中考特殊平行四边形证明及计算经典习题及答案.

合集下载

【3套】特殊平行四边形习题(含答案)

【3套】特殊平行四边形习题(含答案)

特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。

中考题汇编---特殊的平行四边形含答案

中考题汇编---特殊的平行四边形含答案

特殊的平行四边形1.(2019·海南中考)如图,在▱ABCD 中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处,若∠B=60°,AB=3,则△ADE的周长为( C )A.12B.15C.18D.21【解析】选C.方法一:在▱ABCD 中,由将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处,得∠ACD=∠ACE=90°,DC=CE=AB=3,AE=AD,∴DE=6,∵∠B=60°,∴∠D=60°,∠CAD=30°,∴AD=AE=2CD=6,∴△ADE的周长为6+6+6=18.方法二:在▱ABCD 中,由将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处,得AE=AD, DC=CE=AB=3,∴DE=6,∵∠B=60°,∴∠B=∠D=∠E=60°,∴△ADE是等边三角形,∴AD=AE=ED=6,∴△ADE的周长为6+6+6=18.2.(2019·河池中考)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF【解析】选B.∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=AC.A、根据∠B=∠F不能判定AB∥CF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF,AC∥DF,不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.3.(2019·天津中考)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于( C )A. B.4 C.4 D.20【解析】选C.∵A,B两点的坐标分别是(2,0),(0,1),∴AB==,∵四边形ABCD是菱形,∴菱形的周长为4.4.(2019·临沂中考)如图,在平行四边形ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是( A )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND【解析】选A.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M,N满足BM=DN,∴OB-BM=OD-DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.5.(2019·绍兴中考)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积 ( D )A.先变大后变小B.先变小后变大C.一直变大D.保持不变【解析】选D.∵在正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴=,∴CF·CE=CB·CD,∴矩形ECFG与正方形ABCD的面积相等.6.(2019·广州中考)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为 ( A )A.4B.4C.10D.8【解析】选A.连接AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以△OAF≌△OCE,所以EC=AF=5,因为EF为线段AC的中垂线,所以EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以AC===4.7.(2019·达州中考)如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16 .【解析】∵▱ABCD的对角线AC,BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点.∵点E是AB的中点,∴AB=2BE,BC=2OE.∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16.答案:168.(2019·株洲中考)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB= 4 .【解析】∵E,F分别为MB,BC的中点,∴EF是△BCM的中位线,∴CM=2EF=2,∵∠ACB=90°,CM 是斜边AB上的中线,∴AB=2CM=4.答案:49.(2019·武汉中考)如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【解析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴DE=AF=AE=EF,∠DAE=∠ADE=x,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD-∠BCA=63°-x,∴2x=63°-x,解得:x=21°,即∠ADE=21°. 答案:21°10.(2019·北部湾中考)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S=24,则AH= .菱形ABCD【解析】∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,=AC×BD=24,∴AC=6,∵S菱形ABCD∴OC=AC=3,∴BC==5,=BC×AH=24,∴AH=.∵S菱形ABCD答案:11.(2019·菏泽中考)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【解析】如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,又BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×2=8.答案:812.(2019·广安中考)如图,点E是▱ABCD的CD边的中点,AE,BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.13.(2019·扬州中考)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°.(2)求cos∠DAE.【解析】(1)∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE=10,∴BC=10.∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°.(2)由(1)知,AB=DC=DE+CE=16,∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE===8,∴cos∠DAE=cos∠EAB===.14.(2019·荆门中考)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积.(2)求证:BD⊥BC.【解析】(1)作CE⊥AB,交AB的延长线于E,设BE=x,CE=h,在Rt△CEB中:x2+h2=9 ①在Rt△CEA中:(5+x)2+h2=52 ②联立①②解得:x=,h=,∴平行四边形ABCD的面积为AB·h=12.(2)如图,作DF⊥AB,垂足为F,∵△ADF≌△BCE,∴AF=BE=,BF=,DF=,在Rt△DFB中:BD2=DF2+BF2=+=16,∴BD=4,又∵BC=3,DC=5,DC2=BD2+BC2,∴BD⊥BC.15.(2019·长沙中考)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF.(2)若AB=4,DE=1,求AG的长.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,∴△BAE≌△ADF(SAS),∴BE=AF.(2)由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.16.(2019·海南中考)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE.(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【解析】(1)∵四边形ABCD是正方形,∴∠D=∠BCD=90°,∴∠ECQ=90°=∠D, ∵E是CD的中点,∴DE=CE.又∵∠DEP=∠CEQ,∴△PDE≌△QCE.(2)①如图,由(1)可知△PDE≌△QCE,∴PE=QE=PQ.又∵EF∥BC,∴PF=FB=PB.∵PB=PQ,∴PF=PE,∴∠1=∠2.∵四边形ABCD是正方形,∴∠BAD=90°,∴在Rt△ABP中,F是PB的中点,∴AF=BP=FP,∴∠3=∠4.又∵AD∥BC,EF∥BC,∴∠1=∠4. ∴∠2=∠3.又∵PF=FP,∴△APF≌△EFP. ∴AP=EF,又∵AP∥EF,∴四边形AFEP是平行四边形.②四边形AFEP不一定为菱形,∵AP不一定等于AF,只有当AP=BP时,才有四边形AFEP为菱形.。

四川省中考复习专题:特殊平行四边形

四川省中考复习专题:特殊平行四边形

四川省中考复习专题:特殊平行四边形2021年四川中考复习专题:特殊的平行四边形一、解答题1.如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF.(1)求证△ADE≌△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.2.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.3.如图,在菱形ABCD中,E、F是AC上两点,AE=CF.求证:四边形BFDE是菱形.4.如图,正方形ABCD的边长是4,BE=CE,DF=3CF.证明:∠AEF =90°.5.如图,四边形ABCD为菱形,点E,F分别为边DA,DC上的点,DE=DF,连接BE,BF,求证:BE=BF.6.如图,菱形ABCD中,DM⊥AB于点M,DN⊥BC于点N.求证:AM =CN.7.如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.8.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD于点E,BF⊥AC于点F.求证:AE=BF.9.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD是菱形;(2)连接AF,若AF=23,∠DEF=60°,则EF的长为;菱形EFCD的面积为.10.如图,在菱形ABCD中,点O为对角线AC的中点,过O的直线交AD,BC分别于点E,F,连接CE,AF.求证:AF=CE.11.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC 到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.12.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM=CN.(1)求证四边形EMFN是平行四边形;(2)若AB⊥AC,求证▱EMFN是菱形.13.如图,在▱ABCD 中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.14.如图,在△ABC中,AD是边BC上的中线,AE∥BC,DE∥AB,DE与AC交于点O,连接CE.(1)求证:AD=EC;(2)若∠BAC=90°,求证:四边形ADCE是菱形.15.如图,在▱ABCD中,对角线AC平分∠BAD,点E、F在AC上,且CE=AF.连接BE、BF、DE、DF.求证:四边形BEDF是菱形.16.如图,R t△ABC中,∠ABC=90°,D是AC的中点,连接BD,过点C作CE∥BD,过B作BE∥AC,两直线相交于点E.(1)求证:四边形DBEC是菱形;(2)若∠A=30°,BC=2,求四边形DBEC的面积.17.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF =45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.18.如图,矩形ABCD中,AB=23,BC=3,点E射线BC上一动点,△ABE关于AE的轴对称图形为△FAE.(1)当点F在对角线AC上时,求FC的长;(2)当△FCE是直角三角形时,求BE的长.19.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x22,y1+y22).已知平行四边形的对角线互相平分,如图连接OE,FN相交于点M,则OE,FN是平行四边形ONEP的对角线,且OE,PN互相平分,即点M是线段OE,FN的中点.(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M是线段OE中点,则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.20.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH =DE.(1)求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.21.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:∠AEB=∠BFC.22.如图,在菱形ABCD 中,∠ACD=30°,BD=6,求AC的长.23.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE =PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则DEBP是否为定值?如果是,请求其值;如果不是,请说明理由.24.如图,在▱ABCD中,延长AB 到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.25.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.26.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积.27.如图,▱ABCD的对角线AC、BD相交于点O.AB=10,AC=12,BD=16.(1)求证:▱ABCD是菱形;(2)若点P是对角线BD上一动点(不与点B、D重合),PE⊥AB于点E,PF⊥AD于点F,PE+PF是否为定值?若是,求出这个定值;若不是,请说明理由.28.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF.(1)求证:△EBF≌△ABC;(2)求证:四边形AEFD是平行四边形;(3)△ABC满足时,四边形AEFD是正方形.29.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E 作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.30.如图,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC.2021年四川中考复习专题:特殊的平行四边形参考答案与试题解析一、解答题1.如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF.(1)求证△ADE≌△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADE=∠CBF,∵BE=DF,∴BF=DE,在△ADE 和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF (SAS);(2)连接AC,交BD于点O,∵AB=AD,四边形ABCD 是平行四边形,∴四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,又∵AC⊥BD,∴四边形AECF是菱形.2.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,∠BAE=∠DAFAB=AD∠B=∠D,∴△ABE≌△ADF(ASA),∴AE=AF.3.如图,在菱形ABCD 中,E、F是AC上两点,AE=CF.求证:四边形BFDE是菱形.证明:连接BD交AC于点O,∵四边形ABCD为菱形,∴OB=OD,OA=OC,AC⊥BD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,∵AC⊥BD,∴四边形BEDF为菱形.4.如图,正方形ABCD的边长是4,BE =CE,DF=3CF.证明:∠AEF=90°.证明:连接AF,∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵正方形ABCD的边长是4,BE=CE,DF=3CF.∴BE=CE=2,CF=1,DF=3,由勾股定理得,AE2=AB2+BE2=42+22=20,EF2=CE2+CF2=22+12=5,AF2=AD2+DF2=42+32=25,又∵AE2+EF2=AF2,∴△AEF是直角三角形,即∠AEF=90°.5.如图,四边形ABCD为菱形,点E,F分别为边DA,DC上的点,DE=DF,连接BE,BF,求证:BE=BF.证明:如图,连接BD,在菱形ABCD中,∠ADB=∠CDB,在△EDB和△FDB中,DE=DF∠EDB=∠FDBBD=BD,∴△EDB≌△FDB (SAS),∴BE=BF.6.如图,菱形ABCD中,DM⊥AB于点M,DN⊥BC于点N.求证:AM=CN.证明:∵四边形ABCD 是菱形,∴AD=CD,∠A=∠C,∵DM⊥AB,DN⊥BC,∴∠DMA=∠DNC=90°,在△DAM和△DCN中,∠A=∠C∠DMA=∠DNC=90°AD=CD,∴△DAM≌△DCN (AAS),∴AM=CN.7.如图,矩形ABCD的对角线AC、BD 相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB =OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.8.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD于点E,BF⊥AC于点F.求证:AE=BF.证明:∵四边形ABCD是矩形,∴OA=OB,∵AE⊥BD于点E,BF⊥AC于点 F ∴∠AEO=∠BFO=90°,∵∠AOE=∠BOF,在△AEO与△BFO中,∠AEO=∠BFO=90°∠AOE=∠BOFOA=OB,∴△AEO≌△BFO (AAS),∴AE=BF.9.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD 是菱形;(2)连接AF,若AF=23,∠DEF=60°,则EF的长为2;菱形EFCD的面积为23.证明:(1)在▱ABCD中,BC =2CD,∴AD∥BC,AD=BC=2CD,∵E,F分别是AD,BC 的中点,∴DE=CF=CD,又AD∥BC,∴四边形EFCD是平行四边形,又∵CD=DE,∴四边形EFCD是菱形;(2)如图,过点F作FH⊥AD于H,∵四边形EFCD是菱形,∴DE=EF=AE,∵∠DEF=60°,∴∠EFH=30°,∴EH=12EF,FH=3EH,∴AH=AE+EH=3EH,∵AF2=AH2+HF2,∴12=9EH2+3EH2,∴EH=1,∴EF=2=DE,HF=3,∴菱形EFCD的面积=2×3=23,故答案为:2,23.10.如图,在菱形ABCD中,点O为对角线AC的中点,过O的直线交AD,BC分别于点E,F,连接CE,AF.求证:AF=CE.证明:∵四边形ABCD是菱形,∴AD∥BC,∴∠DAC=∠BCA,∵点O是AC的中点,∴AO=CO,在△AOE和△COF中,∠DAC=∠BCAAO=CO∠AOE=∠COF,∴△AOE≌△COF (ASA),∴AE=CF,∴四边形AECF是平行四边形,∴AF=CE.11.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE =CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=AB2-BE2=102-62=8,在Rt△AEC中,AC=AE2+EC2=82+42=45,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=25.12.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM=CN.(1)求证四边形EMFN是平行四边形;(2)若AB⊥AC,求证▱EMFN是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵E、F分别为AD、BC的中点,∴AE=DE=BF=CF,在△AEM和△CFN中,AE=CF∠EAM=∠FCNAM=CN,∴△AEM≌△CFN(SAS),∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形;(2)连接EF交AC于O,如图所示:由(1)得:AE∥BF,AE=BF,∴四边形AEBF是平行四边形,∴AB∥EF,∵AB⊥AC,∴∠BAC=90°,∴∠COF=∠BAC =90°,∴EF⊥MN,∴▱EMFN是菱形.13.如图,在▱ABCD 中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF =FD+EF,即AF=DE,在△ABF和△DCE中,AB=CDBF=CEAF=DE,∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD 为矩形.14.如图,在△A BC中,AD是边BC上的中线,AE∥BC,DE∥AB,DE与AC交于点O,连接CE.(1)求证:AD=EC;(2)若∠BAC=90°,求证:四边形ADCE是菱形.证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD,又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD =CD,由(1)得:四边形ADCE是平行四边形,∴平行四边形ADCE是菱形.15.如图,在▱ABCD中,对角线AC平分∠BAD,点E、F在AC上,且CE=AF.连接BE、BF、DE、DF.求证:四边形BEDF是菱形.证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵CE =AF,∴EO=FO,∴四边形BEDF是平行四边形,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠ACD,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠ACD=∠DAC,∴AD=CD,∴AB=AD,在△ABF和△ADF中,AB=AD∠BAF=∠DAFAF=AF,∴△ABF≌△ADF(SAS),∴BF =DF,∴四边形BEDF是菱形.16.如图,Rt△ABC中,∠ABC =90°,D是AC的中点,连接BD,过点C作CE∥BD,过B作BE∥AC,两直线相交于点E.(1)求证:四边形DBEC是菱形;(2)若∠A=30°,BC=2,求四边形DBEC的面积.证明:(1)∵CE∥BD,BE∥AC,∴四边形BECD是平行四边形,∵∠ABC=90°,D是AC中点,∴BD=DC,∴四边形DBEC是菱形;(2)∵∠A=30°,∠ABC=90°,BC=2,∴AC=2BC=4,AB=3BC=23,∴S△CDB=12S△ABC=12×12×2×23=3,∵四边形BECD是菱形∴S菱形DBEC=2S△CDB=23.17.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF =45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.解:(1)EF2=AF2+BF2.理由:如图1,∵四边形ABCD 是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠EOF=∠AOB=90°,∴∠EOA=∠FOB,在△EOA和△FOB 中,∠EOA=∠FOBOA=OB∠OAE=∠OBF,∴△EOA≌△FOB (ASA),∴AE=BF,在Rt△EAF中,EF2=AE2+AF2=AF2+BF2;(2)在BC上取一点H,使得BH=AE.∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBH,∠AOB=90°,在△OAE 和△OBH中,OA=OB∠OAE=∠OBHAE=BH ∴△OAE≌△OBH (SAS),∴AE=BH,∠AOE=∠BOH,OE=OH,∵∠EOF=45°,∴∠AOE+∠BOF=45°,∴∠BOF+∠BOH=45°,∴∠FOE=∠FOH=45°,在△FOE和△FOH中-,OF=OF∠FOE=∠FOHOE=OH,∴△FOE≌△FOH(SAS),∴EF =FH,∵∠FBH=90°,∴FH2=BF2+BH2,∴EF2=BF2+AE2,18.如图,矩形ABCD中,AB=23,BC=3,点E射线BC上一动点,△ABE关于AE的轴对称图形为△FAE.(1)当点F在对角线AC上时,求FC的长;(2)当△FCE是直角三角形时,求BE的长.解:(1)如图所示:∵AB=23,BC=3,∴AC=AB2+BC2=21,∵△ABE关于AE的轴对称图形为△FAE,∴AF=AB=23,∴FC=AC﹣AF=21-23.(2)当△FCE是直角三角形时,①当∠CFE是直角时,如(1)图所示:由题意可知点F在对角线AC上,且EF⊥AC,设BE=x,则EF=x,∴S△ABC=12×3×23=33,S△ABE=12×23__=3x,S△ACE=12×21__,∴33=3x+212x,解得:x=27-4.∴BE=27-4.②当∠FCE是直角时,如图所示:∵△ABE关于AE的轴对称图形为△FAE.∴AB=AF,BE=EF,在Rt△ADF中,AD=3,AF=23,∴DF=AF2-AD2=12-9=3,CF=DC﹣CE=23-3=3,设BE=x,则EF=x,CE=3﹣x,∴在Rt△ADF中,EF2=CE2+CF2,x2=(3﹣x)2+(3)2,解得:x=2,∴BE=EF=2;③当E在BC延长线上时,此时∠CEF是直角,如图所示:由题意得:BE=AB=EF=23.19.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x22,y1+y22).已知平行四边形的对角线互相平分,如图连接OE,FN相交于点M,则OE,FN是平行四边形ONEP的对角线,且OE,PN互相平分,即点M是线段OE,FN的中点.(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y 轴上,O为坐标原点,点E的坐标为(4,3),则点M是线段OE 中点,则点M的坐标为(2,32).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.解:(1)∵四边形ONEF是矩形,∴M是OE的中点,∵O为坐标原点,点E的坐标为(4,3),∴M(42,32),即M(2,32);故答案为:(2,32);(2)如图,有三种情况:①当AC和BC为平行四边形的边时,连接对角线AB、CD1交于E,∴AE=EB,CE=ED1,∵A(﹣1,2),B(3,1),∴E (1,32),∵C(1,4),∴D1(1,﹣1);②当BC和CD2为平行四边形的边时,连接对角线BD2和AC交于G,同理可得D2(﹣3,5);③当AC和AB为平行四边形的边时,连接AD3和BC交于F,同理可得D3(5,3);综上所述,点D的坐标为(1,﹣1)或(﹣3,5)或(5,3).20.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.证明:(1)∵四边形ABCD是正方形,∴AD=CD,∠DAH =∠CDE=90°,在△HAD与△EDC中,AD=CD∠DAH=∠CDEAH=DE,∴△HAD≌△EDC(SAS),∴∠ADH=∠DCE,∵∠ADH+∠HDC=∠DCE+∠HDC=90°,∴∠DFC=90°,∴CE⊥DH;(2)如图2,过F作FG⊥AD,交DA的延长线于G,∵FH⊥A O,∴∠G=∠GAH=∠AHF=90°,∴四边形AGFH是矩形,∴FG=AH=DE,∠G=90°,在△GFE和△DEC中,∠GEF=∠DCE∠G=∠DGF=DE,∴△GFE≌△DEC(AAS),∴EG =DC=AD,∴EG﹣AE=AD﹣AE,∴AG=DE=FH=AH,∴FH =AH.21.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:∠AEB=∠BFC.证明:∵四边形ABCD 是正方形,∴AC⊥BD,即∠AOB=∠BOC=90°,∴OB=OC,在△OCF和△OBE中,∠OCF=∠OBEOC=OB∠COF=∠BOE,∴△OCF≌△OBE(ASA),∴∠OFC=∠OEB,∴∠BFC=∠AEB.22.如图,在菱形ABCD中,∠ACD=30°,BD=6,求AC的长.解:∵四边形ABCD是菱形,∴BO=DO=12BD=3,AO=CO,AC⊥BD,∵∠ACD=30°,∴CO=3DO=33,∴AC =2CO=63.23.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则DEBP是否为定值?如果是,请求其值;如果不是,请说明理由.证明:(1)∵四边形ABCD是菱形,∴BC=DC,∠BCP=∠DCP,AB∥DC,在△BCP和△DCP 中,BC=DC∠BCP=∠DCPPC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∵PE=PB,∴PD=PE;(2)DEBP=2,理由如下:∵∠ABC=90°,∴四边形ABCD是正方形,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠CFE=∠DFP(对顶角相等),∴180°﹣∠DFP﹣∠CDP =180°﹣∠CFE﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC=90°,又∵PD=PE,∴DE=2PE,∴DEBP=2.24.如图,在▱ABCD中,延长AB到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:若∠A=40°,当∠BOD=80°时,四边形BECD是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=40°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=80°﹣40°=40°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形.25.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.(1)证明:∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=12BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A =60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴DE=DM,有(1)知DM=12BC=6,∴DE=6,∵N是DE的中点,∴DN=12DE=3,∴MN=DM2-DN2=33.26.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴CD﹣CF=AB﹣AE,∴DF =BE且DC∥AB,∴四边形BFDE是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形BFDE是矩形;(2)解:∵∠DAB=60°,AD=4,DE⊥AB,∴∠ADE=30°,∴AE=12AD=2,DE=3AE=23,由(1)得:四边形DFBE是矩形,∴BF=DE=23,∠ABF=90°,∵AF平分∠DAB,∴∠FAB=12∠DAB=30°,∴AB=3BF=3×23=6,∴▱ABCD的面积=AB×DE=6×23=123.27.如图,▱ABCD的对角线AC、BD相交于点O.AB=10,AC=12,BD=16.(1)求证:▱ABCD 是菱形;(2)若点P是对角线BD上一动点(不与点B、D重合),PE⊥AB于点E,PF⊥AD于点F,PE+PF是否为定值?若是,求出这个定值;若不是,请说明理由.(1)证明:∵四边形ABCD是平行四边形,AC=12,BD=16,AB=10,∴AO=CO=12AC=6,BO=DO=12BD=8,∵62+82=102,∴AO2+BO2=AB2,∴∠AO B=90°,∴AC⊥BD,∴▱ABCD是菱形;(2)解:是定值,连接OP,过B作BH⊥DA于H,∵四边形ABCD是菱形,∴AB=AD=10,S△ABD=12S菱形ABCD=12×12AC-BD=14×12×16=48,∵S△ABD=S△ABO+S△ADO=12AB-PE+12AD-PF=12AD(PE+PF)=12AD-BH,∴PE+PF=BH,∵S△ABD=12AD-BH=12×10-BH=48,∴BH=485,∴PE+PF=485.故PE+PF定值为485.28.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF.(1)求证:△EBF≌△ABC;(2)求证:四边形AEFD是平行四边形;(3)△ABC满足AB=AC,∠BAC=150°时,四边形AEFD 是正方形.(1)证明:∵△ABE、△BCF为等边三角形,∴AB =BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF =∠FBC﹣∠ABF,即∠CBA=∠FBE,在△EBF和△ABC中,EB=ABFBE=∠CBABF=BC,∴△EBF≌△ABC(SAS);(2)证明:∵△EBF≌△ABC,∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴AB=AE=DF,∴四边形AEFD是平行四边形;(3)解:当AB=AC,∠BAC=150°时,四边形ADEF是正方形.理由是:∵△ABE、△ACD为等边三角形,∴AB=AE,AC=AD,∠EAB=∠DAC=60°,∵AB=AC,∴AE=AD,∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∵∠BAC =150°,∴∠EAD=360°﹣60°﹣60°﹣150°=90°,∴平行四边形ADEF是正方形,故答案为:AB=AC,∠BAC=150°.29.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E 作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.(1)证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB,即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH.在△PGB和△PHE中,∠PGB=∠PHEPG=PH∠BPG=∠EPH,∴△PGB≌△PHE(ASA),∴PB=PE.(2)解:PE的长度不变.连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP =90°,∵PE⊥PB,即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF,∵EF⊥PC,即∠PFE=90°,∴∠BOP=∠PFE,在△BOP 和△PFE中,∠PBO=∠EPF∠BOP=∠PFEPB=PE,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=2OB.∵BC=2,∴OB=2,∴PF=OB=2.∴点P在运动过程中,PF的长度不变,值为2.30.如图,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,AD=CD∠ADP=∠CDPDP=DP,∴△ADP≌△CDP (SAS),∴PA=PC,∵PA=PE,∴PC=PE.(2)证明:四边形ABCD为正方形,∴∠ADC=∠CDE=90°,∴∠E+∠DFE =90°,∵PA=PE,∴∠PAD=∠E,由(1)知△ADP≌△CDP,∴∠PAD=∠PCD,∴∠PCD=∠E,∵∠PFC=∠DFE,∴∠PCD+∠PFC=∠E+∠DFE=90°,∴∠CPE=90°,∴∠BPC+∠DPE=90°,∵PD=DE,∴∠DPE=∠E,∴∠DPE =∠PCD,∵∠BCP+∠PCD=90°,∴∠BPC=∠BCP,∴BP =BC.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/5/14 13:27:40;用户:__;邮箱:__.__;学号:__。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

特殊平行四边形(习题及答案)

特殊平行四边形(习题及答案)
3
12. 如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 是菱形吗?为什么? 【思路分析】 ①读题标注: ②梳理思路: 要证四边形 ABCD 是菱形,根据题目中已有的条件选择判定 定理:_____________________________________________. 【过程书写】
7. 已知四边形 ABCD 是平行四边形,对角线 AC,BD 相交于点 O, 则下列结论不正确的是( ) A.当 AB=BC 时,四边形 ABCD 是菱形 B.当 AC⊥BD 时,四边形 ABCD 是菱形 C.当 OA=OB 时,四边形 ABCD 是矩形 D.当∠ABD=∠CBD 时,四边形 ABCD 是矩形
如图在正方形abcd中对角线acbd相交于点o则图中的等腰三角形共有a4个b6个c8个d10个aadbdbcc第5题图第7题图6
特殊平行四边形(习题)
例题示范
例 1:如图,在矩形 ABCD 中,BE 平分∠ABC,CE 平分∠DCB, BF∥CE,CF∥BE. 求证:四边形 BECF 是正方形.
【思路分析】 ①读题标注:
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.每条对角线平分一组对角
5. 符合下列条件之一的四边形不一定是菱形的是( ) A.四条边都相等 B.两组邻边分别相等 C.对角线互相垂直平分 D.两条对角线分别平分一组对角
6. 下列命题错误的是( ) A.矩形的对角线相等 B.对角线互相垂直的四边形是菱形 C.平行四边形的对边相等 D.两组对边分别相等的四边形是平行四边形
13. 如图,在四边形 ABCD 中,AB=BC,对角线 BD 平分∠ABC. P 是 BD 上一点,过点 P 作 PM⊥AD,PN⊥CD,垂足分别为 点 M,N. (1)求证:∠ADB=∠CDB; (2)若∠ADC=90°,求证:四边形 MPND 是正方形.

人教版 初中数学中考一轮复习---特殊的平行四边形(含解析)

人教版 初中数学中考一轮复习---特殊的平行四边形(含解析)

特殊的平行四边形例1. 如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.4例2. 正方形的对称轴的条数为()A.1 B.2 C.3 D.4例3. 边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm例4.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形A组1、四个内角都相等的四边形是()A、矩形B、菱形C、正方形D、平行四边形2、符合下列条件的四边形不一定是菱形的是()A、四边都相等B、两组邻边分别相等C、对角线互相垂直平分D、两条对角线分别平分一组对角3、下列说法不正确...的是()A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形B组4、矩形的两边长分别是 3cm 和 4cm,则对角线长____cm。

5、如果矩形一条较短的边是 5,两条对角线的夹角是 60°,则对角线长是____。

6、菱形两条对角线的长分别是 12 和 16,则它的边长为____。

7、两条对角线_____的四边形是正方形。

8、如图,一张矩形的纸片,要折出一个正方形,只要把一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的根据是。

9、如图2,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为()A.20 B.18 C.16 D.1510、如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm 则∠1=度.11、如图,延长正方形ABCD的一边BC至E,使CE=AC,连结AE交CD于F,则∠AFC的度数是()A、112.5°B、120°C、122.5°D、135°12、如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.125B.65C.245D.不确定13、如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得 △ABE ',连接EE ',则EE '的长等于 .14、已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图2所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.15、如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.16、如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F.(1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 在边AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由;(3)当点O 运动到何处,且△ABC 满足什么条件时,四边形AECF 是正方形?EDCBAFFDC BAOE图2C 组17、 (1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .(2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.(3) 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长;②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).18、已知:菱形ABCD ,AC=8,BD=6,若将此菱形沿一条对角线剪开成为两个三角形,在平面上把这两个三角形拼成一个不重叠的凸四边形,画出所有拼成的四边形的示意图,并写出所拼四边形(不包括菱形)的对角线的长(不要求写计算过程).19、如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).(1)求证:∠EAP=∠EPA;(2)□APCD是否为矩形?请说明理由;(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN (点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.图1B 图2特殊的平行四边形例1. 如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.例2. 正方形的对称轴的条数为()A.1 B.2 C.3 D.4考点:轴对称的性质分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.例3. 边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点:菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.例4.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为真命题;C、对角线垂直的平行四边形是菱形,所以C选项为假命题;D、对角线垂直的平行四边形是菱形,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.1、答、A【思路分析】正方形具有矩形、菱形的一切性质。

北师大版九年级上册数学中考真题分类(解答题)专练:特殊的平行四边形(含答案)

北师大版九年级上册数学中考真题分类(解答题)专练:特殊的平行四边形(含答案)

中考真题分类(解答题)专练:特殊的平行四边形1.(2020•滨州)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.2.(2020•遂宁)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A 作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.3.(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E 与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.4.(2019•青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明:四边形ADCF是菱形.5.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.6.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.7.(2019•内江)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.8.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.9.(2020•德阳)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.10.(2020•呼伦贝尔)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.11.(2020•大庆)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.12.(2020•呼和浩特)如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE ⊥AG于点E,BF∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.13.(2020•云南)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.14.(2019•鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O 的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.15.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.16.(2018•毕节市)如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.17.(2018•北京)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.18.(2018•北京)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.19.(2019•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.20.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.2.证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△FAE(AAS);(2)∵△BDE≌△FAE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.3.(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.4.证明:(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,,∴△AFE≌△DBE(AAS)(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴四边形ADCF是菱形.5.(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.6.(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=27.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:∵△ABE≌△ADF,∴AE=AF,∠BAE=∠DAF,∵∠BAE+∠EAD=90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF=AE=5.8.(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠CDF,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的.理由如下:∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,∵AE⊥BD,∴∠BAE=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=矩形ABCD的面积,∵△ABE≌△CDF,∴△CDF的面积═矩形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=矩形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.9.解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.10.证明:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∴∠DOF+∠COF=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴CE=DF.11.(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.12.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BFA=90°=∠AED,∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不能是平行四边形.13.解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠FAC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=AC,∵点H为对角线AC的中点,∴EH=FH=AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵点H为对角线AC的中点,∴D、H、B在同一直线上,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.14.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.15.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.16.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.17.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.18.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.19.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.20.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.。

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16
特殊的平行四边形
一、矩形的性质与判定
1.矩形的性质:
1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB
.(如图)
2.矩形的判定:
1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.
二、菱形的性质与判定
1.菱形的性质:
1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.2.菱形的判定:
1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.三、正方形的性质与判定
1.正方形的性质:
1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:
1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;
3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.
四、联系
第1页(共36页)。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。

中考特殊平行四边形证明及计算经典习题及答案

中考特殊平行四边形证明及计算经典习题及答案

初中数学中考特殊四边形证明及计算一•解答题1.( 1)如图①,? ABCD 的对角线 AC , BD 交于点0 ,直线EF 过点0,分别交 AD , BC 于点E , F .求证:AE=CF .(2)如图②,将? ABCD (纸片)沿过对角线交点0的直线EF 折叠,点A 落在点A i 处,点B 落在点B i 处,设FB i 交CD 于点G , A i B i 分别交CD , DE 于点H ,1 .求证:EI=FG .考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题)分析:(i )由四边形ABCD 是平行四边形,可得 AD// BC, OA=OC ,又由平行线的性质,可得/仁/ 2,继而利用ASA ,即可证得△ AOE^A COF,则可证得AE=CF . (2)根据平行四边形的性质与折叠性质,易得 A i E=CF ,/A i =Z A=Z C,/B i = Z B=Z D,继而可证得AA i IE 也厶CGF,即可证得 EI=FG .解答:证明:(i)v 四边形 ABCD 是平行四边形,••• AD / BC , OA=OC , •••/ i= / 2,在厶AOE 和厶COF 中,rzi=Z2PA=OC ,•••△ AOE^A COF ( ASA) , • AE=CF;LZ3=Z4(2)v 四边形 ABCD 是平行四边形,•/A=Z C,Z B=Z D,由()得AE=CF ,由折叠的性质可得: AE=A i E,ZA i = Z A,ZB i =Z B ,• A i E=CF ,/A i = / A=Z C,ZB i =Z B=Z D,又i= / 2,•/ 3= / 4, v/ 5= / 3 , Z 4= / 6 , •••/ 5= / 6,在AA i lE 与厶 CGF 中,^ZA 1=ZC* Z5=Z6 , .•.△A iIECGF (AAS) , • EI=FG .A 』二 CF丄DSE 金牌数学专题系列经典专题系列圉①点评:2.在△ ABC 中,AB=AC ,点P ABC 所在平面内一点,过点 P 分别作PE // AC 交AB 于点E , PF // AB 交BC 于点D ,交AC 于点F .若点P 在BC 边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB .请直接应用上述信息解决下列问题: 当点P 分别在△ ABC 内(如图2), △ ABC 外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD , PE , PF 与AB 之间又有怎样的数量关系,请写出你的猜想,不需要证考点:平行四边形的性质. 探究型. 分析:在图2中,因为四边形 PEAF 为平行四边形,所以 PE=AF ,又三角形FDC 为等腰三角形,所以 FD=PF+PD=FC ,即 PE+PD+PF=AC=AB ,在图 3 中, PE=AF 可证,FD=PF - PD=CF ,即 PF -PD+PE=AC=AB . 解答: 解:图 2 结论:PD+PE+PF=AB .证明:过点P 作MN// BC 分别交AB , AC 于M , N 两点,•/ PE // AC, PF // AB , •••四边形AEPF 是平行四边形,•/ MN// BC, PF // AB •四边形BDPM 是平行四边形, • AE=PF,Z EPM=Z ANM=Z C, •/ AB=AC , • / EMP=Z B, • / EMP=Z EPM • PE=EM, • PE+PF=AE+EM=AM此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质•此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.明•••四边形BDPM 是平行四边形,••• MB=PD.••• PD+PE+PF=MB+AM=AB即 PD+PE+PF=AB .图 3 结论:PE+PF - PD=AB .点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键.3.如图,△ AB (是等边三角形,点 D 是边BC 上的一点,以 AD 为边作等边△ ADE,过点C 作CF // DE 交AB 于 点F .(1) 若点D 是BC 边的中点(如图①),求证:EF=CD ; (2) 在(1)的条件下直接写出△ AEFA ABC 的面积比;(3)若点D 是BC 边上的任意一点(除B 、C 外如图②),那么(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立,请说明理由.• •△ AED 是等边三角形,•• AD=AE,Z ADE=60 °, ••/ EDB=90 ° -Z ADE=90 ° - 60 °• • ED// CF,••Z FCB=Z EDB=30°,:Z ACB=60° ,•/ ACF=Z ACB -Z FCB=30° , ••Z ACF=Z BAD=30。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°【答案】C【解析】首先根据菱形的菱形的每一条对角线平分一组对角可得∠BAD的度数,再根据菱形的性质可得AD∥BC,根据平行线的性质可得∠ABC+∠BAD=180°,再代入所求的∠BAD的度数即可算出答案.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm【答案】C【解析】由折叠可知,∠BAE=∠B1AE,∴∠BAE=∠B1AE=45°,又∵∠B=45°,∴∠AEB=45°,∴BE=AB=4,∴CE=BC-BE=8-6=2.故选C.4.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.5.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.6.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cm B.8cm C.9cm D.10cm【答案】D【解析】∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm).7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=5,则四边形CODE的周长是()A.5 B.7 C.9 D.10【答案】D【解析】根据矩形性质求出OC=OD,根据菱形判定得出四边形DECO是菱形,求出OD=OC=EC=DE=,即可求出答案.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B【解析】∵将△ABC沿BC方向平移得到△DCE,∴AB∥CD,且AB=CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【答案】D【解析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是______cm.【答案】4【解析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.11.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.12.如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.【答案】18【解析】求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是_______cm.【答案】48【解析】∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.16.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?【答案】解:(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BOC,∥GOC的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点时,四边形AECF是矩形,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.【解析】(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.17.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.【答案】(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.【解析】(1)由四边形ABCD为菱形,可以说明ΔNDE≌ΔMAE,得到ND=MA和ND∥AM,推出四边形AMND是平行四边形.(2)若四边形AMDN为矩形,则∠AMD为直角,此时AM=1.19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.【解析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.20.已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.。

2023年安徽中考数学总复习专题:特殊四边形的判定与计算(PDF版,有答案)

2023年安徽中考数学总复习专题:特殊四边形的判定与计算(PDF版,有答案)

2023年安徽中考数学总复习专题:特殊四边形的判定与计算1.如图,▱ABCD对角线AC,BD相交于点O,△AOB是等边三角形.(1)四边形ABCD是什么特殊平行四边形?请说明理由;(2)当AB=4时,求▱ABCD的面积.2.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.3.如图,四边形ABCD中,∠C=∠ADC=90°,点E是AB的中点,连结DE并延长交CB 的延长线于点F,连结AF和BD.(1)求证:四边形AFBD是平行四边形.(2)若AB⊥DF,且AD=3,BE=1,求CD的长度.4.如图,在四边形ABCD中,∠ACB=∠CAD,点E在BC上,AE∥DC.(1)求证:四边形AECD是平行四边形.(2)若AE平分∠BAC,∠CAD=90°,EF⊥AB,垂足为F,BE=3,AD=2,则cos B 的值为 .5.如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.6.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE=4,求四边形ABCE的面积.7.如图,在▱ABCD中,E、M分别为AD、AB的中点,DB⊥AD,延长ME交CD的延长线于点N,连接AN.(1)证明:四边形AMDN是菱形;(2)若∠DAB=45°,判断四边形AMDN的形状,并说明理由.8.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.(1)求证:四边形OBEC是矩形.(2)若AB=8,∠BCD=120°,求四边形OBEC的面积.9.如图,平行四边形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC 于点F,且AE=DF.(1)求证:四边形ABCD是矩形.(2)若∠BAE:∠EAD=2:3,求∠AOE的度数.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=12 AC,连接CE、OE,OE交DC于点F.(1)求证:四边形OCED是矩形;(2)若AD=6,求OF的长.11.在四边形ABCD中,AD∥BC,CD⊥BC,BC=2AD,F是BC的中点.(1)如图1,求证:四边形AFCD是矩形.(2)如图2,过点C作CE⊥AB于点E,连接DE,EF.求证:DE=DC.12.如图,四边形ABCD中,∠B=∠C=90°,点E、F分别在边AB、BC上,DE⊥AB,DE=AB,AE=BE=3,BF=2,△ADF的面积等于15.(1)求DF的长度.(2)求证:∠ADE+∠BAF=∠DAF.13.已知:如图,在正方形ABCD中,E,F分别是BC,CD上的点,AE、BF相交于点P,并且AE=BF.(1)如图1,判断AE和BF的位置关系?并说明理由;(2)若AB=8,BE=6,求BP的长度;(3)如图2,FM⊥DN,DN⊥AE,点F在线段CD上运动时(点F不与C、D重合),四边形FMNP是否能否成为正方形?请说明理由.14.如图所示,在正方形ABCD中,DF=AP=BQ=CE.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.15.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,∠OBC=∠OCB.(1)如果 ,那么四边形ABCD为正方形(请你填上能使结论成立的一个条件);(2)根据题目中的条件和你添加上的条件进行证明.16.如图,已知四边形ABCD是正方形,AB=42,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连CG.(1)求证:四边形DEFG是正方形;(2)求AE2+CE2的最小值.17.如图,E、F、M、N分别是正方形ABCD四条边上的点,且AE=BF=CM=DN (1)求证:四边形EFMN是正方形;(2)若AB=7,AE=3,求四边形EFMN的周长.18.如图,在矩形ABCD中,点E、F分别在BC、CD上,且AE⊥BF,垂足为M.(1)若矩形ABCD为正方形,求证:AE=BF;(2)若AE=BF,求证:矩形ABCD为正方形.19.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,请直接写出正方形DEFG的面积.20.如图,在△ABC中,∠CAB=90°,AD是BC边上的中线,以AD,CD为边作平行四边形ADCF,连接BF,BF分别与AD,AC相交于点E,G.(1)当△ABC满足什么条件时,四边形ADCF为正方形,并说明理由.(2)在(1)条件下,若AB=62,求EF的长.21.问题解决:如图,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF 于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.参考答案1.解:(1)四边形ABCD是矩形,理由如下:∵四边形ABCD是平行四边形,∴AO=OC=12AC,BO=OD=12BD,∵△AOB是等边三角形,∴AO=BO.∴AC=BD.∴平行四边形ABCD是矩形;(2)在Rt△ABC中,∵AB=AO=4,∴AC=2AO=8,∴BC=3AB=43,∴S平行四边形ABCD=AB×BC=4×43=163.2.证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,AD∥BC,∴∠EAM=∠FCN,∵AD∥BC,∴∠E=∠F.在△AEM与△CFN中,∠EAM=∠FCNAE=CF∠E=∠F,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵△AEM≌△CFN,∴AM=CN,∴BM=DN,BM∥DN,∴四边形BMDN是平行四边形.3.(1)证明:∵E是AB的中点,∴AE=BE,∵∠C=∠ADC=90°,∴AD∥BC,∴∠DAE=∠EBF,∠ADE=∠EFB,在△ADE和△BFE中,∠DAE=∠EBF∠ADE=∠EFBAE=BE,∴△ADE≌△BFE(AAS),∴DE=FE,∵AE=BE,∴四边形AFBD是平行四边形;(2)解:∵四边形AFBD是平行四边形,AB⊥DF,∴四边形AFBD是菱形,∴BD=BF=AD=3,AB=2BE=2,∴DE=32―12=22,∴DF=2DE=42,∵S菱形AFBD=BF•CD=12 AB•DF,∴3CD=12×2×42,∴CD=42 3.4.(1)证明:∵∠ACB=∠CAD,∴AD∥CE,∵AE∥DC,∴四边形AECD是平行四边形;(2)解:∵四边形AECD是平行四边形,∴EC=AD=2,∵∠ACB=∠CAD=90°,∴EC⊥AC,∵AE平分∠BAC,EF⊥AB,∴EF=EC=2,在Rt△BEF中,由勾股定理得:BF=BE2―EF2=32―22=5,∴cos B=BFBE=53,故答案为:5 3.5.(1)证明:∵BE∥AC,BE=DC,∴四边形BDCE为平行四边形,∵∠ABC=90°,BD为AC边上的中线,∴BD=CD=12 AC,∴四边形BDCE为菱形;(2)解:连接DE交BC于O点,如图,∵四边形BDCE为菱形,BC=4,∴OC=12BC=2,∠COD=90°,DE=2DO,∴∠ACB=60°,∴∠EDC=90°﹣∠ACB=30°,∴DC=2OC=4,DO=3OC=23,∴DE=2DO=43.6.(1)证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形.∴CE=BD,∵CD是边AB上的中线,∴BD=AD,∴CE=AD,又∵CE∥AD,∴四边形ADCE是平行四边形.∵∠BCA=90°,CD是斜边AB上的中线,∴CD=12AB=AD,∴平行四边形ADCE是菱形;(2)解:∵CD是边AB上的中线,∴S△ACD=S△BCD,∵AC=2DE=4,∴DE=2,∵四边形ADCE是菱形,∴S菱形ADCE=2S△ACD=12AC•DE=12×4×2=4,∴S△BCD=S△ACD=2,∴S四边形ABCE=S菱形ADCE+S△BCD=4+2=6.7.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DAM=∠NDA,∵E为AD中点,∴DE=AE,在△NED和△MEA中,∠NDE=∠EAMDE=AE∠NED=∠MEA,∴△NED≌△MEA(ASA),∴AM=ND,∵CD∥AB,∴四边形AMDN是平行四边形,∵BD⊥AD,M为AB的中点,∵AM=DM=MB,∴四边形AMDN是菱形;(2)解:四边形AMDN是正方形,理由如下:∵四边形AMDN是菱形,∴AM=DM,∴∠DAB=∠ADM=45°,∴∠AMD=90°,∴菱形AMDN是正方形.8.(1)证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.(2)解:∵四边形ABCD是菱形,∠BCD=120°,∴OA=OC,AB=BC,∠ACB=12∠BCD=60°,AC⊥BD,∴△ABC是等边三角形,∴AC=AB=8,∴OA=OC=4,在Rt△AOB中,由勾股定理得:OB=AB2―OA2=82―42=43,∴S矩形OBEC=OB•OC=43×4=163.9.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵AE⊥BD于点E,DF⊥AC于点F,∴∠AEO=∠DFO=90°,在△AEO和△DFO中,∠AEO=∠DFO∠AOE=∠DOFAE=DF,∴△AEO≌△DFO(AAS),∴OA=OD,∴AC=BD,∴四边形ABCD是矩形.(2)解:由(1)得:四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OA=OB,∴∠OAB=∠OBA,∵∠BAE:∠EAD=2:3,∴∠BAE=36°,∴∠OBA=∠OAB=90°﹣36°=54°,∴∠EAO=∠OAB﹣∠BAE=54°﹣36°=18°.∵AE⊥BD于点E,∴∠AEO=90°,∴∠AOE=90°﹣∠EAO=90°﹣18°=72°.10.(1)证明:∵四边形ABCD是菱形,∴OA=OC=12AC,AC⊥BD,∴∠COD=90°,∵DE=12 AC,∴OC=DE,∵DE∥AC,∴四边形OCED是平行四边形,又∵∠COD=90°,∴平行四边形OCED是矩形;(2)解:由(1)可知,OA=DE,∵DE∥AC,∴四边形OADE是平行四边形,∴OE=AD=6,∵四边形OCED是矩形,∴OF=12OE=3.11.证明:(1)∵F是BC的中点,∴BF=CF=12 BC,∵BC=2AD,∴AD=12 BC,∴AD=CF,∵AD∥BC,∴四边形AFCD是平行四边形,又∵CD⊥BC,∴∠DCF=90°,∴▱AFCD是矩形;(2)如图2,连接DF交CE于G,∵BC=2AD,F是BC的中点,∴AD=BF,∵AD∥BC,∴四边形ABFD是平行四边形,∴AB∥DF,∵CE⊥AB,∴CE⊥DF,∵CE⊥AB,∴∠BEC=90°,∵F是BC的中点,∴EF=12BC=CF,∴GE=GF,∴DF是线段CE的垂直平分线,∴DE=DC.12.(1)解:∵DE⊥AB,∠B=∠C=90°,∴∠DEB=∠B=∠C=90°,∴四边形BCDE是矩形,∴BC=ED,BE=CD,∵DE⊥AB,AE=BE=3,BF=2,∴DE=AB=BC=6,CD=3,∴CF=BC﹣BF=4,∴DF=DC2+CF2=5;(2)证明:如图,过点F作FG⊥AD,∵AE=3,DE=AB=6,BF=2.∴AD=AE2+DE2=35,AF=AB2+BF2=210,∵S△ADF=12×AD•FG=15,∴FG=25,∴AG=AF2―FG2=25=FG,∴∠GAF=∠GFA=45°,∵∠ADE+∠BAF+∠DAF=90°,∴∠ADE+∠BAF=45°,∴∠ADE+∠BAF=∠DAF.13.解:(1)AE⊥BF,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,在Rt△ABE和Rt△BCF中,AE=BFAB=BC,∴Rt△ABE≌Rt△BCF(HL),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴AE⊥BF;(2)在Rt△ABE中,AB=8,BE=6,根据勾股定理得:AE=AB2+BE2=10,∵S△ABE=12×AB•BE=12×AE•BP,∴8×6=10BP,∴BP=4.8,∴BP的长度为4.8;(3)四边形FMNP不能成为正方形,理由如下:由(1)知:AE⊥BF,∴∠APF=90°,∵FM⊥DN,DN⊥AE,∴∠FMN=∠MNP=90°,∴四边形FMNP是矩形,∵∠BAP+∠NAD=∠NAD+∠ADN=90°,∴∠BAP=∠ADN,在△BAP和△ADN中,∠BAP=∠ADNAB=DA∠APB=∠DNA=90°,∴△BAP≌△ADN(ASA),∴AN=BP,AP=DN,∵AE=BF,∴AE﹣AN=BF﹣BP,∴EN=PF,∵点F在线段CD上运动时(点F不与C、D重合),∴P、E不重合,∴PN≠PF,∴四边形FMNP不能成为正方形.14.解:(1)四边形PQEF为正方形,证明:在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF(SAS).∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形;(2)对角线PE总过AC的中点,理由如下:连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.15.解:(1)如果AB=AD(或AC⊥BD,答案不唯一)那么四边形ABCD为正方形;故答案为:AB=AD(或AC⊥BD,答案不唯一);(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴▱ABCD是矩形,①添加条件AB=AD,∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.②∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.16.(1)证明:如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEN和△FEM中,∠DNE=∠FMEEN=EM,∠DEN=∠FEM∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)解:如图,连接EG,∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,∴△ADE≌△CDG(SAS),∴AE=CG,∠DCG=∠DAE=45°,∵∠ACD=45°,∴∠ECG=45°+45°=90°,∴AE2+CE2=EC2+CG2=EG2,∴AE2+CE2的最小值就是EG2的最小值,∵四边形ABCD是正方形,且AB=42,∴BC=AB=42,∠B=90°,∴AC=8,设CE=x,则AE=CG=8﹣x,∴EG2=EC2+CG2=x2+(8﹣x)2=2x2﹣16x+64=2(x﹣4)2+32,∴当x=4时,EG2有最小值是32,即AE2+CE2的最小值是32.17.(1)证明:∵AE=BF=CM=DN,∴AN=DM=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEN≌△DMN≌△CFM≌△BEF(SAS).∴EF=EN=NM=MF,∠ENA=∠DMN.∴四边形EFMN是菱形,∵∠ENA=∠DMN,∠DMN+∠DNM=90°,∴∠ENA+∠DNM=90°.∴∠ENM=90°.∴四边形EFMN是正方形;(2)解:∵AB=7,AE=3,∴AN=BE=AB﹣AE=4,∴EN=AE2+AN2=5,∴正方形EFMN的周长=4×5=20.18.证明:(1)∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,∴∠ABF+∠CBF=90°,又∵AE⊥BF,∴∠BAE+∠ABF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∠ABC=∠CAB=BC,∠BAE=∠CBF∴△ABE≌△BCF(ASA),∴AE=BF;(2)∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∴∠ABF+∠CBF=90°,∵AE⊥BF,∴∠BAE+∠ABF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∠ABC=∠C∠BAE=∠CBF,AE=BF∴△ABE≌△BCF(AAS),∴AB=BC,又∵四边形ABCD是矩形,∴四边形ABCD是正方形.19.(1)证明:如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形;(2)解:∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=2AD=42;(3)解:连接DF,∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF=22+42=25,∴正方形DEFG的面积为2×12×25×5=10.20.解:(1)当△ABC满足AC=AB时,四边形ADCF为正方形,理由如下:∵∠CAB=90°,AC=AB,AD是BC边上的中线,∴AD=CD=BD,AD⊥BC,∵四边形ADCF是平行四边形,且AD=CD,∴平行四边形ADCF是菱形,∵AD⊥BC,∴四边形ADCF为正方形;(2)由(1)得,∠ADB=90°,∵AD=BD,AB=62,∴AD=BD=AF=6,∵四边形ADCF为正方形,∴∠FAD=90°,AF∥CD,在△FAE和△BDE中,∠AEF=∠DEB∠FAE=∠BDE=90°AF=BD,∴△FAE≌△BDE(AAS),∴AE=DE=12AD=12×6=3,EF=BE,∴EF=BE=AF2+AE2=35.21.(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠ADE=∠BAF,∵DE=AF,∴△ADE≌△BAF(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)解:△AHF是等腰三角形,理由:∵四边形ABCD是正方形,∴∠DAB=∠ABH=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠ADE=∠BAF,∵DE=AF,∴△ADE≌△BAF(AAS),∴AE=BF,∵DE=AF,∴BH=AE,∴BH=BF,∵∠ABH=90°,∴AH=AF,∴△AHF是等腰三角形.。

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。

2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解

2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解

2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解(试题部分)一、单选题1.(2024·重庆·中考真题)如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π−B .4πC .324π−D .8π2.(2024·甘肃临夏·中考真题)如图,O 是坐标原点,菱形ABOC 的顶点B 在x 轴的负半轴上,顶点C 的坐标为()3,4,则顶点A 的坐标为( )A .()4,2−B .()4C .()2,4−D .(− 3.(2024·湖北武汉·中考真题)小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A .64︒B .66︒C .68︒D .70︒4.(2024·四川成都·中考真题)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AB AD = B .AC BD ⊥ C .AC BD = D .ACB ACD ∠=∠5.(2024·黑龙江绥化·中考真题)如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A .245B .6C .485D .126.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D7.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A 的坐标为()4,0−,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2−−B .()4,2−C .()2,4D .()4,28.(2024·甘肃·中考真题)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A .6B .5C .4D .39.(2024·四川眉山·中考真题)如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A B C .34 D .5410.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A.2 B .3 C D .11.(2024·甘肃临夏·中考真题)如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D B C →→的路径行进,过点P 作PQ CD ⊥,垂足为Q .设点P 的运动路程为x ,PQ DQ −为y ,y 与x 的函数图象如图2,则AD 的长为( )A B .83 C D .11412.(2024·广西·中考真题)如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .1013.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是( )A.B .2C .4−D 14.(2024·上海·中考真题)四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形15.(2024·四川德阳·的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A .3B .2C .1D .016.(2024·四川泸州·中考真题)如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是( )A .4B .5C .8D .1017.(2024·重庆·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2BCD .125二、填空题18.(2024·福建·中考真题)如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .19.(2024·山东威海·中考真题)将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN = .20.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .21.(2024·广西·中考真题)如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .22.(2024·天津·中考真题)如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F 为DE 的中点,则线段AF 的长为 .23.(2024·内蒙古包头·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ⊥,垂足为F ,连接DE .若CE AF =,则DE 的长为 .24.(2024·广东·中考真题)如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为 .25.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是 cm .三、解答题27.(2024·陕西·中考真题)如图,四边形ABCD 是矩形,点E 和点F 在边BC 上,且BE CF =.求证:AF DE =.28.(2024·吉林长春·中考真题)如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.29.(2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形......数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】如图1,在四边形ABCD中,E、F、G、H分别是各边的中点.求证:中点四边形EFGH是平行四边形.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF、GH分别是ABC和ACD的中位线,∴12EF AC=,12GH AC=(____①____)∴EF GH=.同理可得:EH FG=.∴中点四边形EFGH是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①________【探究二】从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【探究三】(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________.(4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.结论:原四边形对角线③________时,中点四边形是④________.30.(2024·吉林长春·中考真题)【问题呈现】小明在数学兴趣小组活动时遇到一个几何问题:如图①,在等边ABC 中,3AB =,点M 、N 分别在边AC 、BC 上,且AM CN =,试探究线段MN 长度的最小值.【问题分析】小明通过构造平行四边形,将双动点问题转化为单动点问题,再通过定角发现这个动点的运动路径,进而解决上述几何问题.【问题解决】如图②,过点C 、M 分别作MN 、BC 的平行线,并交于点P ,作射线AP .在【问题呈现】的条件下,完成下列问题:(1)证明:AM MP =;(2)CAP ∠的大小为 度,线段MN 长度的最小值为________.【方法应用】某种简易房屋在整体运输前需用钢丝绳进行加固处理,如图③.小明收集了该房屋的相关数据,并画出了示意图,如图④,ABC 是等腰三角形,四边形BCDE 是矩形,2AB AC CD ===米,30ACB ∠=︒.MN 是一条两端点位置和长度均可调节的钢丝绳,点M 在AC 上,点N 在DE 上.在调整钢丝绳端点位置时,其长度也随之改变,但需始终保持AM DN =.钢丝绳MN 长度的最小值为多少米.31.(2024·河北·中考真题)情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在平行四边形ABCD 中,点F 在边AD 上,AB AF =,连接BF ,点O 为BF 的中点,AO BC 于点E ,连接EE(1)求证:四边形ABEF 是菱形:(2)若平行四边形ABCD 的周长为22,1,120CE BAD =∠=︒,求AE 的长.33.(2024·河南·中考真题)如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形34.(2024·贵州·中考真题)如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.35.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.36.(2024·吉林·中考真题)小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.37.(2024·四川广元·中考真题)如图,已知矩形ABCD .(1)尺规作图:作对角线AC 的垂直平分线,交CD 于点E ,交AB 于点F ;(不写作法,保留作图痕迹)(2)连接AE CF 、.求证:四边形AFCE 是菱形.38.(2024·黑龙江牡丹江·中考真题)在Rt ACB △中,90ACB ∠=︒,12BC =,8AC =,以BC 为边向ACB △外作有一个内角为60︒的菱形BCDE ,对角线BD CE ,交于点O ,连接OA ,请用尺规和三角板作出图形,并直接写出AOC 的面积.39.(2024·广东广州·中考真题)如图,Rt ABC △中,90B ??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.40.(2024·广东广州·中考真题)如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.41.(2024·四川遂宁·中考真题)康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、; ③顺次连结所得的四点得到四边形ABCD .于是可以直接..判定四边形ABCD 是平行四边形,则该判定定理是:______. (2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.42.(2024·重庆·中考真题)在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④. 43.(2024·吉林长春·中考真题)如图,在ABC 中,5AB AC ==,6BC =.点D 是边BC 上的一点(点D 不与点B 、C 重合),作射线AD ,在射线AD 上取点P ,使AP BD =,以AP 为边作正方形APMN ,使点M 和点C 在直线AD 同侧.(1)当点D 是边BC 的中点时,求AD 的长;(2)当4BD =时,点D 到直线AC 的距离为________;(3)连结PN ,当PN AC ⊥时,求正方形APMN 的边长;(4)若点N 到直线AC 的距离是点M 到直线AC 距离的3倍,则CD 的长为________.(写出一个即可) 44.(2024·甘肃·中考真题)【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.45.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x −−=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB −运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA −运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A 的坐标;(2)求S 与t 的函数关系式;(3)在(2)的条件下,当S =M 在y 轴上,坐标平面内是否存在点N ,使得以点O 、P 、M 、N 为顶点的四边形是菱形.若存在,直接写出点N 的坐标;若不存在,说明理由.2024年中考数学真题汇编专题21 特殊的平行四边形+答案详解(答案详解)一、单选题1.(2024·重庆·中考真题)如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π−B .4πC .324π−D .8π 根据题意可得2AC AD =∵矩形ABCD ,∴AD =在Rt ABC △中,AB =2.(2024·甘肃临夏·中考真题)如图,O 是坐标原点,菱形ABOC 的顶点B 在x 轴的负半轴上,顶点C 的坐标为()3,4,则顶点A 的坐标为( )A .()4,2−B .()4C .()2,4−D .(−3.(2024·湖北武汉·中考真题)小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A .64︒B .66︒C .68︒D .70︒【答案】C,AD BC ABD ∠44=︒,MBC A =∠=(11802CBD =故选:C .4.(2024·四川成都·中考真题)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AB AD =B .AC BD ⊥ C .AC BD = D .ACB ACD ∠=∠5.(2024·黑龙江绥化·中考真题)如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A .245B .6C .485D .126.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D【答案】B 【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,7.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A 的坐标为()4,0−,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2−−B .()4,2−C .()2,4D .()4,28.(2024·甘肃·中考真题)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A .6B .5C .4D .3 ,得到AOB 是等边三 ∴AOB 是等边三角形,2AB =,OA OB ==解得4AC =故选C .9.(2024·四川眉山·中考真题)如图,在矩形ABCD 中,6AB =,8BC =,点E 在DC 上,把ADE V 沿AE 折叠,点D 恰好落在BC 边上的点F 处,则cos CEF ∠的值为( )A B C .34 D .54【答案】A【分析】本题考查了矩形的性质,折叠的性质,勾股定理,求角的三角函数等知识点,正确利用折叠的性质是解题的关键.根据折叠的性质,可求得8AF AD ==,EF DE =,从而求得BF ,CF ,在Rt EFC △中,由勾股定理,得222EF CE CF =+,即可求得结果.【详解】解:四边形ABCD 是矩形,把10.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A .2B .3CD .11.(2024·甘肃临夏·中考真题)如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D B C →→的路径行进,过点P 作PQ CD ⊥,垂足为Q .设点P 的运动路程为x ,PQ DQ −为y ,y 与x 的函数图象如图2,则AD 的长为( )A .3B .83CD .114Rt BCD 中,()(24a −−解得:23a =,2AD a =+=故选:B .12.(2024·广西·中考真题)如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .10 明()SAS ADG BAH ≌四边形MNPQ 是矩形,证明(AAS ADQ BAM ≌矩形MNPQ 是正方形,ADQ △中,利用勾股定理求出【详解】解:∵四边形ABCD 是正方形,AB BC CD DA ===CD ∥,AD BC ∥,分别为各边中点,DF BH ,∴四边形MNPQ 是平行四边形,CE ,1DGCG =,PQ ,∴()SAS ADG BAH ≌DAG ABH ∠=∠,90DAG GAB ∠+∠=90ABH GAB ∠+∠=︒,90QMN AMB ∠=∠=︒,同理∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =, ∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.13.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是( )A .B .2C .4−D∵DEF 与DEC 关于直线2DF DC ==,DFE ∠2BF BD DF =−=45FBE FEB ∠=∠=︒,222EF BF ==−(14.(2024·上海·中考真题)四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形 OBC OAD S S =,OC 再由菱形的判定即可得到答案.四边形OBC OAD S S ∴=,OC OB OA ==过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF ∴==⋅=CH BF AE ===如果四个垂线拼成一个四边形,那这个四边形为菱形,15.(2024·四川德阳·的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A .3B .2C .1D .0设AB a =,BC b =,假设存在点P ,且在Rt ABP 中,2222BP AB AP a =+=在Rt PDC 中,222(PC PD CD b =+= PB PC ⊥,∴ 222BC BP PC =+,即222b a x =++整理得2x bx +− 24b ac ∆=−16.(2024·四川泸州·中考真题)如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是( )A .4B .5C .8D .10 先证明()SAS ADE BAF ≌12DF ,如图所示,在易证明()SAS FBG FBH ≌H 、D 、F 三点共线时,有最小值,最小值即为一半,求出8AH =,在Rt ADH 中,由勾股定理得10=,责任12OM +ABCD 是正方形,90ABC =︒,∴()SAS ADE BAF ≌ADE BAF ∠=∠,DOF ADO ∠=∠+∠∵点M 是DF 的中点,12OM DF =;∴()SAS FBG FBH ≌FH FG =,1122OM FG DF +=∴当H 、D 、F 三点共线时,Rt ADH 中,由勾股定理得12OM FG +的最小值为故选:B .17.(2024·重庆·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A .2B C D .125【答案】D 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到二、填空题18.(2024·福建·中考真题)如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .【答案】2【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到DGH S ,12AHE EFB CGF S S S ===,个小三角形面积求解,即可解题.【详解】解:正方形ABCD 的面积为4,点DGH S =同理可得12AHE EFB CGF S S S ===,四边形EFGH 的面积为11422−−故答案为:2.19.(2024·山东威海·中考真题)将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN = .然后证明BC M AEC ''≌,得到中,利用222NE D E D N '+'=解题即可.Rt C BM '中,2C M C B '+'=5CM =,D C M D ∠=∠=∠'''是矩形,,E AEC '=∠∴BC M AEC ''≌,4BC AE '==,MC ='7AB CD C D ''===,84DE AD AE =−=−D N DN a '==,则EN 20.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .Rt EGF 中,利用勾股定理构建关于的边长为a ,CD 与则四边形AOGD 是矩形,∴OG AD a ==,DG ∵折叠,∴BF BC a ==,CE =∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.21.(2024·广西·中考真题)如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .ABCD S =BC CD =∴四边形Rt ADN △22.(2024·天津·中考真题)如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为 ;(2)若F为DE的中点,则线段AF的长为.)四边形Rt DOC中,DC=,32∴==OD OC OAOE=5∴AE OE OA=−=(2)延长AFAB=,AC是一条对角线,E 23.(2024·内蒙古包头·中考真题)如图,在菱形ABCD中,60ABC∠=︒,6=,则DE的长为.是AC上一点,过点E作EF AB⊥,垂足为F,连接DE.若CE AF先判断ABC,ACD都是等边三角形,的直角三角形的性质可得出【详解】解∶过D作DH∠=∵菱形ABCD中,ABC===,∠∴AB BC CD AD∴ABC,ACD都是等边三角形,==∴60EAF∠=︒,AC AB⊥,EF ABAEF∠=︒,30=,2AE AF24.(2024·广东·中考真题)如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为 .ADE S =8ABF S =,则可求出CDF 的面积,然后利用ADE BEF CDF S S S S S =−−阴影求解即可.【详解】解:连接AF BD 、,1122ADE ABD S S ==⨯28ABF BEF S S ==,设菱形ABCD 中BC 边上的高为12ABFABCDBF h S ⋅=菱形,即23BF BC =,2BF =ABFCDF SS =CDF =△10ADE BEF CDF S SS S =−−=,25.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为CEB OEB SS ''=,然后证明出(AAS A ED CEB ''≌明出()SSS ODE OB E '≌,得到ODE OB E SS '=,进而求解即可. 【详解】∵四边形ABCD 是菱形,53AC BD = 10AC a =,6BD a =152OA OC AC a ===,∵线段AB 与A B ''关于过点O 的直线∴12BOF COF BOB '∠=∠=∠=∴45AOG DOG ∠=∠=︒∴点A ',D ,O 三点共线∴2A D A O OD a ''=−=,B C 'CEB OEB S S ''=A D B '=CD AB ∥CDO ∠∴(AAS A ED CEB ''≌A E CE '=A B AB CD ''==DE B E '=又∵OD B O =',OE =∴()SSS ODE OB E '≌ODE OB E SS '= 3CEB CEB OEB ODE OB ED S S S S S ''''==++四边形故答案为:13. 26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E到矩形对角线所在直线的距离是cm.Rt AE F中,11=∠OAD ODARt E F D中,12在射线ADRt DCE中,2=∠CAD DCE+∠DCE DCA23Rt DE F 中,综上所述,点故答案为:25三、解答题27.(2024·陕西·中考真题)如图,四边形ABCD 是矩形,点E 和点F 在边BC 上,且BE CF =.求证:AF DE =.【答案】见解析【分析】本题考查了矩形的性质,全等三角形的判定和性质.根据矩形的性质得到AB CD =,90B C ∠=∠=︒,再推出BF CE =,利用SAS 证明ABF DCE ≌△△,即可得到AF DE =. 【详解】证明:∵四边形ABCD 是矩形, ∴AB DC =,90B C ∠=∠=︒, ∵BE CF =,∴BE EF CF EF +=+,即BF CE =, ∴()SAS ABF DCE ≌, ∴AF DE =.28.(2024·吉林长春·中考真题)如图,在四边形ABCD 中,90A B ∠=∠=︒,O 是边AB 的中点,AOD BOC ∠=∠.求证:四边形ABCD 是矩形.【答案】证明见解析.【分析】本题考查全等三角形的判定与性质、平行四边形的判定及矩形的判定,熟练掌握判定定理是解题关键.利用SAS 可证明AOD BOC ≌△△,得出AD BC =,根据90A B ∠=∠=︒得出AD BC ∥,即可证明四边形ABCD 是平行四边形,进而根据有一个角是直角的平行四边形是矩形即可证明四边形ABCD 是矩形. 【详解】证明:∵O 是边AB 的中点, ∴OA OB =,在AOD △和BOC 中,90A B OA OB AOD BOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴AOD BOC ≌△△, ∴ADBC =, ∵90A B ∠=∠=︒, ∴AD BC ∥,∴四边形ABCD 是平行四边形, ∵90A B ∠=∠=︒, ∴四边形ABCD 是矩形.29.(2024·青海·中考真题)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形......数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用. 以下从对角线的数量关系和位置关系两个方面展开探究.如图1,在四边形ABCD 中,E 、F 、G 、H 分别是各边的中点. 求证:中点四边形EFGH 是平行四边形.证明:∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴EF 、GH 分别是ABC 和ACD 的中位线, ∴12EF AC =,12GH AC =(____①____)∴EF GH =. 同理可得:EH FG =.∴中点四边形EFGH 是平行四边形.结论:任意四边形的中点四边形是平行四边形. (1)请你补全上述过程中的证明依据①________ 【探究二】从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【探究三】(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②________. (4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续..的证明过程. 【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.。

备战中考数学平行四边形综合经典题及答案

备战中考数学平行四边形综合经典题及答案

备战中考数学平行四边形综合经典题及答案一、平行四边形1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x ,∴CF=BE-EM=2+28x -x , ∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.2.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 6223. 【解析】【分析】(1)如图1中,延长EO 交CF 于K ,证明△AOE ≌△COK ,从而可得OE=OK ,再根据直角三角形斜边中线等于斜边一半即可得OF=OE ;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF ﹣AE|=2,EF=23,AE=CK ,∴FK=2, 在Rt △EFK 中,tan ∠FEK=33,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=12EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62-或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF :∠FDC =3:2,DF ⊥AC ,求∠BDF 的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD 是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF ∥BC ,∴四边形BCDF 为平行四边形,∵BD =BC ,∴四边形BCFD 是菱形;(2)∵四边形BCFD 是菱形,∴BD =DF =BC =2,在Rt △BAD 中,AB =223BD AD -=,∵AF =AD +DF =1+2=3,在Rt △BAF 中,BF =22AB AF +=23.5.如图,ABCD 是正方形,点G 是BC 上的任意一点,DE ⊥AG 于E ,BF ∥DE ,交AG 于F .求证:AF=BF+EF .【答案】详见解析.【解析】【分析】由四边形ABCD 为正方形,可得出∠BAD 为90°,AB=AD ,进而得到∠BAG 与∠EAD 互余,又DE 垂直于AG ,得到∠EAD 与∠ADE 互余,根据同角的余角相等可得出∠ADE=∠BAF ,利用AAS 可得出△ABF ≌△DAE ;利用全等三角的对应边相等可得出BF=AE ,由AF-AE=EF ,等量代换可得证.【详解】∵ABCD 是正方形,∴AD=AB ,∠BAD=90°∵DE ⊥AG ,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF,∴AF=BF+EF.点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.6.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?【答案】4655或22【解析】【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+;【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴AE=2222AB BE=86++=10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+ =22;综上,可得B′D 4655或2【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.7.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.DF CF106∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB226810,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.8.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC =BC ,AD ⊥BC ,∴BD =CD ,∴AG 是BC 的垂直平分线,∴GC =GB ,∴∠GBF =∠BCG ,∵BG =BF ,∴GC =BE ,∵CE =EF ,∴∠CEF =180°﹣2∠F ,∵BG =BF ,∴∠GBF =180°﹣2∠F ,∴∠GBF =∠CEF ,∴∠CEF =∠BCG ,∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,∴∠GCE =∠F ,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩Q , ∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N为AC的中点,∴DN=1AC=AN,∠DAN=∠ADN,2∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中点,∴DM=1FG=GM,∠GDM=∠AGE,2∴∠GDM=∠DAN,∴DM∥AE,∴四边形DMEN是平行四边形,∴EM=DN=1AC,2∵AC=AB=5,∴EM=5.2【点睛】本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.9.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.10.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.【详解】(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,∴EB =EB ′=EC ,∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;又∵△BB 'C 三内角之和为180°,∴∠BB 'C =90°;∵点B ′是点B 关于直线AE 的对称点,∴AE 垂直平分BB ′;在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2将AB =4cm ,BE =3cm ,AE =5cm ,∴AO =165 cm , ∴BO =22AB AO -=125cm , ∴BB ′=2BO =245cm , ∴在Rt △BB 'C 中,B ′C =22BC BB '-=518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图1,在正方形ABCD 中,AD=6,点P 是对角线BD 上任意一点,连接PA ,PC 过点P 作PE ⊥PC 交直线AB 于E .(1) 求证:PC=PE;(2) 延长AP 交直线CD 于点F.①如图2,若点F 是CD 的中点,求△APE 的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=723,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M.∵四边形ABCD 是正方形,P 在对角线上,∴四边形HPGD 是正方形,∴PH=PG,PM ⊥AB,设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADF S n =9,∵ADF S n =ADP DFP S S +n n =1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4,又∵PA=PE,∴AM=EM,AE=4,∵APE S n =1144822EA MP ⨯=⨯⨯=, ②设HP =b,由①可得AE=2b,MP=6-b,∴APE S n =()121626225b b ⨯⨯-=, 解得b=2.4 3.6或,∵ADF S n =ADP DFP S S +n n =1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9,即DF 的长为4或9;(3)如图,∵E 、Q 关于BP 对称,PN ∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45°,∴∠1+∠4=45°,∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90°,∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组222252372 3a b a b ⎧+=⎪⎪⎨⎛⎪+= ⎪⎝⎭⎩, 可得12ab=56, ∴MNQ 56S V =, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.12.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC .(1)请判断:FG 与CE 的关系是___;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.13.(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为:AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+8或16﹣8.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E 中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8综上所述,BD′平方的长度为16+8或16﹣8.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.14.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.(1)求证:△ABM≌△CDN;(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;【解析】试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形.试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)当AB=AF时,四边形AMCN是菱形.∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形.考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.15.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DSE 金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一.解答题1.(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题).分析:(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG.点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.2.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC 于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.考点:平行四边形的性质.专题:探究型.分析:在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF﹣PD=CF,即PF﹣PD+PE=AC=AB.解答:解:图2结论:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键.3.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.解答:(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多,综合性较强,难度较大.4.如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.考点:菱形的性质;二次函数的最值;全等三角形的性质.专题:压轴题.分析:(1)菱形被分割成面积相等的两部分,那么分成的两个梯形的面积相等,而两个梯形的高相等,只需上下底的和相等即可.(2)易得菱形的高,那么用t表示出梯形的面积,用t的最值即可求得梯形的最大面积.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.解答:解:(1)设:BN=a,CN=10﹣a(0≤a≤10)因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)所以,AM=1×t=t(0≤t≤10),MD=10﹣t(0≤t≤10).所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10﹣t)+(10﹣a)]×菱形高÷2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10,(0≤t≤10),(0≤a≤10)所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,因为AB=10,∠BAD=60°,所以菱形高=5,AM=1×t=t,BN=2×t=2t.所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5×=t(0≤t≤5).所以当t=5时,梯形ABNM的面积最大,其数值为.(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25;因为要全等必有MN∥AC,∴N在C点外,所以不重合处面积为×(at﹣10)2×∴重合处为S=25﹣,当S=0时,即PM在CD上,∴a=2.点评:本题考查了菱形以及相应的三角函数的性质,注意使用两条平行线间的距离相等等条件.5.如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系.考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理.分析:(1)①先证明是平行四边形,再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形,再根据对角线互相垂直证明是菱形;(2)先作一条对角线,在作出它的垂直平分线分别与矩形的边相交,连接四个交点即可.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.解答:解:(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵矩形ABCD,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H是中点,∴AE=BE=CG=DG,AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH是菱形;若选(Ⅲ),证明如下∵EF垂直平分AC,∴FA=FC,EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴AF=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示:AH=CF,EG垂直平分对角线FH,四边形HEFG是菱形;(3)S ABGH=a2 ,S EFGH=ab,S菱形AECF=,∵﹣a2==>0(b>a)∴S菱形AECF>S ABGH.∵﹣ab===>0,∴S菱形AECF>S EFGH.∵a2 ﹣ab=a(a﹣b)∴当a>b,即0<b<2a时,S菱形ABGH>S菱形EFGH;当a=b,即b=2a时,S菱形ABGH=S菱形EFGH;当a<b,即b>a时,S菱形ABGH<S菱形EFGH.综上所述:当O<b<2a时,S EFGH<S ABGH<S菱形AECF.当b=2a时,S EFGH=S ABGH<S菱形AECF.当b>2a时S ABGH<S EFGH<S菱形AECF.点评:本题主要考查了菱形的判定与性质,三角形中位线定理,全等三角形的判定与性质以及矩形的性质等知识点.注意第(3)题需要分类讨论,以防错解.6.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质.分析:(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC 及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.解答:解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.点评:此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.7.在△ABC中,∠BAC=90°,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上,其他条件不变,写出∠AFC、∠ACB、∠DAC的关系,并结合图2给出证明;(2)若点D在CB延长线上,其他条件不变,直接写出∠AFC、∠ACB、∠DAC的关系式.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质.专题:几何综合题.分析:(1)∠AFC、∠ACB、∠DAC的关系为:∠AFC=∠ACB﹣∠DAC,理由为:由四边形ADEF为正方形,得到AD=AF,且∠FAD为直角,得到∠BAC=∠FAD,等式左右两边都加上∠CAD得到∠BAD=∠CAF,再由AB=AC,AD=AF,利用SAS可得出三角形ABD与三角形ACF全等,根据全等三角形的对应角相等可得出∠AFC=∠ADB,又∠ACB为三角形ACD的外角,利用外角的性质得到∠ACB=∠ADB+∠DAC,变形后等量代换即可得证;(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.解答:解:(1)关系:∠AFC=∠ACB﹣∠DAC,…(2分)证明:∵四边形ADEF为正方形,∴AD=AF,∠FAD=90°,∵∠BAC=90°,∠FAD=90°,∴∠BAC+∠CAD=∠FAD+∠CAD,即∠BAD=∠CAF,…(3分)在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),…(4分)∴∠AFC=∠ADB,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADB+∠DAC,…(5分)∴∠ADB=∠ACB﹣∠DAC,∵∠ADB=∠AFC,∴∠AFC=∠ACB﹣∠DAC;…(6分)(2)∠AFC、∠ACB、∠DAC满足的关系式为:∠AFC+∠DAC+∠ACB=180°,…(8分)证明:∵四边形ADEF为正方形,∴∠DAF=90°,AD=AF,又∠BAC=90°,∴∠DAF=∠BAC,∴∠DAF﹣∠BAF=∠BAC﹣∠BAF,即∠DAB=∠FAC,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,在△ADC中,∠ADB+∠ACB+∠DAC=180°,则∠AFC+∠ACB+∠DAC=180°.点评:此题考查了正方形的性质,全等三角形的判定与性质,三角形的内角和定理,以及三角形的外角性质,熟练掌握判定及性质是解本题的关键.8.已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.考点:正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质.专题:代数几何综合题.分析:(1)根据正方形的性质得出DC=BC,∠DCB=∠CBN=90°,求出∠CPD=∠DCN=∠CNB,证△DCP≌△CBN,求出CP=BN,证△OBN≌△OCP,推出ON=OP,∠BON=∠COP,求出∠PON=∠COB 即可;(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.解答:(1)证明:如图1,∵正方形ABCD,∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90°,∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中,∴△DCP≌△CBN,∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP,∴ON=OP,∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°,∴ON⊥OP,即ON=OP,ON⊥OP.(2)解:∵AB=4,四边形ABCD是正方形,∴O到BC边的距离是2,图1中,S四边形OPBN=S△OBN+S△BOP,=×(4﹣x)×2+×x×2,=4(0<x<4),图2中,S四边形OBNP=S△POB+S△PBN=×x×2+×(x﹣4)×x=x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.点评:本题考查了正方形性质,全等三角形的性质和判定,分段函数等知识点的应用,解(1)小题的关键是能运用性质进行推理,解(2)的关键是求出符合条件的所有情况,本题具有一定的代表性,是一道比较好的题目,注意:证明过程类似.9.如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图.分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.解答:(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.(2)解:如图.(3)解:四边形CEFK为平行四边形.证明:设CK、DE相交于M点∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)解:∵,∴设CE=x,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,∵BC2=n2x2,∴==.点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂.10.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质.分析:(1)根据点P在线段AO上时,利用三角形的全等判定可以得出PE⊥PD,PE=PD;(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要证PE⊥PD;从三方面分析,当点E在线段BC上(E与B、C不重合)时,当点E与点C重合时,点P恰好在AC中点处,当点E在BC的延长线上时,分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.解答:解:(1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,过点P做PM⊥CD,于点M,作PN⊥BC,于点N,∵PB=PE,PN⊥BE,∴BN=NE,∵BN=DM,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE,NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90°,∴∠DPE=90°,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD.(i)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.(ii)当点E在BC的延长线上时,如图.∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综合(i)(ii),PE⊥PD;(3)同理即可得出:PE⊥PD,PD=PE.点评:此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识,此题涉及到分类讨论思想,这是数学中常用思想同学们应有意识的应用.巩固训练:1.如图,矩形ABCD的对角线交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G,则△ACG是等腰三角形吗?并说明理由.考点:平行四边形的判定;全等三角形的判定;等腰三角形的判定;矩形的性质.专题:证明题;几何综合题;探究型.分析:(1)根据矩形的性质可知:AB=CD,∠ABE=∠CDF,∠AEB=∠CFD=90°,得到△ABE≌△CDF,所以AE∥CF,AE=CF,可证四边形AECF为平行四边形;(2)因为AE∥FG,得到∠G=∠GAE.利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO.所以∠CAG=∠G,可得△CAG是等腰三角形.解答:(1)证明:∵矩形ABCD,∴AB∥CD,AB=CD.∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,∴AE∥CF,∴△ABE≌△CDF,∴AE=CF.∴四边形AECF为平行四边形.(2)解:△ACG是等腰三角形.理由如下:∵AE∥FG,∴∠G=∠GAE.∵AG平分∠BAD,∴∠BAG=∠DAG.又OA=AC=BD=OD,∴∠ODA=∠DAO.∵∠BAE与∠ABE互余,∠ADB与∠ABD互余,∴∠BAE=∠ADE.∴∠BAE=∠DAO,∴∠EAG=∠CAG,∴∠CAG=∠G,∴△CAG是等腰三角形.点评:本题考查三角形全等的性质和判定方法以及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2.如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB.连接DE,DF.(1)求证:AF与DE互相平分;(2)若BC=4,求DF的长.考点:平行四边形的判定.专题:计算题;证明题.分析:(1)连接EF、AE,证四边形AEFD是平行四边形即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.解答:(1)证明:连接EF,AE.∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB.又∵AD=AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.∴AF与DE互相平分.(2)解:在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.点评:本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.3.如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF.请回答下列问题:(1)求证:四边形ADEF是平行四边形;(2)当△ABC满足什么条件时,四边形ADEF是矩形.考点:平行四边形的判定;等边三角形的性质;矩形的判定.专题:证明题;探究型.分析:1、本题可根据三角形全等证得DE=AF,AD=EF,即可知四边形ADEF是平行四边形2、要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°﹣90°﹣60°﹣60°=150°解答:证明:(1)∵等边△ABD、△BCE、△ACF,∴DB=AB,BE=BC.又∠DBE=60°﹣∠EBA,∠ABC=60°﹣∠EBA,∴∠DBE=∠ABC.∴△DBE≌△CBA.∴DE=AC.又∵AC=AF,∴AF=DE.同理可证:△ABC≌△FCE,证得EF=AD.∴四边形ADEF是平行四边形.(2)假设四边形ABCD是矩形,∵四边形ADEF是矩形,∴∠DAF=90°.又∵等边△ABD、△BCE、△ACF,∴∠DAB=∠FAC=60°.∴∠BAC=360﹣∠DAF﹣∠FAC﹣∠DAB=150°.当△ABC满足∠BAC=150°时,四边形ADEF是矩形.点评:此题主要考查了等边三角形的性质和平行四边形的判定.4.已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点.(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上.设BM与EF相交于点N,求证:四边形ANGM是菱形;(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP的长.考点:菱形的判定;矩形的性质.专题:计算题;证明题.分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD∥EF∥BC.∴MO:ON=AO:OG=1:1,∴MO=NO;(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=,求得PA=.解答:(1)证明:设AG交MN于O,则∵A、G关于BM对称,∴AO=GO,AG⊥MN.∵E、F分别是矩形ABCD中AB、CD的中点,∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC.∴MO:ON=AO:OG=1:1.∴MO=NO.∴AG与MN互相平分且互相垂直.∴四边形ANGM是菱形.(2)解:连接AF,∵AD∥EF∥BC,∴∠PAF=∠AFE,∠EFB=∠FBC.又∵EF⊥AB,AE=BE,∴AF=BF,∴∠AFE=∠EFB.∴∠PAF=∠AFE=∠EFB=∠FBC.∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.∴∠PFA=∠FBC=∠PAF.∴PA=PF.∴在Rt△PFD中,根据勾股定理得:PA=PF=,解得:PA=.点本题主要考查菱形和平行四边形的识别及推理论证能力.对角线互相垂直平分的四边形是菱形.评:5.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积.考点:菱形的判定与性质.专题:动点型;数形结合.分析:(1)利用平移的知识可得四边形ABCE是平行四边形,进而根据AB=BC可得该四边形为菱形;(2)利用证明三角形全等可得四边形PQED的面积为三角形BED的面积,所以不会改变;进而利用三角形的面积公式求解即可.解答:解:(1)四边形ABCE是菱形,证明如下:∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,∴四边形ABCE是平行四边形,(2分)又∵AB=BC,∴四边形ABCE是菱形.(4分)(2)由菱形的对称性知,△PBO≌△QEO,∴S△PBO=S△QEO(7分)∵△ECD是由△ABC平移得到的,∴ED∥AC,ED=AC=6,又∵BE⊥AC,∴BE⊥ED,(8分)∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=×BE×ED=×8×6=24.(10分)点评:考查菱形的判定及相关性质;把不规则图形的面积转化为较简单的规则图形的面积是解决本题的关键.6.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.考点:矩形的判定与性质;平行四边形的判定;菱形的判定.分析:(1)根据三角形的中位线的性质和平行四边形的判定定理可证明.(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值.(3)四边形PMEN是矩形的话,∠DPC必需为90°,判断一下△DPC是不是直角三角形就行.解答:解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,∵PA=PB=5,AD=BC,∠A=∠B=90°,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PM PD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)假设△DPC为直角三角形.设PA=x,PB=10﹣x,DP=,CP=.DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8.故当AP=2或AP=8时,能够构成直角三角形.点评:本题考查平行四边形的判定,菱形的判定定理,以及矩形的判定定理和性质,知道矩形的四个角都是直角,对边相等等性质.7.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.考点:矩形的判定与性质;三角形的面积;勾股定理;勾股定理的逆定理;平行四边形的判定与性质.专题:计算题;证明题.分析:(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH∥FP,EF∥HP,推出平行四边形EFPH,根据矩形的判定推出即可;(2)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.解答:(1)△BEC是直角三角形,理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)解:四边形EFPH为矩形,证明:∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:在RT△PCD中∠FC⊥PD,由三角形的面积公式得:PD•CF=PC•CD,∴CF==,∴EF=CE﹣CF=﹣=,∵PF==,∴S矩形EFPH=EF•PF=,答:四边形EFPH的面积是.点评:本题综合考查了勾股定理及逆定理,矩形、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.8.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF﹣BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.考点:正方形的判定与性质;全等三角形的判定与性质;勾股定理.分析:(1)利用全等三角形的判定首先得出△AED≌△BFA,进而得出AE=BF,即可证明结论;(2)首先得出四边形EFGH是矩形,再利用△AED≌△BFA,同理可得:△AED≌△DHC,进而得出EF=EH,即可得出答案;(3)首先求出AP的长,再利用三角形面积关系得出BF,AF的长,进而求出EF的长即可得出答案.解答:(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°,∴∠ADE+∠DAE=90°,又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BFA中,,∴△AED≌△BFA,∴AE=BF,∴AF﹣AE=EF,即AF﹣BF=EF;(2)证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形,∵△AED≌△BFA,同理可得:△AED≌△DHC,∴△AED≌△BFA≌△DHC,∴DH=AE=BF,AF=DE=CH,∴DE﹣DH=AF﹣AE,∴EF=EH,∴矩形EFGH是正方形;(3)解:∵AB=2,BP=1,∴AP=,∵S△ABP=×BF×AP=×BF×=1×2×,∴BF=,。

相关文档
最新文档