如图,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )A .1个B .2个C .3个D .4个3. 下列命题中,正确的是( ) A .任意三点确定一个圆 B .平分弦的直径垂直于弦C .圆既是轴对称图形又是中心对称图形;D .垂直弦的直线必过圆心4.若把抛物线22(2)1y x =---先向右平移2个单位,再向上平移3个单位,得到抛物线解析式为( )A .22(4)2y x =--+ B .22(4)4y x =---C .222y x =-+D .224y x =--5.抛物线2(23)y x =-+的对称轴为( ) A . 直线x=-3B .直线32x =-C .直线 y=3D .y 轴6.如图,沿Rt ABC △的中位线DE 剪切一刀后,用得到的ADE △和四边形DBCE 拼图,下列图形中不一定能拼出的是( ) A .平行四边形 B .矩形 C .菱形 D .等腰梯形 7.对角线互相垂直平分的四边形是( )A .矩形B .菱形C .平行四边形D .梯形 8.一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表:24.5 cm 的频率是1%;④1cm 的频率是25%;⑤总数是:22+22.5+23+23.5+24+ 24.5+25=164.5双.其中说法正确的个数有 ( )A .1个B .2个C .3个D .4个 9.在四边形中,钝角最多能有( ) A .1个 B .2个C .3个D .4个10.下列语句不是命题的为 ( ) A .对顶角相等B .两条直线相交而成的相等的角都是对顶角C .画线段AB=3 cmD .若a ∥b ,b ∥c ,则a ∥c11.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定 12.分式方程11888x x x +=+--的根是( )A .x=8B .x=1C .无解D .有无数多个13. 如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒( )A .21B .30C .111D .119二、填空题14.如图,CT 是⊙O 的切线,切点是 T ,CT 和弦AB 的延长线相交于点 C ,且∠C =40°,∠CTB=30°,则∠CTA= .15.为估计新疆巴音布鲁克草原天鹅湖中天鹅的数量. 先捕捉 10 只,全部做上标记后放 飞,过一段时间后,重新捕捉 60 只,数一数带有标记的天鹅有 3 只,据此可推断该地 区大约有天鹅 只. 解答题16. 用 3 倍的放大镜照一个面积为 1 的三角形,放大后的三角形面积是 . 17.已知线段a=4 cm ,c = 9 cm ,线段b 是a 、c 的比例中项,则 b= cm .18.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是 . (添加一个条件即可)19.x 与 2 的和不大于 4,用不等式表示为,它的解集为.20.某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?21.如图,在△ABC中,已知AD=ED,AB=EB,∠A=75°,那么∠1+∠C的度数是.三、解答题22.如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(3 1.73,计算结果保留整数)23.有两个可以自由转动的均匀转盘A B,都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A B,;②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).(1)用列表法(或树状图)分别求出“两个指针所指的数字都是..方程2560x x-+=的解”的概率和“两个指针所指的数字都不是...方程2560x x-+=的解”的概率;(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是..2560x x -+=的解”时,王磊得1分;若“两个指针所指的数字都不是...2560x x -+=的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.24.判断下列各组线段的长度是否成比例,说明理由.(1)1,2,3,4;(2) 2, 4,3, 6;(3)1. 2 ,1. 8 ,30 ,45; (4)11,22 ,44,5525.某涵洞是抛物线型,它的截面如图所示,现测得水面宽 AB 为1.6m ,涵洞顶点 0到水面的距离为2.4 m.(1)求涵洞所在抛物线解析式;(2)如果水面上升 0.4m ,那么水面的宽为多少?26.当x 取什么值时,代数式5134x x +-的值为: (1)负数;(2)非负数;(3)小于2.27.解下列程组:(1)245x y x y +=⎧⎨-=⎩ (2) ⎪⎩⎪⎨⎧=-+=+.11)1(2,231y x y x28.计算:(1)2132x x +;(2)2x y x x +- ;(3)2222x x x x -+-+-;(4)2()a b a b a b a +--; (5) 22525025x x x l x --++;(6)222m m m m n m n m n +-+--29.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店购买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好 !售货员:同学,你好,想买点什么?李小波:我只有 100 元,请帮我安排买 10枝钢笔和 15 本笔记本. 售货员:好,每枝钢笔比每本笔记本贵 2元.退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?30.在城关中学开展的“我为四川地震灾区献爱心”捐书活动中,校团委为了了解八年级同学的捐书情况,用简单的随机抽样方法从八年级的10个班中抽取50名同学,对这50名同学所捐的书进行分类统计后,绘制了如下统计表: 捐书情况统计表(2)若八年级共有475名同学,请你估计八年级同学的捐书总册数及学辅类书的册数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.A5.B6.C7.B8.A9.C10.C11.CC13.A二、填空题 14. 110°15.20016.917.618.略19.x+2≤4,x ≤220.普查21.75°三、解答题 22.解:∵AB =8,BE =15,∴AE =23,在Rt △AED 中,∠DAE =45° ∴DE =AE =23.在Rt △BEC 中,∠CBE =60°∴CE =BE ·tan60°=∴CD =CE -DE =23≈2.95≈3,即这块广告牌的高度约为3米.23.解:(1)解方程2560x x -+=得1223x x ==,2 3 4 1 1,2 1,3 1,4 2 2,2 2,3 2,4 33,23,33,4(或用树状图)由表知:指针所指两数都是该方程解的概率是:49指针所指两数都不是该方程解的概率是:19(2)不公平!411399⨯≠⨯∵. 修改得分规则为:指针所指两个数字都是该方程解时,王磊得1分. 指针所指两个数字都不是该方程解时,张浩得4分. 此时411499⨯=⨯. 24.(1)∵ 1×4≠2×3,∴1,2,3,4 不成比例. (2)由小到大排列为:2,3,4,6,∵2 ×6 = 3 ×4= 12 ∴2,4,3,6成比例,即2346=(3)从小到大排列为:1.2,1.8,30,45,∵1.2 ×45 = 1.8×30 , ∴1. 2 ,1. 8 ,30 ,45 成比例. ( 4 ) ∵1 1 ×55≠22×44 ∴.11,22,44,55 不成比例.25.(1)由已知可设抛物线解析式为2y ax =,又∵A( -0.8 ,-2.4) , 把它代入抛物线得:22.4(0.8)a -=⋅-,∴154a =- ∴ 抛物线的解析式为2154y x =-(2)∵水面上升0.4 m ,(2.40.4)2y =--=-,把y= 一2 代入2154y x =-得:x =26.(1)17x >;(2)17x ≤;(3)x>-1 27.(1)⎩⎨⎧-==23y x ,(2)⎩⎨⎧==15y x 28.(1)262x x +;(2)y x ;(3)284x x --;(4)a b a +;(5)2225(5)(5)x x x ++-;(6)222m m n -29.设钢笔每枝x 元,笔记本每本y 元,则 210151005x y x y =+⎧⎨+=-⎩,解得53x y =⎧⎨=⎩30.(1)图略 (2)估计八年级同学的捐书总册数为 5320册,学辅类书为1330册。
2021-2022学年江苏省连云港市赣榆县重点中学中考数学模拟试题含解析
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃2.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④4.下列几何体中,俯视图为三角形的是( )A.B.C.D.5.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A .8B .6C .12D .106.如图,三棱柱ABC ﹣A 1B 1C 1的侧棱长和底面边长均为2,且侧棱AA 1⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )A .3B .23C .22D .47.﹣23的相反数是( )A .﹣8B .8C .﹣6D .68.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③BC=2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个9.对于代数式ax 2+bx+c(a≠0),下列说法正确的是( )①如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则a 2x +bx+c=a (x-p )(x-q )②存在三个实数m≠n≠s ,使得am 2+bm+c=an 2+bn+c=as 2+bs+c③如果ac <0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c④如果ac >0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+cA .③B .①③C .②④D .①③④ 10.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”.小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:4x 2y ﹣9y 3=_____.12.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______13.如图,矩形ABCD 中,AD=5,∠CAB=30°,点P 是线段AC 上的动点,点Q 是线段CD 上的动点,则AQ+QP 的最小值是___________.14.计算:2(a -b )+3b =___________.15.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为___________ .16.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.三、解答题(共8题,共72分)17.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A 处测得塔顶C 的仰角为30°,向塔的方向移动60米后到达点B ,再次测得塔顶C 的仰角为60°,试通过计算求出文峰塔的高度CD .(结果保留两位小数)18.(8分)如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC .求证:四边形ABCD 是菱形;过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.19.(8分)我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?20.(8分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0n y n x=≠的图象经过点M ,求反比例函数的解析式; (3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.21.(8分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m 元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m %和m %,结果在结算时发现,两种耗材的总价相等,求m 的值.22.(10分)如图,在平面直角坐标系xOy 中,直线y=kx+3与轴、y 轴分别相交于点A 、B ,并与抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D . (1)求k 和b 的值;(2)点G 是y 轴上一点,且以点B 、C 、G 为顶点的三角形与△BCD 相似,求点G 的坐标;(3)在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在y 轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.23.(12分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m 下降到12月份的11340元/2m .求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m ?请说明理由24.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357++⨯++=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.2、D【解析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3、A【解析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4、C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.5、C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.6、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,∴等边三角形的高==故选B.点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.7、B【解析】∵32-=﹣8,﹣8的相反数是8,∴32-的相反数是8,故选B.8、D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB ,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC ﹣DC=4﹣1,∴BD >CE ,故②正确;∵BC=4CD=4,∴CD ,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE 的周长,由折叠可得,DF=AF ,∴△BDF 的周长+(4﹣),∴△DCE 与△BDF 的周长相等,故④正确;故选D .点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、A【解析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立.综上所述,四种说法中正确的是③.故选A.10、C【解析】 试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .二、填空题(本大题共6个小题,每小题3分,共18分)11、y (2x+3y )(2x-3y )【解析】直接提取公因式y ,再利用平方差公式分解因式即可.【详解】4x 2y ﹣9y 3=y(4x 2-9y 2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.12、①②③⑤【解析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误;⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.13、53【解析】作点A 关于直线CD 的对称点E ,作EP ⊥AC 于P ,交CD 于点Q ,此时QA+QP 最短,由QA+QP=QE+PQ=PE 可知,求出PE 即可解决问题.【详解】解:作点A 关于直线CD 的对称点E ,作EP ⊥AC 于P ,交CD 于点Q .∵四边形ABCD 是矩形,∴∠ADC=90°,∴DQ ⊥AE ,∵DE=AD ,∴QE=QA ,∴QA+QP=QE+QP=EP ,∴此时QA+QP最短(垂线段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE•sin60°=10×32=53.故答案为53.【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型.14、2a+b.【解析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.15、3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan∠DBC=COBO=32222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.16、1.5【解析】在Rt △ABC 中,5AC ,∵将△ABC 折叠得△AB′E ,∴AB′=AB ,B′E =BE ,∴B′C =5-3=1.设B′E =BE =x ,则CE =4-x .在Rt △B′CE 中,CE 1=B′E 1+B′C 1,∴(4-x )1=x 1+11.解之得32x =.三、解答题(共8题,共72分)17、51.96米.【解析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt △BDC 中,sin60CD BC︒=,即可求出CD 的长. 【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt △BDC 中, sin60CD BC︒=∴sin606051.96CD BC =⋅︒==≈(米). 答:文峰塔的高度CD 约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.18、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到∠ADB =∠CBD ,根据角平分线定义得到∠ABD =∠CBD ,等量代换得到∠ADB =∠ABD ,根据等腰三角形的判定定理得到AD =AB ,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE =90°,等量代换得到∠CDE =∠E ,根据等腰三角形的判定得到CD =CE =BC ,根据勾股定理得到DE 6,于是得到结论.【详解】(1)证明:∵AD ∥BC ,∴∠ADB =∠CBD ,∵BD 平分∠ABC ,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22BE BD6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.19、1.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1, 所以二进制中的数101011等于十进制中的1.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n 个相同因数积的运算,叫做乘方.20、(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x =得,4n =, ∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.21、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)m 的值为95.【解析】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,根据两种耗材的总价相等列方程求解即可.【详解】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据题意,得18000120002150x x =⨯+. 解方程,得450x =.经检验,450x =是原方程的解,且符合题意 150600x ∴+=.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,由题意得:()()45021 2.5%m a m -⋅+ ()()6001501%a m =-⋅+整理,得2950m m -=解方程,得195m =,20m =(舍去).m ∴的值为95.【点睛】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.22、 (1)k=-12,b=1;(1) (0,1)和1(0,)2【解析】 分析:(1) 由直线3y kx =+经过点()22C ,,可得12k =-.由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =,进而得到A 、B 、D 的坐标,然后分两种情况讨论即可;(3)设E (a ,21742a a -++),E 关于直线AB 的对称点E ′为(0,b ),EE ′与AB 的交点为P .则EE ′⊥AB ,P 为EE ′的中点,列方程组,求解即可得到a 的值,进而得到答案. 详解:(1) 由直线3y kx =+经过点()22C ,,可得12k =-. 由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =.∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B , ∴点A 的坐标是()60,,点B 的坐标是()03,. ∵抛物线的顶点是点D ,∴点D 的坐标是922⎛⎫ ⎪⎝⎭,.∵点G 是y 轴上一点,∴设点G 的坐标是()0m ,.∵△BCG 与△BCD 相似,又由题意知,GBC BCD ∠=∠,∴△BCG 与△BCD 相似有两种可能情况: ①如果BG BC CB CD =52,解得1m =,∴点G 的坐标是()01,. ②如果BG BC CD CB =,那么352m -12m =,∴点G 的坐标是102⎛⎫ ⎪⎝⎭,. 综上所述:符合要求的点G 有两个,其坐标分别是()01,和102⎛⎫ ⎪⎝⎭, .(3)设E (a ,21742a a -++),E 关于直线AB 的对称点E ′为(0,b ),EE ′与AB 的交点为P ,则EE ′⊥AB ,P 为EE ′的中点,∴22174221710423222a a b a a a b a ⎧-++-⎪=⎪⎪⎨⎪-++++⎪=-⨯+⎪⎩ ,整理得:220a a --=,∴(a -1)(a +1)=0,解得:a =-1或a =1.当a =-1时,21742a a -++=94; 当a =1时,21742a a -++=92; ∴点E 的坐标是914⎛⎫- ⎪⎝⎭,或922⎛⎫ ⎪⎝⎭,.点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.23、(1)10%;(1)会跌破10000元/m1.【解析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.24、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省连云港市赣榆区2020-2021学年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是( )A .()a b c a b c -+=-+B .()2211x x =++ C .()33a a -= D .235236a a a =⋅ 2.若a 是一元二次方程x 2﹣x ﹣1=0的一个根,则求代数式a 3﹣2a+1的值时需用到的数学方法是( ) A .待定系数法 B .配方 C .降次 D .消元3.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4B .-1或-4C .1或-4D .1或44.运用乘法公式计算(3﹣a )(a+3)的结果是( )A .a 2﹣6a+9B .a 2﹣9C .9﹣a 2D .a 2﹣3a+95.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .6.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若CD =2,AB =8,则△ABD 的面积是( )A .6B .8C .10D .127.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定8.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个9.下列计算正确的是( )A .x 4•x 4=x 16B .(a+b )2=a 2+b 2C .=±4D .(a 6)2÷(a 4)3=110.如图,在ABC ∆中,90ACB ∠=,6AC =,8BC =,点,P Q 分别在,AB BC 上,AQ CP ⊥于D ,45CQ BP =则ACP ∆的面积为( )A .232B .252C .272D .292二、填空题(共7小题,每小题3分,满分21分)11.若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为______.12.在△ABC 中,AB=AC ,BD ⊥AC 于D ,BE 平分∠ABD 交AC 于E ,sinA=35,BC=210,则 AE=_______.13.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.14.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.15.在函数12xyx-=+中,自变量x的取值范围是_________.16.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.17.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME 的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=▲.三、解答题(共7小题,满分69分)18.(10分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.19.(5分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.20.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.21.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.22.(10分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.23.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.24.(14分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;C、(-a)3=3a ≠3a,故原题计算错误;D、2a2•3a3=6a5,故原题计算正确;故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.2、C【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:a2-a-1=0,∴a2-a=1,或a2-1=a∴a3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.3、C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.4、C【解析】【分析】根据平方差公式计算可得.【详解】解:(3﹣a )(a+3)=32﹣a 2=9﹣a 2,故选C .【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.5、A 。
【解析】如图,∵根据三角形面积公式,当一边OA 固定时,它边上的高最大时,三角形面积最大,∴当PO ⊥AO ,即PO 为三角形OA 边上的高时,△APO 的面积y 最大。
此时,由AB=2,根据勾股定理,得弦。
∴当时,△APO 的面积y 最大,最大面积为y=12。
从而可排除B ,D 选项。
又∵当AP=x=1时,△APO 为等边三角形,它的面积y 1>4,∴此时,点(1)应在y=12的一半上方,从而可排除C 选项。
故选A 。
6、B【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒∴DE=CD=2,∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.7、C【解析】【分析】首先求出方程的根,再利用半径长度,由点O 到直线a 的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【详解】∵x2-4x-12=0,(x+2)(x-6)=0,解得:x 1=-2(不合题意舍去),x 2=6,∵点O 到直线l 距离是方程x 2-4x-12=0的一个根,即为6,∴点O 到直线l 的距离d=6,r=5,∴d >r ,∴直线l 与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.8、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.9、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.10、C【解析】【分析】先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵45 CQBP=,∴CQ=4m,BP=5m,在Rt△ABC中,sinB=35,tanB=34,如图2,过点P作PE⊥BC于E,在Rt△BPE中,PE=BP•sinB=5m×35=3m,tanB=PEBE,∴334 mBE=,∴BE=4m,CE=BC-BE=8-4m,同(1)的方法得,∠1=∠3,∵∠ACQ=∠CEP,∴△ACQ∽△CEP,∴CQ AC PE CE= , ∴46384m m m=- , ∴m=78, ∴PE=3m=218, ∴S △ACP =S △ACB -S △PCB =12BC×AC-12BC×PE=12BC (AC-PE )=12×8×(6-218 )=272,故选C. 【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ ∽△CEP 是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.12、5【解析】∵BD ⊥AC 于D ,∴∠ADB=90°,∴sinA=35BD AB =. 设BD=3x ,则AB=AC=5x ,在Rt △ABD 中,由勾股定理可得:AD=4x ,∴CD=AC-AD=x ,∵在Rt △BDC 中,BD 2+CD 2=BC 2,∴2229x x +=,解得1222x x ==-,(不合题意,舍去),∴AB=10,AD=8,BD=6,∵BE 平分∠ABD , ∴53AE AB ED BD ==, ∴AE=5. 点睛:本题有两个解题关键点:(1)利用sinA=35BD AB =,设BD=3x ,结合其它条件表达出CD ,把条件集中到△BDC 中,结合BC=由勾股定理解出x ,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”. 13、34. 【解析】【详解】解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=34; 故答案为34. 【点睛】 本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.14、6【解析】设这个扇形的半径为r ,根据题意可得:2606360r ππ=,解得:6r =. 故答案为6.15、x≤1且x≠﹣1【解析】试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.16、43【解析】【分析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c ) ∴OA=0.5c,OB=1163c ⨯=163c, ∴S △AOB =1·2OA OB =1160.523c c ⨯⨯=43 【点睛】 此题主要考查反比例函数的图像,解题的关键是根据题意设出C 点坐标进行求解.17、2n 12- 【解析】连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM .∴△AME 与△AMB 同底等高.∴△AME 的面积=△AMB 的面积.∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=n -1时,△AME 的面积为()2n 1S n 12=-. ∴当n≥2时,()()()22n n 11112n 1S S n n 1=n+n 1n n+1=2222---=----三、解答题(共7小题,满分69分)18、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.【解析】试题分析:(1)在Rt △ABE 中,根据的正切值即可求得楼高;(2)当时,从点B 射下的光线与地面AD 的交点为F,与MC 的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC 这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在Rt △ABE 中,∵, ∴BA=10tan60°=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.∵∠BFA=45°,∴,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上.∴小猫仍可晒到太阳.考点:解直角三角形.19、﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】>-解:解不等式(1),得x3解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,220、证明见解析.【解析】【分析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 21、(1)14;(2)16. 【解析】【分析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可; (2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形, ∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14; (2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B 、C 共有2种情况,所以,P (抽出的两张卡片的图形是中心对称图形)21126=. 【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22、见解析【解析】试题分析:依据题意,可通过证△ABC ≌△EFD 来得出AB=EF 的结论,两三角形中,已知的条件有AB ∥EF 即∠B=∠F ,∠A=∠E ,BD=CF ,即BC=DF ;可根据AAS 判定两三角形全等解题.证明:∵AB ∥EF ,∴∠B=∠F .又∵BD=CF ,∴BC=FD .在△ABC与△EFD 中,∴△ABC≌△EFD(AAS),∴AB=EF.23、y=2x2+x﹣3,C点坐标为(﹣32,0)或(2,7)【解析】【分析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得32 ca b ca b c=-⎧⎪++=⎨⎪-+=-⎩,解得213 abc=⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣32,m2=2,∴C点坐标为(﹣32,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.24、见解析【解析】【分析】根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一. 【详解】如图为画出的菱形:【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.2020-2021中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。