工程热力学第十章lm

合集下载

清华大学热工基础课件工程热力学加传热学11第十章-对流换热、单相流体

清华大学热工基础课件工程热力学加传热学11第十章-对流换热、单相流体

综上所述,边界层具有以下特征: (a) 、t l
(b) 流场划分为边界层区和主流区。流动边界层内存 在较大的速度梯度,是发生动量扩散(即粘性力作用) 的主要区域。主流区的流体可近似为理想流体;热边 界层内存在较大的温度梯度,是发生热量扩散的主要 区域,热边界层之外温度梯度可以忽略;
(c) 根据流动状态,边界层分为层流边界层和湍流边 界层。湍流边界层分为层流底层、缓冲层与湍流核心 三层结构。层流底层内的速度梯度和温度梯度远大于 湍流核心;
20
局部表面传热系数的变化趋势:
流动边界层厚度 与热边界层厚度t的比较 :
两种边界层厚度的相对大小取决于流体运动粘度 与
热扩散率a的相对大小。令
对于层流边界层:Pr≥1 t ;Pr≤1 t
Pr a
对于湍流边界层: t
普朗特数
一般液体:Pr=0.6~4000;气体:Pr=0.6~0.8。 21
4
(2) 流动的状态
层流 湍流
:流速缓慢,流体分层地平行于壁面方 向流动,垂直于流动方向上的热量传递 主要靠分子扩散(即导热)。
:流体内存在强烈的脉动和旋涡,使各 部分流体之间迅速混合,因此湍流对流 换热要比层流对流换热强烈,表面传热 系数大。
(3) 流体有无相变 沸腾换热 凝结换热
5
(4) 流体的物理性质
7
(5) 换热表面的几何因素
换热表面的几何形状、尺 寸、相对位置以及表面粗糙 度等几何因素将影响流体的 流动状态,因此影响流体的 速度分布和温度分布,对对 流换热产生影响。
影响对流换热的因素很
多,表面传热系数是很多变
量的函数,
特征长度(定型尺寸)
h fu ,t w ,t f, , ,c , , ,l,

工程热力学 第十章 制冷循环

工程热力学 第十章 制冷循环
35
制冷剂其他性质
❖对环境友善 ❖安全无毒 ❖ 溶油性好,化学稳定性好
36
制冷剂种类
(1)无机化合物:氨R717、水R718、二氧 化碳R744、二氧化硫R764等。
(2)氟里昂:氟里昂是饱和碳氢化合物(饱 和烃类)的卤族衍生物的总称,最常用的 有R12、R22、R14和R134a等。
(3)混合溶液:由两种或两种以上不同的制 冷剂按一定比例相互溶解而成的混合物。 主要有R502(R22和R115)、R407C (R32/R125/R134a)。
2-3 为过 热 蒸 气 在 冷 凝 器 中定压放热被冷凝的过程;
3-4 为饱 和 液 体 在 节 流 阀 中节流、降压、降温的过 程;
4-1 为湿 饱 和 蒸 气 在 蒸 发
器中定压吸热、汽化的过
程。
22
制冷系数
c
qo wnet
qo h1-h3 qk-qo h2-h1
T1 T4 T2 T1
20
压缩蒸气制冷循环
用低沸点物质(大气压 下的沸点低于0℃)作为工 质(制冷剂),利用其在 定压下汽化和凝结时温度 不变的特性实现定温放热 和定温吸热,可以大大提 高制冷系数;制冷剂的汽 化潜热较大,因此制冷量 大。
21
压缩蒸气制冷循环
1-2 为从 蒸 发 器 中 出 来 的 蒸气在压缩机中被可逆绝 热压缩的过程;
(4)碳氢化合物:碳氢化合物制冷剂有甲烷、
乙烷、丙烷、乙烯、丙烯和异丁烷R600a
等。
37
课后思考题
❖压缩蒸气制冷循环采用节流阀来代替膨胀 机,压缩空气制冷循环是否也可以采用这 种方法?为什么?
❖对逆向卡诺循环而言,冷、热源温差越大, 制冷系数是越大还是越小?为什么?

10工程热力学第十章 水蒸气及蒸汽动力循环

10工程热力学第十章 水蒸气及蒸汽动力循环

10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.

工程热力学第十章 动力循环

工程热力学第十章 动力循环

h3)
(h1 h6 ) (h1 h2 ) (h1 h3) (h1 h6 )
第三节 热电循环
一、背压式热电循环 排汽压力高于大气压力的汽轮机称为背压式汽轮机
二、调节抽气式热电循环
第四章 内燃机循环
气体动力循环按热机的工作原理分类,可分为内燃 机循环和燃气轮机循环两类。内燃机的燃烧过程在热机 的汽缸中进行,燃气轮机的燃烧过程在热机外的燃烧室 中进行燃气轮机主要有三部分组成:燃气轮机、压气机和燃烧 室
工质的吸热量 放热量
循环的热效率
q1 c p (T3 T2 )
q 2 c p (T4 T1 )
t
1
q2 q1
1 T4 T1 T3 T2
1
T1 (T4 T2 (T3
T 1 1) T 2 1)
二、定压加热循环
工质吸热、放热和循环热效率:
q1 cp(T3 T2), q2 cv(T4 T1)
t
1q2 q1
1cp(T4 T1) cv(T3 T2)
11 T1(T4T11)
T2(T3T2 1)
T1 T2
v2 v1
1
1 1
,
T4 T1
v3 v2
t,p
1
1 ( 1) 1
1cv(T4T1) 1T1(T4T11)
cv(T3T2)
T2(T3T21)
v3=v2,v4=v1,故
T2 T1
vv121
T3 T4
vv431
T2 T3 , T1 T4
T4 T3 T1 T2
t
1 T1 T2
1 1
T2 T1
1
1
v1 v2
1
1
1 k1
v1 v2

工程热力学第10章答案

工程热力学第10章答案

第10章 制冷循环第10章 制冷循环10-1 在商业上还用“冷吨”表示制冷量的大小,1“冷吨”表示1吨0℃的水在24小时冷冻到0℃冰所需要的制冷量。

证明1冷吨=3.86kJ/s 。

已知在1标准大气压下冰的融化热为333.4kJ/kg 。

解:1冷吨=333.4 kJ/kg ×1吨/24小时=333.4×1000/(24×3600) kJ/s=3.86kJ/s压气机入口T 1= 263.15K 压气机出口 K T T kk 773.416515.2634.114.1112=×==−−π冷却器出口T 3=293.15K 膨胀机出口 K T T kk 069.185515.2934.114.1134===−−π制冷量 ()()kg kJ T T c q p c /393.78069.18515.263004.141=−×=−= 制冷系数第10章 制冷循环()()()()71.1069.18515.26315.293773.416069.18515.263413241=−−−−=−−−−==T T T T T T w q net c ε10-4 压缩空气制冷循环中,压气机和膨胀机的绝热效率均为0.85。

若放热过程的终温为20℃,吸热过程的终温为0℃,增压比π=3,空气可视为定比热容的理想气体,c p =1.004kJ/(kg·K ),k =1.4。

求:(1)画出此制冷循环的T-s 图;(2)循环的平均吸热温度、平均放热温度和制冷系数。

433'4循环的平均吸热温度 ()K T T T T s q T cc 887.248986.22515.273ln 986.22515.273ln 414114=−=−=∆=′′′ 循环的平均放热温度 ()K T T T T s q T 965.33915.293638.391ln 15.293638.391ln32322300=−=−=∆=′′′第10章 制冷循环循环的制冷系数921.0)896.22515.293()15.273638.391(986.22515.273)()(/431/2/41=−−−−=−−−−=T T T T T T ε10-5 某压缩蒸气制冷循环用氨作制冷剂。

《工程热力学》教学课件第10-11章

《工程热力学》教学课件第10-11章
wc,s wc,n wc,T
温度比较:
T2,s T2,n T2,T
工程热力学 Thermodynamics 第二节 余隙容积的影响
余隙比: Vc 0.03 ~ 0.08
Vh
p3
2
g
p 2
p2
f
6
4
1
0 Vc
V V1 V4
V
V4 V6
Vh V1 V3
Vh
3
2
p2
3
2
p2
6
4 4
0
Vc
t 1 qL qH 1 431 879 51% 或t 11 1 11 61.41 51.2%
工程热力学 Thermodynamics
柴油机循环
一、柴油机的实际循环与循环的p-V 图
工程热力学 Thermodynamics 二、定压加热理想循环——狄塞尔(Diesel)循环
(一)过程组成
第一节 单级活塞式压气机
一、结构图
二、工作过程
工程热力学 Thermodynamics 三、耗功计算
等熵过程: 多变过程: 等温过程:
能量方程:Wc Wt
1
wc,s
1
RgT1
p2 p1
1
n1
wc,n
n n1
RgT1
p2 p1
n
1
wc,T
RgT1 ln
p2 p1
功量比较:
解:(1) 空气物性参数:
Rg 0.287 kJ (kg K)
cp 1.004 kJ (kg K)
工程热力学 Thermodynamics
可逆压缩的气体出口温度
T2
1
T1
T1

工程热力学-第十章动力循环之朗肯循环

工程热力学-第十章动力循环之朗肯循环

02
初参数对朗肯循环热效率的影响
1. 初温t1
T 1 T 2不变 t
或 循环1t2t3561t =循环123561+循环11t2t21
t11t2t21
t123561
t
02
2. 初压力 p1
T 1 ,T 2不变 t 但 x2下降且 p太高造成强度问题
3. 背压 p2
实际并不实行 卡诺循环
01
02. 朗肯循环的热效率
02
朗肯循环的热效率
t

wn wt,T wt,P
wt,T h1 h2 ? cp T1 T2
wt,P h4 h3
wnet h1 h2 h4 h3
02 T 1不变 ,T 2 t 但受制于环境温度,不能任意
降低 p2 6kPa,ts 36.17 C; p2 4kPa,ts 28.95 C
同时,x2下降 。
思考: 我国幅员辽阔,四季温差大,对蒸汽发电机组有什么影响?
THANK YOU
第十章 动力循环 之
朗肯循环
CONTENTS
01. 朗肯循环的流程 02. 朗肯循环的热效率
01. 朗肯循环的流程
01
朗肯循环 (Rankine cycle)
1)流程图
2)p-v,T-s图
01
3)水蒸气的卡诺循环
水蒸气卡诺循环有可能实现,但:
(1)温限小 (2)膨胀末端x太小 (3)压缩两相物质的困难
t

h1 h2 h1 h3

h1 h2 h1 h2'
5)耗汽率(steam rate)及耗汽量
理想耗汽率(ideal steam rate) d0 —装置每输出单位功量所消耗的蒸汽量

工程热力学与传热学 第十章 气体动力循环

工程热力学与传热学 第十章 气体动力循环

在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;

工程热力学(第三版)习题答案全解第十章可打印

工程热力学(第三版)习题答案全解第十章可打印

= T2
+ q1 cV
= T2
q1 cp /κ
= 774.05K +
650kJ/kg
1.005kJ/(kg ⋅ K)/1.4
= 1679.52K
p3
=
RgT3 v3
=
287J/(kg ⋅ K)×1679.52K 0.08844m3/kg
=
5.450MPa
v4 = v1
p4
=
p3
v3 v4
κ
=
的温度和压力;(2)循环热效率,并与同温度限的卡诺循环热效率作 比较;(3)平均有效压力。
解:(1)各点的温度和压力
v1
=
RgT1 p1
=
287J/(kg ⋅ K)× (35 + 273.15)K 100×103 Pa
=
0.8844m3/kg
v2
=
v1 ε
=
0.8844m3/kg 10
=
0.08844m3/kg
=
v1 v2
= 15 ,
定容升压比 λ = p3 = 1.4 ,定压预胀比 ρ = v4 = 1.45 ,试分析计算循环
p2
v3
各点温度、压力、比体积及循环热效率。设工质比热容取定值,
cp = 1.005kJ/(kg ⋅ K) , cV = 0.718kJ/(kg ⋅ K) 。
解: Rg = cp − cV = 1.005kJ/(kg ⋅ K) − 0.718kJ/(kg ⋅ K) = 0.287kJ/(kg ⋅ K)
=
4.431×106 Pa × 0.0637m3 / kg 287J/(kg ⋅ K)
= 983.52K
v3 = v2

工程热力学第十章_湿空气

工程热力学第十章_湿空气
判别依据:湿空气中水蒸气的状态 未饱和湿空气-水蒸气的状态是过热状态 饱和湿空气-水蒸气的状态是饱和状态
一 概述
2 饱和湿空气和未饱和湿空气
p T
3
t
pv
1
2
3
1
pv
2
v
s
状态1为未饱和湿空气
状态2、3为饱和湿空气
二 湿空气的湿度
1 绝对湿度
1m3湿空气中所含水蒸气的质量。
在数值上绝对湿度等于水蒸气的密度,所以绝对
1 湿空气的焓
湿空气的焓等于干空气的焓与水蒸气的焓之和
H=Ha+Hv=maha+mvh
湿空气的比焓是指含有1kg干空气的湿空气的焓
值,
h
H ma

maha mvhv ma

ha
0.001dhv
基准是单位质量干空气,即等于1kg干空 气的焓和0.001dkg水蒸气的焓之总和
1 湿空气的焓
取0℃时干空气的焓值为零,则干空气的焓可按下 式计算:
ha=cpt=1.004t kJ/kg(干空气)
由于压力不太高的情况下湿空气中的水蒸汽可看 作理想气体,故其焓值的近似计算式为:
hv=2501+1.86t kJ/kg (干空气)
因此
h=1.004t+0.001d(2501+1.86t) kJ/kg (干空气)
三 湿空气的焓、露点温度与湿球温度
2 露点温度
湿度也用符号v表示。
v

1 vv

pv RvT
注意
T一定条件下,绝对湿度仅取决于水蒸气的分压力pv。它反 映了湿空气中水蒸气的疏密程度,并不直接表示湿空气的吸
湿能力和干燥潮湿程度。

西建工程热力学课件10动力循环

西建工程热力学课件10动力循环

3、混合加热循环
§10.5 燃气轮机循环
1、简单燃气轮机定压加热循环
(布雷顿(Brayton)循环) (1)工作原理
2、分析计算
2、分析计算
2、分析计算
3、燃汽轮机装置的优缺点及应用
优点
应用
缺点
本章作业 P202:10-2、10-6、10-11
➢ 热电循环原理
➢ 内燃机、燃气轮机循环原理及其能量分 析、热效率计算
§10.1 蒸汽动力基本循环—朗肯循环
1、装置与流程 (1)四个主要设备:
(2)
(3)p-v图
(4)T-S图
(5)焓熵图
2、
(1) (2)
(3)取锅炉为控制体
(4)
(6)朗肯循环热效率
3、提高朗肯循环热效率的基本途径
目的:克服汽轮机尾部蒸 汽湿度过大造成的危害。
2、再热循环
高压汽轮 机
低压汽轮机
相当于在朗肯循环的基础上 增加了新的循环:
6 1' 2' 2 6。
一般而言,采用一次再热循环以后,循 环热效率可提高2%~ 4%左右。 实际应用的再热次数一般不超过两次。

q1 (h1 h3 ) (h1' h6 )
q2 h2' h3

目前超高压以上(如蒸汽 初压13MPa、24MPa或更高) 的大型发电厂几乎毫无例外 地采用再热循环。
我国制造的超临界压力 100万kW的汽轮发电机组即 为一次中间再热式的,进汽 初参数为27.46MPa、 605℃,再热参数为 5.94MPa、603℃。
现代蒸汽动力厂循环,即使采用超高蒸汽参数、回热、 再热等措施,其热效率仍不超过50%。
燃料喷射停止后,燃烧随即结束,这时活 塞靠高温高压燃烧产物的绝热膨胀而继续 被推向右方而形成工作过程3-4; ➢排气过程4-0;

工程热力学-第十章动力循环之其他循环

工程热力学-第十章动力循环之其他循环
03
循环热量利用系数
已利用的热量
工质从热源所吸收的热量
> 循环热效率
循环热量利用系数没有区分热能与电能的本质差别; 循环热效率没考虑低温热能的可利用性
热电厂热量利用系数



利用的热量 燃料的总释热量
THANK YOU
3)回热器中过程不可逆,为什么 循环ηt 上升?
03. 热电联产
03
热电联产(power-and-heating plant cycle)
一、背压式设备流程及T-s图
特点—发电量受热负荷制约。
03
二、抽汽凝汽式设备流程及T-s图
特点—热负荷变动对电能生产影响较小,热效率较背压机组高。
三、热量利用系数
第十章 动力循环 之
其他循环
CONTENTS
01. 再热循环 02. 回热循环 03. 热电联产
01. 再热循环
01
再热循环(reheat cycle)
一、设备流程及T-s图
二、再热对循环效率的影响
01
忽略泵功:
wnet h1 h5 h6 h7
q1 h1 h3 h6 h5
回热器两种方式
混合式
间壁式
02
二、回热循环计算
02
1. 抽汽量
能量方程:
1 h4 h01 h01' 0
忽略泵功 h4 h2' h01' h2'
h01 h2'
2. 回热器(regenerator)R 熵方程:
1 s2' s01 s01' Sf Sg
t

wnet q1

第10章 对流换热(中文课件)

第10章 对流换热(中文课件)
郭煜《工程热力学与传热学 》
工程热力学与传热学
传热学 第十章 对流换热
郭煜 中国石油大学(北京)机械与储运工程学院
郭煜《工程热力学与传热学 》
第十章 对流换热
内容要求
掌握对流换热问题的机理和影响因素 了解对流换热的数学描述 边界层理论概述与边界层内对流换热微分方程组的简化 外掠等壁温平板层流换热分析解简介 掌握对流换热的实验研究方法,相似原理 各种典型对流换热的基本特点和计算方法
tw — 固体表面的平均温度。 tf — 流体温度。
• 外部绕流(外掠平板,圆管): tf 为流体的主流温度。
• 内部流动(各种形状槽道内的流动): tf 为流体的平均温度。
tf
d
外部绕流
管内流动
郭煜《工程热力学与传热学 》
4. 局部表面传热系数与平均表面传热系数
局部对流换热时,局部热流密度:
郭煜《工程热力学与传热学 》
2. 流动的状态 —— 层流流动与湍流流动
层流(Laminar flow)
流速缓慢 沿轴线或平行于壁面作规则分层运动 热量传递:主要靠导热(垂直于流动方向)
u∞ tf
u∞ uq
导热
u∞
u
导热qBiblioteka 0 层流边界层x管内层流流动
Example Oils-- the flow of high-viscosity fluid at
(管内强制对流换热,外掠壁温强制对流换热, 自然对流换热等)
郭煜《工程热力学与传热学 》
10-1 对流换热概述
10-1-1 基本概念和计算公式
1. 对流换热(Convection heat transfer)
流体流过另一个物体表面时,对流和导热联合起作用 的热量传递现象。

工程热力学第十章(湿空气)09(理工)(沈维道第四版)

工程热力学第十章(湿空气)09(理工)(沈维道第四版)

1kg干空气基准 干空气基准) (1kg干空气基准)
s = sa + d ⋅ sv
湿空气的比体积: 湿空气的比体积:
m R T V M mRmT R RgT 3 == = va = (1+ d ) v= m /kg(a) ma Mp p a a m aa a a
mRmT V= pM
m3
§10-3 湿空气的焓湿图
三、描述湿空气的参数
除p、v、T、h外,引入专用参数: 外
湿度、含湿量
湿空气的压力p为:
后面讲授
p = pa + pv
干空气的分压 水蒸气的分压
下标a:空气 下标 :空气(air) 下标v:水蒸气(vapor) 下标 :水蒸气 下标s:饱和水蒸气 下标 : (saturation )
四、未饱和湿空气 过热蒸汽 水蒸气 饱和蒸汽
kg水蒸气 3湿空气 水蒸气/m 水蒸气 说明湿空气 湿空气在该 不能说明湿空气在该 状态下的干湿程度
不常用! 不常用!
二、相对湿度
在相同的温度下: 在相同的温度下:
0 ≤ pv ≤ p s
相对湿度: 湿空气中水蒸气的实际分压与 相对湿度: 湿空气中水蒸气的实际分压与同温 指 水蒸气的饱和压力之比 之比。 度下水蒸气的饱和压力之比。 =1 饱和湿空气 0 < f < 1 未饱和湿空气 =0 干空气 表明湿空气 同温下饱和湿空气的 湿空气与 表明湿空气与同温下饱和湿空气的偏离程度 反映所含水蒸气的 所含水蒸气 反映所含水蒸气的饱和程度 f 干燥,吸水能力强 越干燥,吸水能力强 f 湿润,吸水能力低 越湿润,吸水能力低
与横坐标呈135度的平行斜线组 度 与横坐标呈
h
135度 度 h

工程热力学10-气体的压缩

工程热力学10-气体的压缩




0
0

1
效率
C,s



0
0
1
RgT1
wC,n

n n 1
p1v1

p2 p1
n1
n
1


n n 1

p1v1


n1 n
1

增压比 p2
p1
定比热理想气体
wC,n

n
n 1
RgT1


n1 n
1

wC,T RgT1 ln
wC,s



为使wC, n最小,令
dwC,n 0 dp2
p2 p1 p4
p2 p4 p4
p1 p2 p3
如果第一级和第二级气缸采用相同的
增压比




p2 p1

p4 p3

,那么压气机消耗的
功将是最少的
这时两个气缸消耗的功相等,压气机 消耗的功是每个气缸消耗功的两倍
wC,n

2
n
n
1
RgT1


n1 n
1
由于有中间冷却器, 压气机少消耗的功如 图中面积23452所示
推广言之,对m级的多级压气机,各级
1
增压比



pmax pmin
m
压气机消耗的功为每一级气缸消耗功
的m倍
wC,n

m
n n 1

RgT1
n1 n

p2 p1

工程热力学WORD版第10章气体动力循环

工程热力学WORD版第10章气体动力循环

第10章气体动力循环一、教案设计教学目标:使学生掌握分析动力循环的一般方法;了解活塞式内燃机实际循环的分析方法;了解燃气轮机循环的分析方法。

知识点:分析动力循环的一般方法;活塞式内燃机实际循环的简化;活塞式内燃机的理想循环;活塞式内燃机各种理想循环的热力学比较;燃气轮机装置循环;燃气轮机装置的定压加热实际循环。

重点:分析动力循环的一般方法;活塞式内燃机循环分析;燃气轮机装置循环的分析方法,提高燃气轮机装置循环效率的方法和途径。

难点:实际循环简化成理想循环的方法;提高内燃机和燃气轮机装置循环效率的方法和途径。

教学方式:讲授+多媒体演示+课堂讨论师生互动设计:提问+启发+讨论问:你知道汽车为什么会走?问:你以前知道内燃机吗?有哪些装置组成?又是怎么工作的?问:你知道柴油机与汽油机的区别吗?问:你知道燃汽轮机发电是怎么回事吗?学时分配:4学时二、基本知识第一节动力循环分析的目的与一般方法一、分析的目的在热力学基本定律的基础上分析循环过程中能量转换的经济性,寻求提高经济性的方向及途径。

二、分析方法与步骤1. 将实际循环抽象和简化为理想循环2. 将简化好的理想可逆循环表示在p-v、T-s图上3. 对理想循环进行分析计算:计算循环中有关状态点(如最高压力点、最高温度点)的参数,与外界交换的热量、功量以及循环热效率或工作系数。

动力循环的热效率:-W net _ 1q2q i q i4、定性分析各主要参数对理想循环的吸热量、放热量及净功量的影响,进而分析对循环热 效率(或工作系数)的影响,提出提高循环热效率(或工作系数)的主要措施。

平均温度分析法:—5、 对理想循环的计算结果引入必要的修正6、 对实际循环进行热力学第二定律分析:熵分析 火用分析第二节 内燃机动力循环的分类一、分类按工作方式不同可分为:活塞式内燃机,叶轮式燃气轮机,喷气发动机汽油机 点燃式内燃机煤气机I 压燃式内烘机一岂油机二,汽油机1模型简化实际彳盾环的简化、理想化① 空气与燃气理想化为定比热客的理想气体; ② 开式循环理想化为闭式循环:③ 燃烧、排气过殺理想化为工质的吸、放热过程; ④ 压缩与膨胀过程理想彳匕为可逆绝热过程G2、汽油机理论循环一定容加热循环(奥托循环)活塞式内燃机:^JX?Ju n rs.u.吸建鼻9产3爲一⑪放热量6 = 4'石-兀1S环净功珂二如一心AS环删率SWtvT4=1飞3二g则T3T4 -TT3 J "唔"川2tv定窖加驷环的计算v影响发动机的正常工作。

工程热力学第十章答案沈维道

工程热力学第十章答案沈维道

工程热力学第十章答案第一节1. 什么是能量转换的一般定理?能量转换的一般定理是能量守恒定律在边界上的推广。

根据这个定理,封闭系统的能量转化率等于系统边界的能量通量。

即$$\\sum \\dot{Q}_i - \\sum \\dot{W}_i = \\sum(\\dot{Q}_{i, out} - \\dot{Q}_{i, in})$$其中,$\\sum \\dot{Q}_i$ 表示系统吸收的热量,$\\sum\\dot{W}_i$ 表示系统所做的功,$\\sum (\\dot{Q}_{i, out} -\\dot{Q}_{i, in})$表示系统通过边界进出的热能。

2. 什么是无源设备和有源设备?无源设备是指在设备处于稳态运行时,不会将外界能量转化为工作能量的设备。

例如,容器内的气体压力可以用于充当无源设备。

而有源设备则是指能够将一种形式的能量转化为另一种形式的设备,例如蒸汽轮机和内燃机。

3. 什么是热机?热机是指利用能量传递方式为供热,能量转换方式为机械功的设备。

热机通过在工作物质中产生温度差,利用温度差的利用能量转化为机械功。

常见的热机有汽车发动机、发电厂中的汽轮机等。

4. 内燃机和外燃机有什么区别?内燃机和外燃机是两种常见类型的热机。

它们的区别在于燃烧过程发生的地点不同。

在内燃机中,燃烧发生在工作物质内部,而外燃机中,燃烧过程发生在工作物质的外部。

内燃机通常使用可燃混合物直接进入工作缸内进行燃烧,如汽油机和柴油机。

而外燃机则通过燃烧来加热工作物质外部的热媒体,如水蒸气,然后通过热交换器将热能传给工作物质,如蒸汽轮机。

第二节1. 定义和计算最大功率输出的效率。

最大功率输出的效率是指达到最大功率时,能量的利用效率。

在热力学中,最大功率输出的效率用热功率除以热源的输入功率来计算。

即$$\\eta = \\frac{P_{out}}{P_{in}}$$其中,P PPP表示输出的功率,P PP表示输入的功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空,大型轮船,移动电站 联合循环的顶循环
工程热力学第十章lm
研究内容和研究方法
研究内容:两类动力循环的构成、特点以及提高动力 循环热力性能的途径。
实际动力循环非常复杂 不可逆,多变指数变化,燃烧等
工程热力学研究方法,先对实际动力循环进行抽 象和理想化,形成各种理想循环进行分析,最后 进行修正。
工程热力学第十章lm
研究目的:合理安排循环,提高热效率
按工质
燃气动力循环:内燃机,如汽油机、柴油机等
理想气体
空气为主的燃气
蒸汽动力循环:外燃机,如蒸汽机、汽轮机
实际气体
水蒸气、氨、氟利昂等
工程热力学第十章lm
动力循环的分类
按结构
活塞式 piston engine 汽车,摩托,小型轮船
叶轮式
Gas turbine cycle
s
工程热力学第十章lm
提高循环热效率的途径
改变循环参数 改变循环形式
联合循环
提高初温度 提高初压力 降低乏汽压力
再热循环 Reheat 回热循环 Regenerative
热电联产 Cogeneration 燃气-蒸汽联合循环
IGCC 新型动力循环 PFBC-CC
…...
工程热力学第十章lm
极限回热循环
放热量:
q2,RG 1 h2 h2'
3
2
净功:wRG h1 ha
s
1 ha h2
热效率:
t,RG
h1
ha
1 ha
h1 ha'
h2
工程热力学第十章lm
为什么抽汽回热热效率提高
T
1kg
6
kg
5
4
(1- )kg
3
1
t,RG 1
h1 h2'
h2 h2'
1
朗肯循环
水蒸气动力循环系统
汽轮机 锅 炉
发电机
凝汽器
四个主要装置: 锅炉 汽轮机 凝汽器 给水泵
给水泵
工程热力学第十章lm
水蒸气动力循环系统的简化
简化(理想化):
汽轮机
12 汽轮机 s 膨胀


23 凝汽器 p 放热
发电机
34 给水泵 s 压缩
凝汽器 41 锅炉 p 吸热
给水泵
工程热力学第十章lm
1 1kg
4
T
5
2
4
3
3
极限回热循环与同温度范围内的卡诺循环热效率相等 实际上无法实现: 1.蒸汽速度很高,零温差传热无法实现 2.膨胀做功后蒸汽干度过低,工影程响热力汽学轮第十机章正lm 常工作。
1 6
2 s
抽汽式回热循环
1 1kg
a2
α kg
6
3
5
4
(1-α )kg
抽汽 冷凝水
去凝汽器 表面式回热器
5
4'
4 3
优点:
1' 1 6'
• T1 t
v •
,汽轮机出口尺寸
小 2'
6
2' 2
缺点: • 对强度要求高
x •全。一2' 般不要利求于出汽口轮干机度安大
于0.86~ 0.88
s
工程热力学第十章lm
蒸汽初温对朗肯循环热效率的影响
p1 , p2不变,t1
优点:
T
1'
1
• T1 t
x • 2' ,有利于汽机安全。
4
t
h1 h1
h2 h3
3
工程热力学第十章lm
1 2
s
朗肯循环与卡诺循环的比较
T 4'
9
5
1 10
6
对比同温限1234’ • q2相同; • q1卡诺> q1朗肯
• 卡诺> 朗肯; •等温吸
热4’1难实现
对比5678 • wnet卡诺< wnet 朗肯
4 3 8 12
11 7 2
s
工程热力学第十章lm
对比9-10-11-12
• 11点x太小,不利于汽机 强度; • 12-9两相区难 压缩; • wnet卡诺小
如何提高朗肯循环的热效率
T
5 4
3
1 6
2 s
工程热力学第十章lm
t
h1 h1
h2 h3
影响热效率的参 数?
p1 t1 p2
蒸汽初压对朗肯循环热效率的影响
t1 , p2不变,p1
T
5'
5
6
缺点:
4
• 对耐热及强度要求高, 目前初温一般在550℃
3
2 2'
左右
v• 2' 汽机出口尺寸大
s 工程热力学第十章lm
乏汽压力对朗肯循环热效率的影响
p1 , t1不变,p2
T 1
5
6
4
2
4' 3
3'
2'
优点:
• T2 t
缺点: •受环境温度限制,现在大 型机组p2为3~4kPa,相应的 饱和温度约为24~ 29℃ ,已 接近事实上可能达到的最低 限度。——冬天热效率高
1kg
6
kg
a
5
4
(1- )kg
3
2
热一律
ha 1 h4 1 h5
h5 h4
ha h4
1kg 5
s a kg
(1- )kg
4 工程热力学第十章lm
忽略泵功
h5 h3
ha h3
抽汽回热循环热效率
T
1
1kg 6 kg
a
4 5 (1- )kg
吸热量:
q1,RG h1 h5 h1 ha'
工程热力学
Engineering Thermodynamics
工程热力学第十章lm
第十章 动力循环
蒸汽动力基本循环 回热循环和再热循环 热电循环 内燃机循环 燃气轮机循环
工程热力学第十章lm
动力循环研究目的和分类
热机(热力原动机):将热能转化为机械能的设备 动力循环:热机的工作循环 工质连续不断地将从高温热源取得的热量的一部分转换成 对外的净功
郎肯循环
朗肯循环图
p 4
3
12 汽轮机 s 膨胀
1Байду номын сангаас
23 凝汽器 p 放热
34 给水泵 s 压缩
2
41 锅炉 p 吸热
v
工程热力学第十章lm
朗肯循环图
12 汽轮机 s 膨胀 34 给水泵 s 压缩 T
1
23 凝汽器 p 放热 41 锅炉 p 吸热
h 1
4
4
2
3
2
3
s工程热力学第十章lm
s
朗肯循环能量分析
给水
抽汽 冷凝水
抽汽式回热
工程热力学第十章lm
混合式回热器
抽汽回热循环
T
1
1kg
6
kg
a
5
4
(1- )kg
3
2
1 1kg
a2
α kg
6
3
5
4
(1-α )kg
s
由于T-s图上各点质量不同,
面积不再直接代表热和功
1kg
5 工程热力学第十章lm
a kg (1- )kg
4
抽汽量的计算
T
1
以混合式回热器为例
h1 ha
a
简单朗肯循环:t
1
h2 h1
h2' h2'
2
1
h1
ha
0
s
t,RG t
工程热力学第十章lm
蒸汽抽汽回热循环的特点
•优点 >缺点 提高热效率 减小汽轮机低压缸尺寸,末级叶片变短 减小凝汽器尺寸,减小锅炉受热面 可兼作除氧器
•缺点 循环比功减小,汽耗率增加 增加设备复杂性 回热器投资
汽轮机作功:
ws,12 h1 h2 h
凝汽器中的定压放热量:
q2 h2 h3
水泵绝热压缩耗功:
4
ws,34 h4 h3
3
锅炉中的定压吸热量:
q1 h1 h4 工程热力学第十章lm
1 2
s
朗肯循环热效率
t
wnet q1
ws,12 ws,34 q1
h
一般很小,占
0.8~1%,忽
略泵功
相关文档
最新文档