田口方法简介
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基於品質損失函數之品質特性 Quality characteristics based on quality loss functions
實驗因子的定義與選擇 The definition and selection of experiment factors
SN比 S/N ratio
田口直交表。 Taguchi orthogonal array
田口方法簡介 Taguchi Method – An Advanced DOE
高志民(Robert Gao) 库柏电工(CWD) 2007.05.14
田口式品質工程 Taguchi Quality Engineering
田口玄一博士於1950年代所開發倡導
Taguchi method was found at 1950
田口方法 Taguchi Method (TM)
「田口方法」是以實驗的手段來決定設計參數 TM selects parameters by experiments
為了減少實驗的次數,依控制因子及其水準的數目選用適當的實驗 直交表 Select the proper orthogonal array according to the numbers and the levels of control factors. This can reduce the number of experiments greater
A
B
C
D
Level 1 1.49
1.63
1.85
1.60
Level 2 1.80
1.66
1.44
1.69
Effect 0.31
0.04
-0.41
0.09
2.0
1.8
1.6
1.4
1.2
A1
A2
B1
B2
C1
C2
D1
D2
A1 B1 C2 D1
全因子實驗法 Full-factorial Experiments
直交表
每一行都是自我平衡的
Orthogonal Arrays
Every row is self-balanced
即每一行中各水準出現的頻率是相同的
This means that each level appears with same frequency in a row
每兩行間都是互相平衡的
Every two rows are mutual-balanced
La(bc)
La(bc ×de)
直交表 Orthogonal Arrays
二水準的直交表 (2 levels orthogonal arrays) L4(23)、L8(27)、L12(211)、L16(215)、L32(231)
三水準的直交表 (3 levels orthogonal arrays) L9(34)、L18(21×37)、L27(313)、 L36(211×312)、L36(23×313)、 L54(21×325)
直交表的使用,可以消除這種偏見 The use of orthogonal array could eliminate this bias
全因子實驗法 full-factorial experiments
考慮所有可能的因子排列組合 Consider all possible factors, and all combinations
無需任何資料分析 Don’t need data analysis
試誤法 Trial-and-error
不是一種有系統性的方法,太過依賴個人經驗 Rely on personals experiment very much
有時候很有效率,但大部份的時候是沒有效率的 Most time low efficient
一次一因子實驗法 one-factor-at-a-time experiments
因子效應是在特定的條件下的計算值 The factor effect is a calculated value under some assumptions
換句話說,因子效應是在某種偏見(bias)下評估出來 的 In other words, the factor effect is come out with personal’s biases
但是一般田口式直交表所預測的最佳設計組合通常並不 在實驗組中 But in Taguchi method, it’s very common if the optimized data group is not appeared in the orthogonal arrays
田口式直交表 Taguchi’s Orthogonal array
設計的目標是尋求最佳的產品(或製程)機能(性能),並且維持 此一機能的穩健性,亦即受干擾因子的影響減至最少 The aims of a design are looking for optimized products (or processes), performance (or characteristics) and keep them in stable even in a environment with different noises
利用直交表實驗設計與變異數分析,以少量的實驗數據 進行分析,有效提昇產品品質
With the help of orthogonal array, use very limited experiment to achieve a evidence product quality improvement
田口方法特點 characteristics of Taguchi Method
在於以較少的實驗組合,取得有用的資訊。雖不如全因子法真正找出確切 的最佳化位置,但能以少數實驗便能指出最佳化趨勢,可行性遠大於全因 子法。田口方法有以下特點: Oobtain key information using limited experiments. It can get the trend of optimization although can not get the optimal position like full factorial experiment
所累積的經驗常常是沒有系統的
The accumulated experiences are not linked each other
一次一因子實驗法 one-factor-at-a-time experiments
Exp A B C D E F G y
1
1 1 1 1 1 1 1 1.2
2
2 1 1 1 1 1 1 1.5
Exp. 1 2 3 4 5 6 7 8
1
11111111
2
11222222
3
11333333
4
12112233
5
12223311
6
12331122
7
13121323
8
13232131
3
2 2 1 1 1 1 1 2.0
4
2 2 2 1 1 1 1 1.1
5
2 2 2 2 1 1 1 1.8
6
2 2 2 2 2 1 1 2.2
7
2 2 2 2 2 2 1 1.6
8
2 2 2 2 2 2 2 1.7
Effect 0.3 0.5 -0.9 0.7 0.4 -0.6 0.1
A1 B1 C2 D1 E1 F2 G1
確認實驗 Experiment confirm
若有必要,可以重覆以上步驟,直到達到最佳的品質及性能為止 Repeat above steps until achieving our goals
以實驗的方法來決定設計參數 Select parameters by experiment
試誤法 (trial-and-error) 一次一因子實驗法 (one-factor-at-a-time experiments) 全因子實驗法 (full-factorial experiments) 田口式直交表實驗法 (Taguchi’s orthogonal arrays)
13
2
2
1
1 1.8
14
2
2
1
2 2.0
15
2
2
2
1 1.5
16
2
2
2
2 1.3
Level 1 1.49 1.63 1.85 1.60
Level 2 1.80 1.66 1.44 1.69
Effect 0.31 0.04 -0.41 0.09
因子反應表與因子反應圖 Table and graph of factor effect
田口方法步驟 (1/2) Steps of TM
選定品質特性 Select quality characteristics 判定品質特性之理想機能 Find the perfect performance of those characteristics 列出所有影響此品質特性的因子 List all factors which will impact those characteristics 定出信號因子的水準 Define the levels of signal factors 決定控制因子並定出它們的水準 Define control factors and their levels 決定干擾因子並定出它們的水準,必要的話,可以進行「干擾實驗」 Define noise factors and their levels. Arrange experiment with noise factors when necessary
田口方法步驟 (2/2) Steps of TM
選定適當的直交表,並安排完整的實驗計劃 Select orthogonal array and arrange the experiment plan
執行實驗,記錄實驗數據 Make the experiment and record data
資料分析 Data analysis
即在某一行中,出現某水準的所有實驗組,在另外一行中 ,出現各水準的頻率是相同的
This means that the numbers of each level in a row is same as that in another row
有這兩個特性的實驗計劃表稱為直交表
The experiment plan with those two are called orthogonal arrays
四水準的直交表 (4 levels orthogonal arrays) L16(45)、L32(21×49)
五水準的直交表 (5 levels orthogonal arrys) L25(56)、L50(21×511)
L18(21×37) 直交表 L18(21×37) orthogonal array
因為實驗已經考慮到所有可能的排列組合,事實上可以 不需做因子反應分析,而直接從實驗組中挑出一組最佳 設計 We can select the best data group as the optimized design without factor effect analysis since we already coved all possible
於1962年獲得品質應用戴明(Deming)獎
Deming award in 1962
1980年代後,美國AT&T、Ford、Xerox、Motorola、 Kodak等公司陸續採用
Used by AT&T, Ford, Xerox, Motorola, Kodak etc. since 1980
Quality Engineering、Taguchi Method
沒有效率,需要太多組實驗 To many experiments, very low efficiency
前例中有七個因子,每個因子有兩個變動水準,共需要 128(27)組實驗 Take an example of 7 factors with 2 levels, total 128( 27)experiments
全因子實驗法Βιβλιοθήκη Full-factorial Experiments
Exp.
A
B
C
D
y
1
1
1
1
1 1.1
2
1
1
1
2 1.3
3
1
1
2
1 1.0
4
1
1
2
2 1.8
5
1
2
1
1 2.0
6
1
2
1
2 2.1
7
1
2
2
1 1.5
8
1
2
2
2 1.1
9
2
1
1
1 2.3
10
2
1
1
2 2.2
11
2
1
2
1 1.6
12
2
1
2
2 1.7
實驗因子的定義與選擇 The definition and selection of experiment factors
SN比 S/N ratio
田口直交表。 Taguchi orthogonal array
田口方法簡介 Taguchi Method – An Advanced DOE
高志民(Robert Gao) 库柏电工(CWD) 2007.05.14
田口式品質工程 Taguchi Quality Engineering
田口玄一博士於1950年代所開發倡導
Taguchi method was found at 1950
田口方法 Taguchi Method (TM)
「田口方法」是以實驗的手段來決定設計參數 TM selects parameters by experiments
為了減少實驗的次數,依控制因子及其水準的數目選用適當的實驗 直交表 Select the proper orthogonal array according to the numbers and the levels of control factors. This can reduce the number of experiments greater
A
B
C
D
Level 1 1.49
1.63
1.85
1.60
Level 2 1.80
1.66
1.44
1.69
Effect 0.31
0.04
-0.41
0.09
2.0
1.8
1.6
1.4
1.2
A1
A2
B1
B2
C1
C2
D1
D2
A1 B1 C2 D1
全因子實驗法 Full-factorial Experiments
直交表
每一行都是自我平衡的
Orthogonal Arrays
Every row is self-balanced
即每一行中各水準出現的頻率是相同的
This means that each level appears with same frequency in a row
每兩行間都是互相平衡的
Every two rows are mutual-balanced
La(bc)
La(bc ×de)
直交表 Orthogonal Arrays
二水準的直交表 (2 levels orthogonal arrays) L4(23)、L8(27)、L12(211)、L16(215)、L32(231)
三水準的直交表 (3 levels orthogonal arrays) L9(34)、L18(21×37)、L27(313)、 L36(211×312)、L36(23×313)、 L54(21×325)
直交表的使用,可以消除這種偏見 The use of orthogonal array could eliminate this bias
全因子實驗法 full-factorial experiments
考慮所有可能的因子排列組合 Consider all possible factors, and all combinations
無需任何資料分析 Don’t need data analysis
試誤法 Trial-and-error
不是一種有系統性的方法,太過依賴個人經驗 Rely on personals experiment very much
有時候很有效率,但大部份的時候是沒有效率的 Most time low efficient
一次一因子實驗法 one-factor-at-a-time experiments
因子效應是在特定的條件下的計算值 The factor effect is a calculated value under some assumptions
換句話說,因子效應是在某種偏見(bias)下評估出來 的 In other words, the factor effect is come out with personal’s biases
但是一般田口式直交表所預測的最佳設計組合通常並不 在實驗組中 But in Taguchi method, it’s very common if the optimized data group is not appeared in the orthogonal arrays
田口式直交表 Taguchi’s Orthogonal array
設計的目標是尋求最佳的產品(或製程)機能(性能),並且維持 此一機能的穩健性,亦即受干擾因子的影響減至最少 The aims of a design are looking for optimized products (or processes), performance (or characteristics) and keep them in stable even in a environment with different noises
利用直交表實驗設計與變異數分析,以少量的實驗數據 進行分析,有效提昇產品品質
With the help of orthogonal array, use very limited experiment to achieve a evidence product quality improvement
田口方法特點 characteristics of Taguchi Method
在於以較少的實驗組合,取得有用的資訊。雖不如全因子法真正找出確切 的最佳化位置,但能以少數實驗便能指出最佳化趨勢,可行性遠大於全因 子法。田口方法有以下特點: Oobtain key information using limited experiments. It can get the trend of optimization although can not get the optimal position like full factorial experiment
所累積的經驗常常是沒有系統的
The accumulated experiences are not linked each other
一次一因子實驗法 one-factor-at-a-time experiments
Exp A B C D E F G y
1
1 1 1 1 1 1 1 1.2
2
2 1 1 1 1 1 1 1.5
Exp. 1 2 3 4 5 6 7 8
1
11111111
2
11222222
3
11333333
4
12112233
5
12223311
6
12331122
7
13121323
8
13232131
3
2 2 1 1 1 1 1 2.0
4
2 2 2 1 1 1 1 1.1
5
2 2 2 2 1 1 1 1.8
6
2 2 2 2 2 1 1 2.2
7
2 2 2 2 2 2 1 1.6
8
2 2 2 2 2 2 2 1.7
Effect 0.3 0.5 -0.9 0.7 0.4 -0.6 0.1
A1 B1 C2 D1 E1 F2 G1
確認實驗 Experiment confirm
若有必要,可以重覆以上步驟,直到達到最佳的品質及性能為止 Repeat above steps until achieving our goals
以實驗的方法來決定設計參數 Select parameters by experiment
試誤法 (trial-and-error) 一次一因子實驗法 (one-factor-at-a-time experiments) 全因子實驗法 (full-factorial experiments) 田口式直交表實驗法 (Taguchi’s orthogonal arrays)
13
2
2
1
1 1.8
14
2
2
1
2 2.0
15
2
2
2
1 1.5
16
2
2
2
2 1.3
Level 1 1.49 1.63 1.85 1.60
Level 2 1.80 1.66 1.44 1.69
Effect 0.31 0.04 -0.41 0.09
因子反應表與因子反應圖 Table and graph of factor effect
田口方法步驟 (1/2) Steps of TM
選定品質特性 Select quality characteristics 判定品質特性之理想機能 Find the perfect performance of those characteristics 列出所有影響此品質特性的因子 List all factors which will impact those characteristics 定出信號因子的水準 Define the levels of signal factors 決定控制因子並定出它們的水準 Define control factors and their levels 決定干擾因子並定出它們的水準,必要的話,可以進行「干擾實驗」 Define noise factors and their levels. Arrange experiment with noise factors when necessary
田口方法步驟 (2/2) Steps of TM
選定適當的直交表,並安排完整的實驗計劃 Select orthogonal array and arrange the experiment plan
執行實驗,記錄實驗數據 Make the experiment and record data
資料分析 Data analysis
即在某一行中,出現某水準的所有實驗組,在另外一行中 ,出現各水準的頻率是相同的
This means that the numbers of each level in a row is same as that in another row
有這兩個特性的實驗計劃表稱為直交表
The experiment plan with those two are called orthogonal arrays
四水準的直交表 (4 levels orthogonal arrays) L16(45)、L32(21×49)
五水準的直交表 (5 levels orthogonal arrys) L25(56)、L50(21×511)
L18(21×37) 直交表 L18(21×37) orthogonal array
因為實驗已經考慮到所有可能的排列組合,事實上可以 不需做因子反應分析,而直接從實驗組中挑出一組最佳 設計 We can select the best data group as the optimized design without factor effect analysis since we already coved all possible
於1962年獲得品質應用戴明(Deming)獎
Deming award in 1962
1980年代後,美國AT&T、Ford、Xerox、Motorola、 Kodak等公司陸續採用
Used by AT&T, Ford, Xerox, Motorola, Kodak etc. since 1980
Quality Engineering、Taguchi Method
沒有效率,需要太多組實驗 To many experiments, very low efficiency
前例中有七個因子,每個因子有兩個變動水準,共需要 128(27)組實驗 Take an example of 7 factors with 2 levels, total 128( 27)experiments
全因子實驗法Βιβλιοθήκη Full-factorial Experiments
Exp.
A
B
C
D
y
1
1
1
1
1 1.1
2
1
1
1
2 1.3
3
1
1
2
1 1.0
4
1
1
2
2 1.8
5
1
2
1
1 2.0
6
1
2
1
2 2.1
7
1
2
2
1 1.5
8
1
2
2
2 1.1
9
2
1
1
1 2.3
10
2
1
1
2 2.2
11
2
1
2
1 1.6
12
2
1
2
2 1.7