二次函数的性质讲义.doc

合集下载

(完整word版)二次函数的性质与应用

(完整word版)二次函数的性质与应用

二次函数的性质与应用,主要研究:顶点、对称轴、最值、对称性、增减性、与坐标轴交点、图象平移、图象与方程(不等式)、图象信息、图象结合几何问题,实际应用问题等1、抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点。

(1)求出这条抛物线解析式; (2)求它与x轴的交点和抛物线顶点的坐标;(3)求出最值、画出图象; (4)x取什么值时,y的值随x的增大而减小?(5)x取什么值时,抛物线在x轴上方?2、已知函数(1)m= 时,函数图像与x轴只有一个交点; (2)m为何值时,函数图像与x轴没有交点;3、抛物线的一部分如右上图所示,该抛物线在y轴右侧部分与x轴交点的坐标是4将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x2﹣1,则原抛物线的解析式为.5、如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是___________.5、二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )A、b≥ B、b≥1或b≤-1 C、b≥2 D、1≤b≤2二次函数的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当时,函数y随x的增大而增大;⑤当时,.其中,正确的说法有________ .(请写出所有正确说法的序号)抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使S△ABP=S△ABC,若存在,求出P点坐标;若不存在,请说明理由.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.1、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A、B、C、D、二、综合题(共2题;共25分)2、(2015•崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?3、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0。

二次函数的图象和性质课件

二次函数的图象和性质课件
最大值出现在顶点处。
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。

人教版九年级上册数学 讲义 二次函数的图像与性质

人教版九年级上册数学 讲义 二次函数的图像与性质
A. B.
C. D.
【例2】已知二次函数y=ax2+bx+1的大致图象如图所示,则函数y=ax+b的图
象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
3、抛物线 ( )的顶点坐标公式:( , );对称轴是直线: ;当 时,函数有最值: 。
4、二次函数图像的平移:只要抛物线解析式中的a相同,它们之间可以相互平移得到,平移规律:左加右减,上加下减。
二、典型例题:
考点一:二次函数的定义
【例1】下列函数中,关于 的二次函数是( )。
A、 B、 C、 D、
A.y1<y2<y3B.y2<y1<y3
C.y3<y1<y2D.y1<y3<y2
【例2】已知二次函数 ,若自变量 分别取 , , ,且 ,则对应的函数值 的大小关系正确的是()
A. B. C. D.
三、强化训练:
【夯实基ห้องสมุดไป่ตู้】
1、二次函数 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()
【例2】已知函数 ( 为常数)。
(1) 为何值时,这个函数为二次函数?
(2) 为何值时,这个函数为一次函数?
考点二:二次函数的顶点、对称轴、最值
【例1】写出下列抛物线的对称轴方程、顶点坐标及最大或最小值;
(1) (2) (3)
考点三:抛物线的平移(上加下减,左加右减)
【例1】把抛物线 向左平移2个单位,再向下平移2个单位,则所得的抛物线的表达式是;
A、4个B、3个C、2个D、1个
考点五:直线与抛物线的位置关系

九年级数学上册二次函数讲义

九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

第1讲 二次函数的图像及性质

第1讲 二次函数的图像及性质

第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。

二次函数及其性质 讲义 初高中教材衔接

二次函数及其性质 讲义 初高中教材衔接

二次函数及其性质二次函数的含义:一般地,把形如)0(2≠++=a c bx ax y 的函数叫做二次函数,其中x 是自变量,y 是因变量,自变量的最高次数为2,c b a ,,是常数.二次函数的性质:(1)对二次函数表达式配方,得到二次函数的顶点式:ab ac a b x a a c x a b x a c bx ax y 44)2()(2222-++=++=++=二次函数的顶点坐标为)44,2(2ab ac a b --; (2)二次函数的图象是一条抛物线;○1当0>a 时,二次函数图象开口朝上;当abx 2-<时,y 随着x 的增大而减小,当abx 2->时,y 随着x 的增大而增大,二次函数图象在对称轴a b x 2-=左侧单调递减,在对称轴abx 2-=右侧单调递增;该二次函数在对称轴abx 2-=处取得最小值a b ac 44-,无最大值;○2当0<a 时,二次函数图象开口朝下;当abx 2-<时,y 随着x 的增大而增大,当abx 2->时,y 随着x 的增大而减小,二次函数图象在对称轴a b x 2-=左侧单调递增,在对称轴abx 2-=右侧单调递减;该二次函数在对称轴abx 2-=处取得最大值a b ac 44-,无最小值;(3)在二次函数中,若令函数值0=y ,则得到一个一元二次方程)0(02≠=++a c bx ax .在此,我们研究二次函数与一元二次方程的关系.为讨论方便,在此,我们只讨论0>a 的情况. 方程的 判别式ac b 42-=∆0>∆方程有两个不相等的实数根0=∆方程有两个相等的实数根0<∆方程无实数根方程的根aacb b x aac b b x 24,242221-+-=---=ab x x 221-== 无解函数的图象(示意图)函数与x 轴交点个数及横坐标 两个aac b b a acb b x 242422-+----=和一个ab x 2-= 无交点(4)由上述一元二次方程与二次函数的对应关系,可知,当函数图象与x 轴有交点时,原函数可以表示为)0)()((21≠--=a x x x x a y ,其中21,x x 是二次函数图象与x 轴交点的横坐标. (5)二次函数的三种表达方式总结: ① 一般式:)0(2≠++=a c bx ax y ;② 顶点式:)0()(2≠+-=a n m x a y ,其中顶点坐标为),(n m③ 交点式(两根式):)0)()((21≠--=a x x x x a y ,其中21,x x 是二次函数图象与x 轴交点的横坐标.例题讲解例1:已知二次函数)(x f 满足1)1(,1)2(-=--=f f ,且)(x f 的最大值是8,求)(x f 的表达式.解:212121)1(,1)2(=-=∴-=--=x f f 对称轴为直线又因为)(x f 的最大值是8所以)(x f 可设为顶点式)0(8)21()(2<+-=a x a x f , 将点)1,2(-代入,得4,1849-=-=+a a , 即:)(x f 的表达式为)0(8)21(4)(2<+--=a x x f .例2:已知二次函数)(x f 满足条件1)0(=f 和x x f x f 2)()1(=-+. (1)求)(x f ; (2))(x f 在区间]1,1[-上的最大值和最小值. 解:(1)设)0()(2≠++=a c bx ax x f ,因为)(x f 满足条件1)0(=f 和x x f x f 2)()1(=-+, 代入,得⎩⎨⎧=++-++++=xc bx ax c x b x a c 2)(])1()1([122, 化简,得⎩⎨⎧=++=x b a ax c 221,即⎪⎩⎪⎨⎧=+==0221b a a c ,解得:⎪⎩⎪⎨⎧=-==111c b a ,即:1)(2+-=x x x f . (2)由二次函数解析式可知:该二次函数开口朝上,对称轴为直线2121=--=x , 在给定区间]1,1[-上的单调性为从)21,1(-单调递减,)1,21(单调递增,1111)1(,311)1()1(,43121)21()21(222=+-==++-=-=+-=f f f 比较两端点值大小,得1)1()1(3=>-=f f ,综上所述,)(x f 在区间]1,1[-上的最大值为3,最小值为43.自我检测1. 若二次函数)(x f 的图象过点)0,1(),0,1(),4,3(-,求)(x f 的表达式.2. 若二次函数)(x f 的图象过点)1,1(,并且()()73-=≥f x f ,求)(x f 的表达式.3. 已知函数],1[,86)(2a x x x x f ∈+-=,并且函数)(x f 的最小值为)(a f ,则实数a 的取值范围.4. 已知二次函数]1,0[,12)(2∈+-=x ax x x f ,求)(x f 的最小值.参考答案1. 由题干可知,该二次函数过给定的三个点,既可以设一般式,也可以设两根式,而两根式较为容易. 因为二次函数)(x f 的图象过点)0,1(),0,1(),4,3(-,故设)0)(1)(1()(≠-+=a x x a x f ,把点)4,3(代入,得:21,48==a a , 即:)(x f 的表达式为)1)(1(21)(-+=x x x f . 2. 由题干可知,二次函数在3=x 处取到最小值7-, 因此该二次函数开口朝上,顶点为)7,3(-,故可以设)(x f 的表达式为)0(7)3()(2≠--=a x a x f .因为)(x f 的图象过点)1,1(,把点)1,1(代入,得2,174==-a a , 即:)(x f 的表达式为7)3(2)(2--=x x f . 3. 二次函数开口朝上,对称轴为直线3126=⨯--=x , 对称轴左侧单调递减,对称轴右侧单调递增,题干所给函数在区间右端点处取到最小值,故所给区间完全在对称轴左侧,则31≤<a .即:实数a 的取值范围为]3,1(. 4.二次函数开口朝上,对称轴为直线a ax =⨯--=122, 对称轴左侧单调递减,对称轴右侧单调递增,因此,只需讨论所给区间]1,0[与对称轴的位置关系即可. ○1当0≤a 时,所给区间]1,0[完全在对称轴的右侧,)(x f 在]1,0[上单调递增,最小值1)0(min ==f f ;○2当1≥a 时,所给区间]1,0[完全在对称轴的左侧,)(x f 在]1,0[上单调递减,最小值a f f 22)1(min -==;○3当10<<a 时,所给区间]1,0[分布在对称轴的两侧,)(x f 在),0(a 上单调递减,在)1,(a 上单调递增,最小值2min 1)(a a f f -==.。

《二次函数的性质》课件

《二次函数的性质》课件

题目11:已知二次函数$f(x) = ax^2 + bx + c$的图像关于直线 $x=m$对称,求该函数的对称轴 。
总结词:综合分析
题目10:已知二次函数$f(x) = ax^2 + bx + c$的顶点坐标为 $(h,k)$,求该函数的表达式。
题目12:已知二次函数$f(x) = ax^2 + bx + c$在区间$(p,q)$上 单调递增,求该函数的表达式。
利用二次函数解决几何问题
总结词:图形性质
详细描述:二次函数与几何 图形之间有着密切的联系。 例如,抛物线的性质与几何 中的抛物线图形相对应,可 以利用二次函数研究抛物线 的性质和特点。
总结词:解析几何方法
详细描述:通过二次函数, 我们可以利用解析几何的方 法解决一些几何问题,如求 图形的面积、周长等。这种 方法具有很强的通用性和实 用性,可以广泛应用于各种 几何问题。
《二次函数的性质》课件
contents
目录
• 二次函数的概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的变式 • 练习与巩固
01
二次函数的概念
二次函数的定义
总结词
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a$、 $b$和$c$是常数,且$a neq 0$。$a$决定了抛物线的开口 方向和宽度,$b$决定了抛物线的对称轴位置,而$c$决定了 抛物线与y轴的交点。
04
二次函数的变式
二次函数的平移
平移不改变二次函数 的开口方向和开口大 小,只会改变顶点的 位置。

二次函数辅导讲义(学生版)

二次函数辅导讲义(学生版)

⼆次函数辅导讲义(学⽣版)⼆次函数辅导讲义⼀、基础知识讲解+中考考点、例题分析考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如(a≠0,a,b,c为常数)的函数为⼆次函数.2.⼆次函数的图象及性质:⑴⼆次函数y=ax2 (a≠0);当a>0时,抛物线开⼝向上,顶点是最低点;当a<0时,抛物线开⼝向下,顶点是最⾼点;a越⼩,抛物线开⼝越⼤.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。

⑵⼆次函数,顶点为(-,),对称轴x=-;当a>0时,抛物线开⼝向上,图象有最低点,且x>-,y随x的增⼤⽽增⼤,x<-,y随x的增⼤⽽减⼩;当a<0时,抛物线开⼝向下,图象有最⾼点,且x>-,y随x的增⼤⽽减⼩,x<-,y随x的增⼤⽽增⼤.解题⼩诀窍:⼆次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。

3.图象的平移:⼆次函数y=ax2 与y=-ax2 的图像关于x轴对称。

平移的简记⼝诀是“上加下减,左加右减”。

⼀、经典考题剖析:【考题1】在平⾯直⾓坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后⼆次函数的关系式是()A.B.C.D.2.⼆次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A. B. C. D.4.已知⼆次函数(a≠0)与⼀次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所⽰,能使y1>y2成⽴的x取值范围是_______5.已知直线y=x 与⼆次函数y=ax 2 -2x -1的图象的⼀个交点 M 的横标为1,则a 的值为()A 、2B 、1C 、3D 、 46.已知反⽐例函数y= x k 的图象在每个象限内y 随x 的增⼤⽽增⼤,则⼆次函数y=2kx 2 -x+k 2的图象⼤致为图1-2-3中的()7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发⽣变化.例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m ,2m -1),即③④。

(完整版)非常好的讲义二次函数图像与性质

(完整版)非常好的讲义二次函数图像与性质

二次函数图像及性质一、二次函数的定义一般地,形如2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是全体实数.二、二次函数的图象 1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向 当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然.a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大. 温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反. (2)b 和a 共同决定抛物线对称轴的位置(抛物线的对称轴:2b x a=-) 当0b =时,抛物线的对称轴为y 轴; 当a 、b 同号时,对称轴在y 轴的左侧; 当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3。

二次函数讲义详细.doc

二次函数讲义详细.doc

第一讲二次函数的定义知识点归纳:二次函数的定义:一般地,如果y ax2 bx c(a, b,c 是常数, a 0) ,那么y叫做x 的二次函数. 二次函数具备三个条件,缺一不可:( 1)是整式方程;( 2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例 1、函数y=(m+ 2 )x m2 2+2x-1是二次函数,则m=.例 2、下列函数中是二次函数的有()1 1①y=x+x;② y=3( x- 1)2+ 2;③ y=( x+ 3)2-2x2;④ y= x2+x.A.1 个B.2 个C.3 个D.4 个例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表达式.例 4 、如图,正方形 ABCD 的边长为 4, P 是 BC 边上一点, QP⊥ AP 交 DC 于 Q,如果 BP=x ,△ ADQ 的面积为 y,用含 x 的代数式表示 y.训练题 :1、已知函数 y=ax 2+ bx + c (其中 a , b , c 是常数),当 a 当 a, b, c时,是正比例函数.2、若函数 y=(m 2+2m - 7)x 2+4x+5 是关于 x 的二次函数,则时,是二次函数;当m 的取值范围为a , b。

时,是一次函数;3、已知函数 y=(m - 1)x2m +1+5x -3 是二次函数,求 m 的值。

4、已知菱形的一条对角线长为 a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线 a 的关系.5、请你分别给a ,b ,c 一个值,让yax 2bxc 为二次函数,且让一次函数y=ax+b的图像经过一、二、三象限6.下列不是二次函数的是()1A . y=3x2+ 4 B . y= -3 x 2 C . y=x 25 D . y= (x + 1)( x - 2)7.函数 y= ( m - n )x 2 +mx + n 是二次函数的条件是()A . m 、 n 为常数,且 m ≠0B .m 、 n 为常数,且 m ≠ nC . m 、 n 为常数,且 n ≠0D . m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135° 的两面墙,另外两边是总长为 30 米的铁栅栏.(1)求梯形的面积 y 与高 x 的表达式;( 2)求 x 的取值范围.9.如图,在矩形 ABCD 中, AB=6cm ,BC=12cm .点 P 从点 A 开始沿 AB 方向向点 B 以 1cm/s 的速度移动,同时,点 Q 从点 B 开始沿 BC 边向 C 以 2cm/s 的速度移动.如果P 、 Q 两点分别到达 B 、 C 两点停止移动,设运动开始后第 t 秒钟时,五边形 APQCD 的面积为 Scm 2,写出 S 与 t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在 Rt△ ABC 中,∠ C=90 °, BC=4 , AC=8 .点 D 在斜边 AB 上,分别作DE ⊥ AC , DF⊥ BC ,垂足分别为 E、F,得四边形 DECF .设 DE=x , DF=y .( 1)AE 用含y 的代数式表示为:AE= ;( 2)求y 与 x 之间的函数表达式,并求出x 的取值范围;( 3)设四边形DECF 的面积为S,求 S 与 x 之间的函数表达式.第二讲二次函数的图像和性质知识点归纳:1、求抛物线的顶点、对称轴的方法22 4ac b2( 1)公式法:y ax 2 b 4ac b ,∴顶点是 b ,对称轴是直线bx c a x4a (,)2a 2a 4abx.2a(2)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.2、二次函数的图象及性质:( 1)二次函数 y=ax 2 (a≠ 0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当 a> 0 时,抛物线开口向上,顶点是最低点;当 a<0 时,抛物线开口向下,顶点是最高点; a 越小,抛物线开口越大.(2)二次函数 y ax2 bx c的图象是一条对称轴平行 y 轴或者与 y 轴重合的抛物线.要会根据对称轴和图像判断二次函数的增减情况。

二次函数讲义

二次函数讲义

二次函数1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。

2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。

当a <0时,情况相反3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点。

3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点。

当a <0时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。

二次函数的性质)乐荣广

二次函数的性质)乐荣广

精锐教育学科教师辅导讲义讲义编号10sh6sx009435学员编号: 年 级:初 三 课时数:3 学员姓名:计宇杰 辅导科目:数 学 学科教师:乐荣广 课 题 二次函数()k m x a y ++=2的图像授课日期及时段2010年11月15日 17:30—19:30教学目的 1、掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

2、经历探索二次函数y =ax 2+bx +c (a ≠0)的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。

教学内容第一部分 上节课知识要点回顾1、 二次函数的概念: (1)系数、次数的要求: (2)式子的特征:2、特殊的二次函数图像及其性质:(1)形如2ax y =(0≠a )的二次函数的图像及其性质:(2)形如c ax y +=2(0≠a )的二次函数的图像及其性质:(3)形如()2m x a y +=(0≠a )的二次函数的图像及其性质:(4)三种特殊函数的图像之间的平移变换:第二部分 上节课知识检测1、函数)1()(22+++-=m mx x m m y ,当m ,此函数是关于x 的二次函数?2、二次函数23x xy π-=的二次项系数 ,一次项系数 ,常数项3、下列函数中,哪些是二次函数(1)()20x y k k =≠ (2)21xy -= (3)221y x x =-- (4))1(x x y -=(5)220x y +-= (6))1)(1()1(2-+--=x x x y (7)22y ax -=- 4、若抛物线2(1)mmy m x -=-开口向下,则______=m ;5、抛物线232-=x y 的图象可由抛物线23x y =的图象向 平移 个单位得到,它的顶点坐标是 ,对称轴是 ; 6、抛物线2)2(31-=x y 的图象可由抛物线231x y =向 平移 个单位得到,它的顶点坐标是 ,对称轴是 ;7、当m = 时,抛物线y =(m +1)xmm +2+9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 .8、已知二次函数y =ax 2+c ,当x =2时,y =4;当x =-1时,y =-3.求a 、c 的值.9、已知函数22x y =,2)4(2-=x y 和221y x =+。

九年级数学(下)提高班讲义(一)——二次函数

九年级数学(下)提高班讲义(一)——二次函数

九年级数学(下)提高班讲义(一)——二次函数图像与性质班级: 姓名:例题讲解:例1:函数24(2)m m y m x +-=+是关于的二次函数,求(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点,求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?同步练习:已知是二次函数()2261m m y m x --=+,在此函数对称轴的左侧,y 随x 的增大而增大。

(1)求m 的值;(2)画出该函数的图像例2:二次函数2y x bx c =++的图像向左平移3个单位,再向上平移2个单位得到二次函数221y x x =-+的图像,求b 与c同步练习:抛物线()2257y x =--+向 平移 单位后,再向 平移 单位,可得抛物线221y x =--例3:根据下列条件,分别求出对应的二次函数的解析式:(1) 已知二次函数的图像经过点(0,1)A -,(1,0)B ,(1,2)C -(2) 已知抛物线的顶点为(1,3)-,且与y 轴交于点(0,1)(3) 已知抛物线与x 轴交于点(3,0)-,(5,0)且与y 轴交于点(0,3)-(4) 已知抛物线的顶点为(3,2)-,且与x 轴两交点间距离为4同步练习:根据下列条件,分别求出对应的二次函数的解析式。

(1)已知二次函数的图像经过点()()()0,21,13,5,,;(2)已知抛物线顶点为()1,2-且过点()2,1;(3)已知抛物线与x 轴交于点()()1,02,0-,,且经过点()1,2(4)已知二次函数2y ax bx c =++,当x=3时,函数取得最大值10,且它的图像在x 轴上截得的弦长为4.例5:如图,抛物线E :243y x x =++:交x 轴于A 、B 两点,交y 轴于M 点,抛物线E 关于y 轴对称的抛物线F 交x 轴于C 、D 两点。

第四讲二次函数(讲义).doc

第四讲二次函数(讲义).doc

第四讲二次函数一、知识要点和基本方法 1、 二次函数解析式的三种形态(顶点式、零点式与一般式)2、 二次函数f(x)=ax 2+bx+c(a^O)的图象与性质3、 一元二次方程o? +* + c•=0在某一开区间内外的实根分布问题(从△,对称轴与区间端点的函数值的符号这三个角度来考虑)(1) 两根均大于t()<=> (2) 两根均小于t()(3) 一根大于t(),另一根小于切 <=>(4) 其中一个根小于t|,另一个根大于t2 (ti<t 2)(5) 两根均在开区间(t ], t 2)内,即两根X1,X2满足/, < %! < x 2 < t 2 = (6) 有旦仅有一个根在区间(t|, (2)内 o(7) 对于t^<t 2< t 3 ,两根尤],尤2分别在区间(t ], t 2)和(t 2, t 3)内说明:若avo,这时二次函数图像开口向下,不等式组要做相应变更,若a 的符号不能确定,则要加以 对论;若将开区间换为闭区间,不等组也要相应变形。

[典型例题]一、二次函数解析式的确定及相关问题例1、设二次函数y=ax?+bx+c 满足条件:f(0)=2, f(l)=-l,且图象在x 轴上所截得的线段长为2很, 求这个二次函数的表达式。

例2、已知二次函数y = (x)的图象以原点为顶点且过点(1, 1),反函数= f 2 (x)的图象与直线y=x 的两个交点的距离8, y(x) = /1(x) + /2(x)0 (1)求函数f(x)的表达式;(2)证明:当a>3时,关于x 的方程/(x)= f M 有三个实数解。

二、 二次函数的最值问题例3、己知定义在闭区间[0, a ]上的函数y=x 2—2x4-3,问:当a 在什么范围内取值时,y 的最大值是3, 且最小值是2o例4、如果抛物线y=x 2-(k-l)x-k-l 与x 轴的交点为A 、B,顶点为C,求AABC 的面积的最小值。

二次函数与参数方程讲义

二次函数与参数方程讲义

二次函数与参数方程讲义一、二次函数的定义及性质二次函数是指具有形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。

二次函数的图像在直角坐标系中呈现出一个抛物线的形状。

下面介绍一些二次函数的性质:1.顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a)),其中b 为二次项系数,a为一次项系数,f(x)为二次函数表达式。

2.对称轴:二次函数的对称轴是与顶点垂直且通过顶点的线,对称轴的方程为x=-b/2a。

3.开口方向:若a>0,则二次函数的图像开口向上;若a<0,则二次函数的图像开口向下。

4. 判别式:二次函数的判别式Δ = b^2 - 4ac可以判断二次函数的图像与x轴的交点个数和位置。

若Δ > 0,则有两个不同的实数根,图像与x轴有两个交点;若Δ = 0,则有一个实数根,图像与x轴有一个交点;若Δ < 0,则没有实数根,图像与x轴没有交点。

5.奇偶性:二次函数关于对称轴对称。

二、参数方程的定义及性质参数方程是指通过引入一个或多个参数,将自变量和因变量用参数的函数表示的一种函数形式。

下面介绍一些常见的参数方程:1.平面曲线的参数方程:平面曲线的参数方程通常是将平面坐标x和y分别表示为参数t的函数,即x=f(t)和y=g(t)。

2.长度参数方程:对于曲线上的一点P(x,y),如果已知P到曲线的起点O的距离s与曲线上的弧长l之间存在函数关系s=h(l),则有x=f(l),y=g(l)。

3.动点参数方程:描述动点在平面上的运动轨迹时,可以使用动点坐标作为参数的函数,即x=f(t),y=g(t)。

4.极坐标参数方程:极坐标系下,曲线的参数方程与平面直角坐标系类似,但是将x和y表示为极坐标r和θ的函数,即r=f(θ),θ=g(θ)。

参数方程的优点是可以描述曲线上每一点的位置及其运动轨迹,而不仅仅是曲线的整体特征。

三、二次函数和参数方程的关系对于二次函数,可以将其表示为参数方程的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习
集合的概念,集合的特点,区间的表示
定义域,值域,映射
初中知识回顾
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向
〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解
特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

增加内容:一定区间上的最值问题,根的分布
主要思想:分类讨论
二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a
=-处取得最大值2
44ac b a
-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.
【例1】当22x -≤≤时,求函数2
23y x x =--的最大值和最小值.
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.
解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.
由上述例题可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:
【例2】当1
t x t
≤≤+时,求函数2
15
22
y x x
=--的最小值(其中t为常数).分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.
解:函数2
15
22
y x x
=--的对称轴为1
x=.画出其草图.
(1) 当对称轴在所给范围左侧.即1
t>时:当x t=时,2
min
15
22
y t t
=--;
(2) 当对称轴在所给范围之间.即1101
t t t
≤≤+⇒≤≤时:
当1
x=时,2
min
15
113
22
y=⨯--=-;
(3) 当对称轴在所给范围右侧.即110
t t
+<⇒<时:
当1
x t=+时,22
min
151
(1)(1)3
222
y t t t
=+-+-=-.
综上所述:
2
2
1
3,0
2
3,01
15
,1
22
t t
y t
t t t

-<


=-≤≤


⎪-->

二次函数根的分布
1.求二次函数的根,就是解)(x
f=0,常用的方法有因式分解,或者直接利用求根公式。

首先考虑因式分解。

[例1]求下列函数的零点
(1) f(x)=-x2-2x+3(2)f(x)=x2-x-4
解析:(1)令f(x)=-(x+3)(x-1)=0,因此f(x)=0的根是-3,1,故f(x)的零点为-3,1。

(2)利用一元二次方程的求根公式,得f(x)=0的根,
『点评』:所对应方程的解与函数的零点的关系是解决本题的桥梁,对于一个二次函数,可通过分解因式或用求根公式求得方程的根.
【典例分析】判别式法
例2函数f(x)= x2-x-6是否有零点?
解析:因为 =(-1)2-4(-6)=25>0,所以方程x2-x-6=0有两个不相等的实数根。

所以f(x)有两个零点。

2.二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(<n f m f
在区间()n m ,上,必存在0)(=x f 的唯一的实数根.
【例2】 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .
(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;
(2)如果21<x ,212=-x x ,求b 的取值范围.
分析:条件4221<<<x x 实际上给出了x x f =)(的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化.
解:设1)1()()(2+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x .
(1)由0>a 及4221<<<x x ,可得 ⎩⎨⎧><0
)4(0)2(g g ,即⎩⎨⎧>-+<-+034160124b a b a ,即
⎪⎪⎩
⎪⎪⎨⎧<+⋅--<-⋅+,043224,043233a a b a a b 两式相加得
12<a
b ,所以,10->x ; (2)由a
a b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号.
∴ 21<x ,212=-x x 等价于⎪⎩⎪⎨⎧+-=+<<<1)1(1220221b a x x 或⎪⎩⎪⎨⎧+-=+<<-<1
)1(1202212b a x x , 即 ⎪⎪⎩⎪⎪⎨⎧+-=+>>1)1(120)0(0)2(2b a g g 或⎪⎪⎩⎪⎪⎨⎧+-=+>>-1
)1(120)0(0)2(2b a g g
解之得 41<b 或4
7>b . 【例3】F(x)=ax^2-6x+1在(1,2)上有两不等实根,求a 取值范围
分析:由方程有两不等实根,可知△>0,由于a 的正负未知,抛物线开口方向未知,需要分类讨论。

解:由△>0,解得a<9。

若a>0,结合图形,得 F(1)>0
F(2)>0
解得a ∈(5,9)
若a<0,结合图形,得 F(1)<0
F(2)<0
解得 a ∈(—∞,0)
综上所述,a ∈(—∞,0)∪(5,9)
思考:若是在[1,2]上有两不等实根,条件应该如何改变?
[例4]已知。

相关文档
最新文档