最新第3章自由基聚合习题参考答案
第三章自由基聚合习题
第三章自由基聚合一、填空题1.聚合速率与引发剂浓度的1/2次方成正比是的结果;若,则聚合速率与引发剂浓度成一次方关系。
2.自由基聚合和缩聚反应中,分别用和来表示聚合反应进行的深度。
3.聚氯乙烯的自由基聚合过程中,控制聚合度的方法是。
4..自由基聚合的基元反应包括-----------------、-----------------、-----------------、-----------------基元反应,推导自由基聚合反应微分方程式,用了三个基本假定,分别是--------------、------------------------、-------------。
5..衡量自由基聚合引发剂的活性可用-----------------、-----------------为标准,通常引发剂的引发效率f小于1,产生的原因是-----------------和-----------------。
6.自由基聚合的机理特征是-----------------、-----------------、-----------------。
二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应:()A.CH2=CH2B.CH2=CHCl C.CH2=CHOCH3D.CH2=CHNO22.能采用阴离子、阳离子、自由基聚合的单体是:A. MMA ;B. St ;C. 异丁烯;D. 丙烯腈3.在苯乙烯自由基聚合体系中加入少量正丁硫醇(Cs=21)的目的是:A.终止聚合反应;B.调节分子量;C.调节聚合物的端基结构4. 在高压聚乙烯(LDPE)中存在乙基、丁基短支链,其起因是:A.分子内链转移;B. 分子间链转移;C.向单体的链转移5. 聚乙烯醇的单体是()A.乙烯醇;B.乙醛;C.醋酸乙烯酯。
自由基聚合习题参考答案
自由基聚合习题参考答案自由基聚合习题参考答案自由基聚合是有机化学中的一个重要概念,它描述了自由基分子之间的反应,从而形成更大的分子。
在这个过程中,自由基通过共享电子来形成新的键,从而产生新的化合物。
下面是一些关于自由基聚合的习题以及参考答案。
1. 请问自由基聚合的反应类型是什么?答:自由基聚合是一种链反应,其中自由基通过不断的反应形成更多的自由基,从而加速反应速率。
2. 自由基聚合的反应中,哪种分子作为起始物质?答:在自由基聚合反应中,起始物质通常是一种含有活性氢原子的化合物,例如甲烷、乙烷等。
3. 请问自由基聚合反应中,哪种分子作为引发剂?答:在自由基聚合反应中,引发剂通常是一种能够产生自由基的化合物,例如过氧化苯甲酰、过氧化苯乙酰等。
4. 请问自由基聚合反应中,哪种分子作为链传递剂?答:在自由基聚合反应中,链传递剂通常是一种能够与自由基反应并终止链反应的化合物,例如二苯基二硫醚、二苯基二硒醚等。
5. 自由基聚合反应的机理是什么?答:自由基聚合反应的机理可以分为三个步骤:起始、传递和终止。
起始步骤中,引发剂产生自由基;传递步骤中,自由基与起始物质反应生成新的自由基;终止步骤中,自由基与链传递剂反应从而终止链反应。
6. 自由基聚合反应中,如何选择引发剂和链传递剂?答:选择引发剂和链传递剂的关键是要考虑它们的活性和选择性。
引发剂应具有足够的活性来产生自由基,而链传递剂应具有足够的选择性来终止链反应。
7. 自由基聚合反应的应用有哪些?答:自由基聚合反应在有机合成中有广泛的应用。
例如,聚合物的合成、药物的合成等都可以通过自由基聚合反应来实现。
8. 请问自由基聚合反应中的自由基会引起哪些副反应?答:自由基聚合反应中的自由基可能会引起副反应,例如氧化、聚合物链的断裂等。
因此,在自由基聚合反应中需要注意反应条件的选择,以减少副反应的发生。
总结起来,自由基聚合是一种重要的有机反应,它描述了自由基分子之间的反应过程。
3高分子化学 第三章 自由基聚合2
19
链引发反应
引发剂分解速率常数与温度之间的关系遵循阿累尼
乌斯(Arrhenius)经验公式。
kd
A e Ed/RT d
(3—18)
或
lnk d lnA d Ed /RT
(3—19)
不同温度测得某一引发剂的多个分解速率常数,作lnkd1/T 图,得一直线,由截距求得Ad,由斜率求Ed。 由于Ed 为正值,从式可知,随温度升高, kd增大。
RCH2 CH + CH2 CH
X
X
RCH2CHCH2CH XX
RCH2CH [ CH2CH ]n CH2CH
X
X
X
两个基本特征: (1)放热反应。 (2)链增长反应活化能低,反应速率极高。
5
自由基聚合机理
自由基聚合反应中,结构单元间的连接存在“头- 尾”、“头-头”(或“尾-尾”)两种可能的形式,一般 以头-尾结构为主。
诱导分解实际上是自由基向引发剂的转移反应。
O
O
O
O
Mx +
COOC
MxO C
+
CO
整个过程中自由基数量没有增加,但消耗了一个引发剂分子,
从而使引发剂效率降低。
过氧化物容易发生诱导分解。
Mx + ROOH
MxOH + RO
25
(2)笼蔽效应(cage effect) 当体系中引发剂浓度较低时,引发剂分子处于单体或溶 剂的包围中而不能发挥作用,称为笼蔽效应。 偶氮二异丁腈在笼子中可能发生的副反应:
HO OH 2HO
过氧化类引发剂的典型代表:过氧化二苯甲酰(dibenzoyl peroxide , BPO)。
BPO的分解分两步,第一步分解成苯甲酰自由基,第二 步分解成苯基自由基,并放出CO2。
3 习题参考答案
高分子第三章习题参考答案思考题2、下列烯类单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2,CH2=CHC5H6,CF2=CF2,CH2=C(CN)COOCH3,CH2=C(CH3)-CH=CH2参考答案:CH2=CHCl:适于自由基聚合,Cl原子是吸电子基团,也有共轭效应,但较弱。
CH2=CCl2:适于自由基聚合,Cl原子是吸电子基团。
CH2=CHCN:适于自由基聚合和阴离子聚合,CN是强吸电子基团,并有共轭效应。
CH2=C(CN)2:适于自由基聚合和阴离子聚合,CN是强吸电子基团。
CH2=CHCH3:适于阳离子聚合,CH3是供电子基团,CH3是与双键有超共额轭效应。
CH2=C(CH3)2:适于阳离子聚合,CH3是供电子基团,CH3是与双键有超共轭效应。
CH2=CHC5H6和CH2=C(CH3)-CH=CH2:均可进行自由基聚合、阳离子聚合和阴离子聚合。
因为共轭体系π电子的容易极化和流动。
CF2=CF2:适于自由基聚合。
F原子体积小,结构对称。
CH2=C(CN)COOCH:适合阴离子和自由基聚合,两个吸电子基,并兼有共轭效应。
3、判别下列单体能否进行自由基聚合,并说明理由。
CH2=C(C5H6)2,ClCH=CHCl,CH2=C(CH3)C2H5,CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3 CH=CHCOCH3参考答案:CH2=C(C5H6)2不能通过自由基聚合形成高分子量聚合物。
因为取带基空间阻碍大,形成高分子键时张力也大,故只能形成二聚体。
ClCH=CHCl不能通过自由基聚合形成高分子量聚合物。
因为单体结构对称,1,2-而取代基造成较大空间阻碍。
CH2=C(CH3)C2H5不能通过自由基聚合形成高分子量聚合物。
教材习题参考答案解析_第三章自由基聚合
教材习题参考答案解析_第三章⾃由基聚合教材习题参考答案第三章⾃由基聚合思考题1.烯类单体家具有下列规律: ①单取代和1,1-双取代烯类容易聚合, ⽽1,2-双取代烯类难聚合;②⼤部分烯类单体能⾃由基聚合,⽽能离⼦聚合的烯类单体却很少,试说明原因。
2. 下列烯类单体适于何种机理聚合?⾃由基聚合、阳离⼦聚合还是阴离⼦聚合?并说明原因。
CH2=CHCl CH2=CCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2CH2=CH C6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2答:CH2=CHCl:适合⾃由基聚合,Cl原⼦是吸电⼦基团,也有共轭效应,但均较弱。
CH2=CCl2:⾃由基及阴离⼦聚合,两个吸电⼦基团。
CH2=CHCN:⾃由基及阴离⼦聚合,CN为吸电⼦基团。
CH2=C(CN)2:阴离⼦聚合,两个吸电⼦基团(CN)。
CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。
CH2=CHC6H5:三种机理均可,共轭体系。
CF2=CF2:⾃由基聚合,对称结构,但氟原⼦半径⼩。
CH2=C(CN)COOR:阴离⼦聚合,取代基为两个吸电⼦基(CN及COOR)CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。
3. 下列单体能否进⾏⾃由基聚合,并说明原因。
CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3CH2=CHOCOCH3CH2=C(CH3)COOCH3CH3CH=CHCOOCH3CF2=CFCl答:CH2=C(C6H5)2:不能,两个苯基取代基位阻⼤⼩。
ClCH=CHCl:不能,对称结构。
CH2=C(CH3)C2H5:不能,⼆个推电⼦基,只能进⾏阳离⼦聚合。
CH3CH=CHCH3:不能,结构对称。
CH2=CHOCOCH3:醋酸⼄烯酯,能,吸电⼦基团。
CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。
陕师大高分子化学第三章自由基聚合试题答案
1. 数均分子量为1×105的聚乙酸乙烯酯水解得到聚乙烯醇。
聚乙烯醇用高碘酸氧化,断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200。
计算聚乙酸乙烯酯中首-首连接的百分数(假定聚乙酸乙烯酯水解前后的聚合度不变)。
答案:聚乙酸乙烯酯或聚乙烯醇的聚合度Xn=(105/86)≈1162.8(3分)根据断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200,可知,其中首-首相连的个数=(1162.8/200)-1≈4.882(3分)即1162.8个连接中,有4.882个单体以首-首相连,所以首-首连接的百分数=(4.882/1162.8)*100%≈0.41%(3分)1. 甲基丙烯酸甲酯在50℃下用偶氮二异丁腈引发聚合,已知该条件下,链终止既有偶合终止,又有歧化终止 ,生成聚合物经实验测定引发剂片断数目与聚合物分子数目之比为 1.25׃1,请问在此聚合反应中偶合终止和歧化终止各占多少?参考答案:设偶合终止消耗的引发剂片断数目为x,岐化终止消耗的引发剂片断数目为y。
根据自由基聚合反应终止特点得: x + y=1.25 ①x/2 + y=1 ②x =0.5, y=0.75 (4分)偶合终止所占比例0.5/1.25=40% (2分)歧化终止所占比例0.75/1.25=60% (2分)2. 苯乙烯以二叔丁基过氧化物为引发剂,苯为溶剂,在60℃下进行聚合。
已知:[M]=1.0 mol L-1, [I]=0.01 mol L-1, R i=4.0×10-11 mol L-1 s -1, R p=1.5×10-7 mol L-1 s -1, C m=8.0×10-5, C i =3.2×10-4, C s=2.3×10-6, 60℃下苯和苯乙烯的密度分别为0.839 g ml-1和0.887 g ml-1, 假定苯乙烯-苯体系为理想溶液, 试求fk d, 动力学链长和平均聚合度.参考答案:由R i=2fk d[I]可求得:fk d= R i/2[I]=4×10-11/2×0.01=2.0×10-910-11 S-1 (2分)动力学链长为ν= R p/R i=1.5×10-7/4×10-11=3750 (2分)因为υ=k p2[M]2/2k t R p[S]=(1-104/887)×839/78=9.5 mol L-1(2分)所以1/X n=1/2ν+Cm+ C I[I]/ [M]+ C S[S]/ [M]=1/3750×2+8.0×10-5+3.2×10-4×0.01/1.0+2.3×10-6×9.5/1.0=2.43×10-4 (2分)平均聚合度Xn≈4195(2分)1. 以二特丁基过氧化物为引发剂,在60℃下研究苯乙烯在苯中的聚合反应,苯乙烯浓度为1.0 mol dm-3。
第三章自由基共聚合分解
第三章⾃由基共聚合分解第三章⾃由基共聚合习题参考答案1. 解释下列名词:(1)均聚合与共聚合,均聚物与共聚物(2)均缩聚、混缩聚、共缩聚(3)共聚组成与序列结构(4)⽆规共聚物、⽆规预聚物与⽆规⽴构聚合物(5)共聚物、共混物、互穿⽹络解答:(1)在链式聚合中,由⼀种单体进⾏聚合的反应称为均聚合,所得产物称为均聚物。
由两种或两种以上单体共同参与聚合的反应称为共聚合,产物称为共聚物。
(2)均缩聚:在逐步聚合中,将只有⼀种单体参加的反应。
混缩聚:两种带有不同官能团的单体共同参与的反应。
共缩聚:在均缩聚中加⼊第⼆单体或在混缩聚中加⼊第三甚⾄第四单体进⾏的缩聚反应。
(3)共聚物组成:共聚物中各种单体的含量。
序列结构:不同单体在⼤分⼦链上的相互连接情况。
(4)⽆规共聚物:参加共聚的单体在⼤分⼦链上⽆规排列,在主链上呈随机分布,没有⼀种单体能在分⼦链上形成单独的较长链段。
⽆规预聚物:预聚物中可进⼀步反应官能团的数⽬、⼤⼩、位置不清楚。
⽆规⽴构聚合物:聚合物中各结构单元的⽴体结构呈现⽆序状态。
(5)共聚物:两种或两种以上单体共同参与聚合,以化学键相互连接的聚合物。
共混物:指通过物理的⽅法将聚合物与其它的物质(其它聚合物、充填剂、增塑剂等)混合到⼀起的物质。
互穿⽹络:各聚合物均各⾃独⽴交联(可以是化学交联,也可以是物理交联),形成有某种程度互穿的⽹络。
2. ⽆规、交替、嵌段、接枝共聚物的序列结构有何差异?解答:以⼆元共聚为例:①⽆规共聚物:两种单体M1、M2在⼤分⼦链上⽆规排列,两单体在主链上呈随机分布,没有⼀种单体能在分⼦链上形成单独的较长链段。
②交替共聚物:两种单体M1、M2在⼤分⼦链上严格相间排列。
③嵌段共聚物:由较长的M1链段和较长的M2链段间隔排列形成⼤分⼦链。
④接枝共聚物:主链由⼀种单体组成,⽀链则由另⼀种单体组成。
3. 对下列共聚反应的产物进⾏命名:(1)丁⼆烯(75%)与苯⼄烯(25%)进⾏⽆规共聚(2)马来酸酐与⼄酸2-氯烯丙基酯进⾏交替共聚(3)苯⼄烯-异戊⼆烯-苯⼄烯依次进⾏嵌段共聚(4)苯⼄烯在聚丁⼆烯上进⾏接枝共聚(5)苯⼄烯与丙烯腈的⽆规共聚物在聚丁⼆烯上进⾏接枝共聚(6)苯⼄烯在丁⼆烯(75%)与苯⼄烯(25%)的⽆规共聚物上进⾏接枝共聚解答:(1)丁⼆烯-r-苯⼄烯⽆规共聚物(2)马来酸酐-alt-⼄酸2-氯烯丙基酯交替共聚物(3)苯⼄烯-b-异戊⼆烯-b-苯⼄烯三嵌段共聚物(4)丁⼆烯-g-苯⼄烯接枝共聚物(5)丁⼆烯-g-(苯⼄烯-r-丙烯腈)接枝共聚物(6)(丁⼆烯-r-苯⼄烯)-g-苯⼄烯接枝共聚物4.试⽤动⼒学和统计两种⽅法来推导⼆元共聚物组成微分⽅程(式7-11)。
高分子化学潘祖仁习题答案自由基聚合
第三章自由基聚合习题1、举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键与溶剂化对单体聚合热的影响。
2、什么就是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80O C自由基聚合时的平衡单体浓度。
3、什么就是自由基聚合、阳离子聚合与阴离子聚合?4、下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
CH2=CHCl, CH2=CCl2,CH2=CHCN,CH2=C(CN)2, CH2=CHCH3, CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2, CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。
5、判断下列烯类单体能否进行自由基聚合,并说明理由。
CH2=C(C6H5)2, ClCH=CHCl, CH2=C(CH3)C2H5, CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。
6、对下列实验现象进行讨论:(1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。
(2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。
(3)带有π-π共轭体系的单体可以按自由基、阳离子与阴离子机理进行聚合。
7、以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯与甲基丙烯酸甲酯自由基聚合历程中各基元反应。
8、对于双基终止的自由基聚合反应,每一大分子含有1、30个引发剂残基。
假定无链转移反应,试计算歧化终止与偶合终止的相对量。
9、在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接?10、自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系?11、自由基聚合常用的引发方式有几种?举例说明其特点。
12、写出下列常用引发剂的分子式与分解反应式。
其中哪些就是水溶性引发剂,哪些就是油溶性引发剂,使用场所有何不同?(1)偶氮二异丁腈,偶氮二异庚腈。
王槐三第四版高分子化学第3章习题参考解答
第三章习题参考解答1.说明下列烯类单体能按何种机理进行聚合,并解释理由。
1)CH2=CHCl;自由基;-Cl取代基呈吸电性,使π电子云发生偏转,易于发生π电子的均裂而发生自由基聚合;2)CH2=CCl2;自由基、阴离子;1.1二取代-Cl取代基均呈吸电性,使π电子云发生偏转,π电子发生均裂开始自由基聚合,π电子发生异裂开始阴离子聚合;3)CH2=CHCN;自由基、阴离子;-CN取代基呈较强吸电性,使π电子云发生偏转,π电子发生均裂开始自由基聚合,π电子发生异裂开始阴离子聚合;4)CH2=C(CN)2;阴离子;1.1二取代-CN取代基呈强吸电性,使π电子云发生强烈偏转,π电子只能发生异裂开始阴离子聚合;5)CH2=CHCH3;配位;单-CH3的推电子作用不足以发生阳离子聚合,只能发生配位聚合;6)CH2=C(CH3)2;阳离子;1.1二取代-CH3取代基推电性较强,可发生阳离子聚合;7)CH2=CH(C6H5);自由基、阳离子、阴离子;-(C6H5)取代基为共轭体系,π电子容易极化和流动,可发生自由基、阳离子、阴离子聚合;8)CF2=CF2;自由基;-F取代基体积小,结构对称,仍可自由基聚合;9)CH2=C(CN)COOR;自由基、阴离子;-CN和-COOR均呈吸电性,使π电子云发生偏转,π电子发生均裂开始自由基聚合,π电子发生异裂开始阴离子聚合;10)CH2=C(CH3)-CH=CH2;自由基、阳离子、阴离子;为共轭体系,π电子容易极化和流动,可发生自由基、阳离子、阴离子聚合;2.判断下列单体能否进行自由基聚合反应,分别说明理由。
1)CH2=C(C6H5)2不能,1,1二取代苯基位阻太大;2)ClCH=CHCl不能,两个-Cl属于1,2-二取代;3)CH2=C(CH3)C2H5不能,2个推电子取代基,只能进行阳离子聚合;4)CH3CH=CHCH3不能,两个-CH3属1,2-二取代;5)CH2=C(CH3)COOCH3能,-CH3,-COOCH3属于1,1-二取代;6)CH3CH=CHCOOCH3不能,-CH3和-COOCH3属1,2-二取代;7)CH2=CHOCOCH3能,-OCOCH3是弱吸电子取代基;8)CH2=CHCH2Cl不能,-CH2Cl属于自动阻聚的烯丙基;9)CH2=CHCH2OCOCH3不能,-CH2OCOCH3属于自动阻聚的烯丙基10)CF2=CFCl能,F原子体积和位阻很小,等同于-Cl一取代5.计算题1)题略解:对于双基终止,偶合终止的大分子带有2个引发剂残基,歧化终止的大分子带有1个引发剂残基。
高分子化学(第四版)习题参考答案Chap.3
第四版习题答案(第三章)思考题2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。
CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。
CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。
CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。
CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。
CH 2=CHC 6H 5:三种机理均可,共轭体系。
CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。
CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。
3. 下列单体能否进行自由基聚合,并说明原因。
CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。
ClCH=CHCl :不能,对称结构。
CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。
CH 3CH=CHCH 3:不能,结构对称。
CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。
CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。
CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。
最新自由基聚合习题参考答案
2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。
CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。
CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。
CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。
CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。
CH 2=CHC 6H 5:三种机理均可,共轭体系。
CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。
CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。
3. 下列单体能否进行自由基聚合,并说明原因。
CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。
ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。
CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。
CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。
CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。
CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。
高分子化学_余木火_第三章 自由基聚合习题
第三章自由基聚合_习题1、下列烯类单体能否进行自由基聚合?并解释原因。
CH2=C(C6H5)2CH2=C(CH3)C2H5 CH3CH=CHCH3C l CH=CHC lCF2=CF2 CH2=C(CH3)COOCH3CH2=CHCOOCH3 CH2=CHCNCH2=C(CH3)CH=CH2、以偶氮二异丁腈为引发剂,写出醋酸乙烯酯聚合历程中各基元反应式。
3、PVA的单体是什么?写出其聚合反应式。
4、试写出氯乙烯以偶氮二异庚腈为引发剂聚合时的各个基元反应。
5、甲基丙烯酸甲酯聚合时,歧化终止的百分比与温度的依赖性如下表所示:计算:(a)歧化终止与偶合终止的活化能差值;(b)偶合终止为90%时的温度。
6、如果某引发剂的半衰期为4 hr,那么反应12 hr后,引发剂还剩余多少(百分比)没有分解?7、写出下列常用引发剂的分子式和分解反应式。
偶氮二异丁腈,偶氮二异庚腈,过氧化二苯甲酰,过氧化二碳酸二(2-乙基己酯),异丙苯过氧化氢,过氧化羧酸叔丁酯,过硫酸钾-亚硫酸盐体系,过氧化氢-亚铁盐体系8、苯乙烯在苯中以过氧化二苯甲酰为引发剂、80℃下进行聚合反应。
已知:k d=2.5×10-4S-1,E d=124.3kJ·mol-1,试求60℃的k d值和引发剂的半衰期。
9、直接光引发和加光引发剂的光引发有什么不同?10、据报道,过氧化二乙基的一级分解速率常数为1.0×1014e-35000cal/RT s-1,试预测这种引发剂的使用温度范围。
11、在稳态状态下,如果[M×]=1×10-11mol/L,那么在30、60、90分钟后,[M×]分别等于多少?12、何为自动加速作用?其出现的根本原因是什么?13、阻聚作用与缓聚作用的定义,常见阻聚剂有哪几种类型?它们的阻聚机理有什么不同?14、单体溶液浓度为0.20 mol/L,过氧化物引发剂浓度为4.0×10-3 mol/L,在60℃下加热聚合,问需多长时间能达到50%的转化率?计算时采用如下数据:k p=145 L/mol×s,k t=7.0×107 L/mol×s,f=1,引发剂半衰期为44 hr。
第3章自由基聚合习题参考答案
第3章自由基聚合习题参考答案第3章自由基聚合-习题参考答案1、判断下列单体能否进行自由基聚合?并说明理由H2C CHCl H2C CH H2C CCl2H2C CH2H2C CH2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHClH2C CCH3COOCH3H2C CCNCOOCH3HC CHOC COO答:(1)可以。
Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。
(2)可以。
为具有共轭体系的取代基。
(3)可以。
结构不对称,极化程度高,能自由基聚合。
(4)可以。
结构对称,无诱导效应共轭效应,较难自由基聚合。
(5)不能。
1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。
(6)可以。
吸电子单取代基。
(7)不可以。
1,1双强吸电子能力取代基。
(8)不可以。
甲基为弱供电子取代基。
(9)可以。
氟原子半径较小,位阻效应可以忽略不计。
(10)不可以。
由于位阻效应,及结构对称,极化程度低,难自由基聚合(11)可以。
1,1-双取代。
(12)可以。
1,1-双取代吸电子基团。
(13) 不可以。
1,2-双取代,空间位阻。
但可进行自由基共聚。
2、试比较自由基聚合与缩聚反应的特点。
答:自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。
(2)单体加到少量活性种上,使链迅速增长。
单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。
(3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。
聚合一开始就有高聚物产生。
(4)在聚合过程中,单体逐渐减少,转化率相应增加(5)延长聚合时间,转化率提高,分子量变化较小。
(6)反应产物由单体,聚合物,微量活性种组成。
(7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。
缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。
自由基聚合习题参考答案
自由基聚合习题参考答案自由基聚合习题参考答案自由基聚合是有机化学中的一个重要概念,它描述了自由基反应中自由基之间的结合过程。
在这篇文章中,我们将讨论一些与自由基聚合相关的习题,并给出参考答案。
习题一:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2Br → ?答案:在该反应中,两个溴代烷分子中的溴原子将被自由基取代。
因此,产物将是一个由四个乙基基团组成的烷烃,即正丁烷(CH3CH2CH2CH3)。
习题二:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另一个溴代烷发生自由基取代反应。
因此,产物将是一个由两个乙基基团和一个羟基组成的化合物,即正丁醇(CH3CH2CH2CH2OH)。
习题三:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2Br → ?答案:在该反应中,两个溴代烷分子中的溴原子将被自由基取代。
因此,产物将是一个由五个乙基基团组成的烷烃,即正戊烷(CH3CH2CH2CH2CH3)。
习题四:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另一个溴代烷发生自由基取代反应。
因此,产物将是一个由四个乙基基团和一个羟基组成的化合物,即正戊醇(CH3CH2CH2CH2CH2OH)。
习题五:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2Br + CH3CH2CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另外两个溴代烷发生自由基取代反应。
因此,产物将是一个由六个乙基基团和一个羟基组成的化合物,即正己醇(CH3CH2CH2CH2CH2CH2OH)。
第三章 自由基习题
ln k d 33.936 15116/ T
Ed=8.314×15116=125.7kJ/mol
当t=40℃=313.15K时
kd exp(15116 / 313 .15 + 33.936 ) 5.95× 10 7
t1/ 2
ln2 323.6h 7 × 5.95 10
21
(1)聚合速率:当T从50℃→60℃
k 2 / k 1 e E / RT 2 / e E / RT 1 e
E
(
1
1 T1
)
R T2
k2 / k1 e
90.4103 1 1 ( ) 8.31 273+60 273+50
2.75
当T从80℃→90℃
k2 / k1 e
1 1 0.8 4.38 106 12 2 2 ln 145 ( ) ( 4 . 0 10 ) t 7 2 7.0 10
得 t=94h
超过了引发剂半衰期, [I]随时间而变化
14
(2)如果[I]随时间而变化:
ln [M ] [ M ]0
t
0
kp( fk d kt
(3)已知过氧化二碳酸二异丙酯半衰期为10hr和1hr时的
分解温度分别为45和61℃, 代入得: A=6.6×103 B=19.9
logt1/2=A/(56+273) –B=0.302
∴56℃半衰期t1/2=2.0h
10
5. 过氧化二乙基的一级分解速率常数为: 1.0×1014exp(-146.5kJ/RT) 在什么温度范围内使用财有效? 解析: 常用自由基引发剂分解速率常数为 ① 10-4~10-6S-1 ② t1/2=2~2 1/ 2 Rp k p ( ) [ I ] [M ] kt
第三章 自由基聚合反应 (3-4)
3
4
动力学链长:
k
p
1/ 2 k p M I
:与动力学链长相关的综合动 力学常数。
动力学链长的影响因素: (1)单体浓度 (2)引发剂浓度 (3)反应条件:温度、溶剂等
5
动力学链长和聚合度的区别
6
二、无链转移时的聚合度
双基歧化终止:
42
三、自由基聚合物分散度增加的原因 1、自由基聚合与缩聚比较,在聚合反应的 各个阶段大分子生成的条件完全不同;
2、自加速使相对分子质量大大升高;
3、自加速和向大分子的链转移反应是使自 由基聚合物分散度增加的主要原因。 4、自由基聚合反应中的链转移反应与缩聚 反应中的链裂解反应对聚合度的影响不同。
30
四、烯丙基类单体的自动阻聚作用
烯丙基自由基 的共振式
31
五、氧的阻聚和引发作用
100℃以下:
氧分子具有双自由基特性对聚合起阻聚作 用
100℃以上:
过氧键不稳定,分解产生自由基起引发 剂的作用。
32
六、阻聚剂在引发反应速率测定中的应用
33
3.10 相对分子质量控制、分布和影响因素
一、相对分子质量的控制及影响因素
18
一、自加速过程产生的原因和结果
1.体系粘度随着转化率的升高而升高是产 生自加速过程的根本原因。
19
100 80
60
40 10
20
2.自加速过程产生的结果
21
二、不同聚合反应类型的自加速过程
1、良溶剂型聚合——如苯乙烯的本体聚合自加速过 程出现较晚,较温和。
2、非良溶剂型聚合——如甲基丙烯酸甲酯的本体聚 合,自加速过程出现较早,也较严重。
第三章自由基共聚习题
1 何谓竞聚率?它有何物理意义?
2 说明两种单体进行理想共聚、恒比共聚和交替共聚的 必要条件。 3 苯乙烯(M1)与丁二烯(M2)进行自由基共聚, r1=0.64, r2=1.38。已知苯乙烯和丁二烯的均聚链增长速 率常数分别为49和25 l/mol.s,求: (1)共聚时的反应速率常数 (2)比较两种单体和两种自由基的反应活性大小 (3)做出此共聚反应的F1-f1曲线 (4)要制备组成均一的共聚物需要采用什么措施?
8
9解: 设共聚物组成为:
[ CH2 CH ] [ CH m C6H5 Cl CH CH CH2 ] n
则每m个苯乙烯链节内含有8m个C原子,每n个氯丁二烯 链节内含4n个C原子和n个氯原子: 所以 C%=(8m+4n)12/(104m+88.5n) Cl%=35.5n/(104m+88.5n) 将已知的Cl%和C%代入上式中,即可求得m/n之比。即共 聚物两种链节的摩尔比,结果如下:
6
5解: r1=1.68 r2=0.23 M1=62.5 M2=86 要合成含氯乙烯重量分数为80%的氯-醋共聚物,此中含氯乙 烯摩尔分数F1=0.846,按共聚物组成微分方程计算,相应的 f1=0.75 在该共聚反应中,氯乙烯活性大于醋酸乙烯,所以随着反应 进行,剩余物料中氯乙烯比例下降,f1逐渐下降。所以要合 成氯乙烯80%(重量比)可采用f1=0.75的配比投料,过程补 加氯乙烯单体以维持体系中单体配比保持在0.75。
4
1解: 竞聚率是单体链增长和共聚链增长速率常数之比。即 r1=k11/k12它表征两单体的相对活性,根据r值可估算两单体 共聚的可能性和判断共聚物的组成情况。 2解: (1)r1r2=1时可进行理想共聚,此时k11/k12=k21/k22,活性 链对单体无选择性。如丁二烯(r1=1.39)和苯乙烯(r2=0.78) r1r2=1.08属于此类。此时F1=f1 (2)r1<1 r2<1 可进行有恒比点的共聚,在恒比点有 F1=f1=(1-r2)/(2-r1-r2) 如苯乙烯(r1=0.41) 丙烯腈 (r2=0.04) (3) r1<<1, r2<<1, 或r1=r2=0时 交替共聚 此时F1=1/2 如马来酸酐(r1=0.04) 苯乙烯(r2=0.015)
高分子化学 科学出版社答案 (3)
第三章 自由基聚合1.以过氧化二苯甲酰作引发剂,在60℃进行苯乙烯聚合动力学研究,数据如下: (1)60℃苯乙烯的密度为0.887g/mL (2)引发剂用量为单体重的0.109% (3)R p =0.255×10-4 mol/ L·s (4)聚合度=2460 (5)f =0.80(6)自由基寿命τ=0.82s试求k d 、k p 、k t ,建立三个常数的数量级概念,比较[M]和[M·]的大小,比较R i 、R p 、R t 的大小。
全部为偶合终止,a =0.5解:设1L 苯乙烯中:苯乙烯单体的浓度[M]=0.887×103/104=8.53mol/L (104为苯乙烯分子量) 引发剂浓度[I]= 0.887×103×0.00109/242=4.0×10-3mol/L (242为BPO 分子量)代入数据 ⎪⎪⎩⎪⎪⎨⎧⨯=⨯⨯⨯=⨯⨯=⨯----)10255.0/53.8)(2/(0.8210255.0/53.8246053.8)104()/80.0(10255.044222/132/14t p t p t d p k k k k k k k解得:k d =3.23×10-6 s -1 10-4~10-6R p =k p (f k d k t)1/2[I]1/2[M]5.022][)(22=+==D Ca R aK M K pt p k n χpt p R M k k ][2⋅=τk p =1.76×102 L/mol·s 102~104 k t =3.59×107 L/mol·s 106~108[M·]=R p / k p [M]=0.255×10-4/(1.76×102×8.53)=1.70×10-8mol/L 而[M]=8.53mol/L 可见,[M]>>[M·]R i =2fk d [I]=2×0.80×3.23×10-6×4×10-3=2.07×10-8mol/L·s R t =2k t [M·]2=2×3.59×107×(1.70×10-8)2=2.07×10-8mol/L·s 而已知R p =2.55×10-5mol/L·s,可见R p >>R i =R t2.以过氧化二特丁基为引发剂,在60℃下研究苯乙烯聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章自由基聚合-习题参考答案1、判断下列单体能否进行自由基聚合?并说明理由H2C CHCl H2C CH H2C CCl2H2C CH2H2C CH2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHClH2C CCH3COOCH3H2C CCNCOOCH3HC CHOC COO答:(1)可以。
Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。
(2)可以。
为具有共轭体系的取代基。
(3)可以。
结构不对称,极化程度高,能自由基聚合。
(4)可以。
结构对称,无诱导效应共轭效应,较难自由基聚合。
(5)不能。
1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。
(6)可以。
吸电子单取代基。
(7)不可以。
1,1双强吸电子能力取代基。
(8)不可以。
甲基为弱供电子取代基。
(9)可以。
氟原子半径较小,位阻效应可以忽略不计。
(10)不可以。
由于位阻效应,及结构对称,极化程度低,难自由基聚合(11)可以。
1,1-双取代。
(12)可以。
1,1-双取代吸电子基团。
(13) 不可以。
1,2-双取代,空间位阻。
但可进行自由基共聚。
2、试比较自由基聚合与缩聚反应的特点。
答:自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。
(2)单体加到少量活性种上,使链迅速增长。
单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。
(3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。
聚合一开始就有高聚物产生。
(4)在聚合过程中,单体逐渐减少,转化率相应增加(5)延长聚合时间,转化率提高,分子量变化较小。
(6)反应产物由单体,聚合物,微量活性种组成。
(7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。
缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。
(2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。
(3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。
(4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。
(5)延长缩聚时间分子量提高,而转化率变化较小。
(6)任何阶段都由聚合度不等的同系缩聚物组成。
(7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。
3、解释下列概念:歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合,答:歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。
偶合终止:两链自由基的独电子相互结合成共价键的终止反应。
引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,以f 表示。
笼蔽效应:引发剂分解产生的初级自由基,处于周围分子(如溶剂分子)的包围,像处在笼子中一样,不能及时扩散出去引发单体聚合,就可能发生自由基偶合等副反应,形成稳定分子,使引发剂效率降低。
引发剂分解产生的初级自由基在与单体反应形成单体自由基之前发生副反应而失活,造成引发剂效率降低。
诱导效应:实质上是自由基向引发剂的转移反应。
自加速现象:聚合速率因体系粘度引起的加速现象,又称凝胶效应。
诱导期:初级自由基被阻聚杂质所终止,无聚合物产生,聚合速率为零9、对于双基终止的自由基聚合,若每一个大分子含有1.3个引发剂残基,假定无链转移反应,试计算歧化终止和偶合终止的相对量。
解:设偶合终止百分数为C ,歧化终止百分数为DC+D=1 得C=46% D=54%即偶合终止为46%,歧化终止为54%。
10、单体溶液浓度0.20 mol/l ,过氧类引发剂浓度为4.0×10-3mol/l ,在60℃下加热聚合。
如引发剂的半衰期为44hr ,引发剂效率领f=0.8, kp=145 l/mol ·S, kt=7.0×107 l/mol ,欲达到50%转化率,需多长时间? 解:1162/101575.010*375.4693.0---===h s t k d当引发剂浓度随时间不变时:νν3.12/=+DChrt eI k fk k C:I h 。
t hr t t tI k fk k Ct k t d p t d p d 8.170)1(])[(211ln][44940632.0*10*236.2*145693.0)10*0.4()10*0.710*375.4*8.0(*14550.011ln ][)(11ln2/2/102/172/132/1762/12/1=-=->===-=-----随转化率而变 11、什么叫链转移反应?有几种形式?对聚合速率和分子量有何影响?什么叫链转移常数?与链转移速率常数的关系如何? 解:(1)链转移是链自由基Mx ·夺取另一分子YS 中结合得较弱的原子Y 而终止,而YS 失去Y 后则成为新自由基S · ;(2)向单体转移,向引发剂转移,向溶剂或链转移剂转移,向大分子转移;(3)如果转移后形成的自由基活性不减,则聚合速率不变;如果自由基活性减弱,则聚合速率减小。
而对分子量来说,任何链转移都会导致分子量下降。
(4)链转移常数:链转移速率常数与链增长速率之比,代表这两种反应的竞争能力。
C=k tr /k p 13、以过氧化苯甲酰作引发剂,在60℃进行动力学研究,数据如下:(1)60℃苯乙烯的密度为0.887 g/L ; (2)引发剂用量为单体重的0.109%; (3)RP=0.255×10-4 mol/l·S ; (4)聚合度=2460; (5)f=0.80;(6)自由基寿命τ=0.82 S试求kd,kp,kt 值,并比较[M·]和[M]的大小;Ri ,Rp ,Rt 的大小。
解:L mol M /529.81041000*887.0][==L mol I /10*995.3242%109.0*1000*887.0][3-==DC X R R n tp +==2/,νν偶合终止:C=0.77,歧化终止:D=0.23。
9.1512)23.02/77.0(2460,2460=+==νn Xs L mol R R pt ./10*6855.19.151210*255.084--===ν810*6855.1-==t i R R mol/Ls.L mol R M t /10*382.182.0*10*6855.1][88--•===τ][M >>][•M163810*64.210*995.3*8.0*210*6855.1][2----===S I f R k i d )./(10*163.210*382.1*529.810*255.0]][[284s l mol M M R k pp ===--• )./(10*41.4)10*382.1(*210*6855.1][272882s mol l M R k t t ===--• 可见,k t >>k p ,但[M]>>[M•],因此R p >>R t ;所以可以得到高分子量的聚合物。
R d 10-8 k d 10-6 [M] 8.53 R p 10-5 k p 102 [M·]1.382×10-8R t 10-8k t10715、苯乙烯在过氧化特丁基的引发下聚合,聚合温度60℃,用苯作溶剂。
引发剂浓度为0.01 mol/l,苯乙烯浓度为1.0 mol/l,初始引发速率和聚合速率分别为4.0×10-11 mol/(l·S)和1.5×10-7 mol/(l·S),试计算(fkd)、初期动力学链长、初期聚合度。
计算采用如下数据:C M =8.0×10-5, C I =3.2×10-4,C P =1.9×10-4,C S =2.3×10-6,60℃下苯乙烯的密度为0.887 g/ml,苯的密度为0.839 g/ml 。
解:[M]=1.0mol/L [I]=0.01mol/L)./(10*0.411s L mol R i -=][2I fk R d i =91110*201.0*210*0.4][2--===I R fk i d)./(10*5.17s L mol R p -=L mol S /50.978839*)8871041(][=-=3750==ip R R ν60℃,苯乙烯偶合终止占77%,歧化终止占23%。
若无链转移,56.609723.02/77.037502/)(0=+=+=DC X n ν若同时发生单体、引发剂和溶剂转移,则按下式计算:4645010*69.20.15.910*3.20.101.010*2.310*0.856.60971][][][][)(11----=+++=+++=M S C M I C C X X SI M n n 3717=n X16、按上题制得分子量很高,常加入正丁硫醇(C S =21)调节分子量。
若要得到分子量为85,000的聚苯乙烯,该如何操作? 解:3717)(0=n X3.81710410*5.84==n XLmol S S /10*545.4][1][21371713.81715-=+= 19、什么是自动加速现象?产生的原因是什么?对聚合反应及聚合物会产生什么影响? 答:(1)自加速现象——因双基终止困难导致聚合速率加快、聚合度增大的现象。
(2)产生原因——体系粘度随转化率提高后,链段重排受到阻碍,活性末端甚至可能被包埋,双基终止困难,终止速率常数下降,转化率达40~50%时,kt降低可达上百倍,而此时体系粘度还不足以严重妨碍单体扩散,增长速率常数变动不大,因此使kp/kt1/2增加了近7~8倍,活性链寿命延长十多倍,聚合速率显著增大,分子量也同时迅速增加。
(3)对聚合反应及聚合物产生的影响——聚合速率加快,分子量增加,分布变宽。
在很短的时间内转化率很快提高。
在自动加速过程中若大量热不及时散发出去,有爆聚的危险。
24、简述乳液聚合机理。
单体、乳化剂和引发剂所在场所。
引发、增长和终止的情况和场所。
胶束、乳胶粒、单体液滴的变化。
答:聚合机理——在水相中引发,胶束或胶粒的隔离环境下增长。
自由基寿命长,另一自由基进入胶粒后才终止;兼具高速率和高聚合度。
单体,乳化剂,引发剂分别处于水溶液、胶束、液滴三相。
在水相中引发形成短链自由基进入胶束,引发其中的单体增长,当其中单体浓度下降时,由液滴内的单体通过水相扩散来补充,保持其恒定,最后体系中无单体液滴,依靠胶粒内的残余单体继续聚合直到其消失终止。