快速排序算法设计

快速排序算法设计(10003809386j) 一实验目的

使学生掌握常用内部排序的基本概念和基本方法

使学生掌握常用内部排序方法的性能评价;

使学生掌握排序方法在实际问题中的应用;

二实验环境

所需硬件环境为微机;

所需软件环境为Microsoft Visual C++ 6.0;

三实验内容

此部分仅用写出要求的实验代码,并加上必要的注释

#include

#define LIST_INIT_SIZE 100

#define LISTINCREMENT 10

#define OVERFLOW -2

#define OK 1

#define FAILURE 0

#define TRUE 1

#define FALSE 0

#define ERROR -1

typedef int ElemType;

typedef int Status;

void PrintElem(ElemType *e){

printf("%5d",*e);}

#include

#include "ElemType.c"

int p[6];//记录比较次数

int q[6];//记录移动次数

void InsertSort(int *L,int n)// 直接插入排序{ int i,j;

for(i=2;i<=n;i++)

{if(L[i]

{L[0]=L[i];

L[i]=L[i-1];

for(j=i-2;L[0]

{ L[j+1]=L[j];p[0]++;q[0]++;}

L[j+1]=L[0];q[0]+=3;}

p[0]++;}}

void ShellInsert(int *L,int n,int dk)// 希尔排序{ int i,j;

for(i=dk+1;i<=n;i++)

{if(L[i]

{L[0]=L[i];

for(j=i-dk;j>0&&L[0]

{L[j+dk]=L[j];p[1]++;q[1]++;}

L[j+dk]=L[0];q[1]+=2;}

p[1]++; }}

void ShellSort(int *L,int n) // 希尔排序

{ int dalt[6]={13,11,7,5,3,1};

int i;

for(i=0;i<6;i++)

ShellInsert(L,n,dalt[i]);}

void buddlesort(int *L,int n)// 冒泡排序

{ int i,j,k,m;

for(i=n,k=1;i>1&&k;i--)

{ k=0;

for(j=1;j

{if(L[j]>L[j+1])

{ m=L[j];L[j]=L[j+1];

L[j+1]=m;k=1;q[2]+=3;}

p[2]++; }}}

int Partition(int *L,int low,int high)

{ int k;

L[0]=L[low];

k=L[low];

while(low

{ while(low=k) {high--;p[3]++;}

L[low]=L[high];

while(low

p[3]+=2;q[3]+=2; }

L[low]=L[0];

q[3]+=3;

return low;}

void QSort(int *L,int low,int high)

{ int k;

if(low

{ k=Partition(L,low,high);

QSort(L,low,k-1);

QSort(L,k+1,high); } }

void QuikSort(int *L,int n)// 快速排序

{ QSort(L,1,n); }

void HeapAdjust(int *L,int s,int m)// 堆排序

{ int j,t;

t=L[s];

for(j=2*s;j<=m;j*=2)

{if(j

{j++;p[4]++;}

if(t>=L[j]) break;

p[4]+=2;q[4]++;

L[s]=L[j];s=j;}

L[s]=t;q[4]+=2;}

void HeapSort(int *L,int n) // 堆排序

{ int i,t;

for(i=n/2;i>0;i--)

HeapAdjust(L,i,n);

for(i=n;i>1;i--)

{t=L[1];L[1]=L[i];L[i]=t;q[4]+=3;

HeapAdjust(L,1,i-1); }}

void Merge(int *SR,int *TR,int i,int m,int n) { int j,k,t;

for(j=m+1,k=i;i<=m&&j<=n;++k)

{ if(SR[i]

{TR[k]=SR[i];

i++;}

else

{TR[k]=SR[j];

j++;}

q[5]++;p[5]++;}

if(i<=m)

for(t=i;t<=m;t++)

{ TR[k]=SR[t];q[5]++;

k++;}

if(j<=n)

for(t=j;t<=n;t++)

{ TR[k]=SR[t];q[5]++;

k++;}}

void MSort(int *SR,int *TR1,int s,int t)

{ int *TR2=(int *)malloc(sizeof(int)*t);

int m;

if(s==t)

{TR1[s]=SR[s];q[5]++;}

else

{ m=(s+t)/2;

MSort(SR,TR2,s,m);

MSort(SR,TR2,m+1,t);

Merge(TR2,TR1,s,m,t);}}

void MergeSort(int *L,int n)// .归并排序

{MSort(L,L,1,n); }

int main(){ //主函数1

int k,i,a[10]={5,8,1,11,23,41,16,44,14,9};

int L[101];

printf("原数字排列为:");

for(i=0;i<10;i++)

L[i+1]=a[i];

for(i=0;i<10;i++)

printf("%d,",L[i+1]);

printf("\n-------------主菜单-------------\n"); printf("1.直接插入排序\n");

printf("2.希尔排序\n");

printf("3.冒泡排序\n");

printf("4.快速排序\n");

printf("5.堆排序\n");

printf("6.归并排序\n");

printf("7.退出\n");

printf("--------------------------------\n");

while(1)

{ printf("请选择选项:");

scanf("%d",&k);

switch(k)

{ case 1:printf("使用直接排序方法得到的结果是:\n");

InsertSort(L,10);for(i=0;i<10;i++) printf("%d,",L[i+1]); printf("\n");break;

case 2:for(i=0;i<10;i++) L[i+1]=a[i];printf("使用希尔排序方法得到的结果是:\n");

ShellSort(L,10);for(i=0;i<10;i++) printf("%d,",L[i+1]); printf("\n");break;

case 3:for(i=0;i<10;i++) L[i+1]=a[i];printf("使用冒泡排序方法得到的结果是:\n");

buddlesort(L,10);for(i=0;i<10;i++) printf("%d,",L[i+1]); printf("\n");break;

case 4:for(i=0;i<10;i++) L[i+1]=a[i];printf("使用快速排序方法得到的结果是:\n");

QuikSort(L,10);for(i=0;i<10;i++) printf("%d,",L[i+1]); printf("\n");break;

case 5:for(i=0;i<10;i++) L[i+1]=a[i];printf("使用堆排序方法得到的结果是:\n");

HeapSort(L,10);for(i=0;i<10;i++)

printf("%d,",L[i+1]);printf("\n");break;

case 6:for(i=0;i<10;i++) L[i+1]=a[i];printf("使用归并排序方法得到的结果是:\n");

MergeSort(L,10);for(i=0;i<10;i++)

printf("%d,",L[i+1]);printf("\n");break;

case 7:printf("已退出!");exit(0);break;

default:printf("\nInput error!"); }}

return 0; }

#include//主函数2

#include

#include "Sort.c"

int main(){

int L[101],i,k;

for(i=0;i<100;i++)

L[i+1]=100 + rand() % (1000 - 100) ;

printf("\n-------------主菜单-------------\n");

printf("1.直接插入排序\n");

printf("2.希尔排序\n");

printf("3.冒泡排序\n");

printf("4.快速排序\n");

printf("5.堆排序\n");

printf("6.归并排序\n");

printf("7.退出\n");

printf("--------------------------------\n");

while(1)

{ printf("请选择选项:");

scanf("%d",&k);

switch(k)

{case 1:InsertSort(L,100);printf("1.直接插入排序的比较次数和移动次数分别为:%d,%d\n",p[0],q[0]);break;

case 2:for(i=0;i<100;i++)L[i+1]=100 + rand() % (1000 - 100) ;ShellSort(L,100);

printf("2.希尔排序的比较次数和移动次数分别为:%d,%d\n",p[1],q[1]);break;

case 3:for(i=0;i<100;i++)L[i+1]=100 + rand() % (1000 - 100) ;buddlesort(L,100);

printf("3.冒泡排序的比较次数和移动次数分别为:%d,%d\n",p[2],q[2]);break;

case 4:for(i=0;i<100;i++)L[i+1]=100 + rand() % (1000 - 100) ;QuikSort(L,100);

printf("4.快速排序的比较次数和移动次数分别为:%d,%d\n",p[3],q[3]);break;

case 5:for(i=0;i<100;i++)L[i+1]=100 + rand() % (1000 - 100) ;HeapSort(L,100);

printf("5.堆排序的比较次数和移动次数分别为:%d,%d\n",p[4],q[4]);break;

case 6:for(i=0;i<100;i++)L[i+1]=100 + rand() % (1000 - 100) ;MergeSort(L,100);

printf("6.归并排序的比较次数和移动次数分别为:%d,%d\n",p[5],q[5]);break;

case 7:printf("已退出!");exit(0);break;

default:printf("\nInput error!"); }}

return 0; }

四实验分析及问题思考

1.分析和总结各种内部排序方法的优缺点;

直接插入排序

优点:移动元素次数少,只需要一个辅助空间

缺点:效率不高

冒泡排序

优点:比较简单,空间复杂度较低,是稳定的

缺点:时间复杂度太高,效率不好

简单选择排序

优点:所需移动记录的次数比较少,最好情况下,即待排序记录初始状态就已经是正序排列了,则不需要移动记录

缺点:简单选择排序是不稳定排序

快速排序

优点:极快,数据移动少

缺点:不稳定

希尔排序

优点:快,数据移动少

缺点:不稳定,d的取值是多少,应取多少个不同的值,都无法确切知道,只能凭经验来取

归并排序

优点:归并排序是稳定的排序方法

缺点:需要一个与原始序列同样大小的辅助序列

堆排序

优点:在最坏情况下时间复杂度也为O(nlogn),并且它仅需一个记录大小供交换用的辅助存储空间

缺点:记录数较少时不提倡使用

基数排序

优点:基数排序法的效率高于其它的比较性排序法,稳定的排序

快速排序算法设计(10003809386j) 实验自评检查表

实验内容自评结果(在对应格内打√)

不熟练一般比较熟练熟练

简单排序方法直接插入排序√起泡排序√简单选择排序√

先进排序方法快速排序√希尔排序√归并排序√

实验的心得体会

通过这次实验,我更加清楚地了解了各个算法的实现过程,学会应用随机数表,而且自己体会到了各个算法的时间复杂度。还了解了哨兵的实际作用,以后要在程序的精巧方面多多努力,还应该多看一些精巧的算法。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

中南大学数据结构与算法第10章内部排序课后作业答案

第10章内部排序习题练习答案 1.以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。 (1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序 (5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序 上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。 答: (1)直接插入排序:(方括号表示无序区) 初始态: 265[301 751 129 937 863 742 694 076 438] 第一趟:265 301[751 129 937 863 742 694 076 438] 第二趟:265 301 751[129 937 863 742 694 076 438] 第三趟:129 265 301 751[937 863 742 694 076 438] 第四趟:129 265 301 751 937[863 742 694 076 438] 第五趟:129 265 301 751 863 937[742 694 076 438] 第六趟:129 265 301 742 751 863 937[694 076 438] 第七趟:129 265 301 694 742 751 863 937[076 438] 第八趟:076 129 265 301 694 742 751 863 937[438] 第九趟:076 129 265 301 438 694 742 751 863 937

(2)希尔排序(增量为5,3,1) 初始态: 265 301 751 129 937 863 742 694 076 438 第一趟:265 301 694 076 438 863 742 751 129 937 第二趟:076 301 129 265 438 694 742 751 863 937 第三趟:076 129 265 301 438 694 742 751 863 937 (3)冒泡排序(方括号为无序区) 初始态[265 301 751 129 937 863 742 694 076 438] 第一趟:076 [265 301 751 129 937 863 742 694 438] 第二趟:076 129 [265 301 751 438 937 863 742 694] 第三趟:076 129 265 [301 438 694 751 937 863 742] 第四趟:076 129 265 301 [438 694 742 751 937 863] 第五趟:076 129 265 301 438 [694 742 751 863 937] 第六趟:076 129 265 301 438 694 742 751 863 937 (4)快速排序:(方括号表示无序区,层表示对应的递归树的层数)

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的,记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0] 小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

数据结构课程设计报告---几种排序算法的演示(附源代码)

? & 数据结构课程设计报告 —几种排序算法的演示( ; 时间:2010-1-14 … 一需求分析

运行环境 Microsoft Visual Studio 2005 程序所实现的功能 对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。 程序的输入(包含输入的数据格式和说明) % <1>排序种类三输入 <2>排序数的个数的输入 <3>所需排序的所有数的输入 程序的输出(程序输出的形式) <1>主菜单的输出 <2>每一趟排序的输出,即排序过程的输出 " 二设计说明 算法设计思想 <1>交换排序(冒泡排序、快速排序) 交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。 <2>插入排序(直接插入排序、折半插入排序) % 插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。开始时建立一个初始的有序序列,它只包含一个数据元素。然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。 <3>选择排序(简单选择排序、堆排序) 选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。 <4>归并排序(两路归并排序) 两路归并排序的基本思想是:假设初始排序表有n个数据元素,首先把它看成是长度为

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

数据结构课程设计排序算法总结

排序算法: (1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序 【算法分析】 (1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。 (2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。 (3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。 (4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。 (5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 (6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。 (7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。 【算法实现】 (1)直接插入排序: void InsertSort(SqList &L){ for(i=2;i<=L.length ;i++) if(L.elem[i]L.elem[0];j--) L.elem [j+1]=L.elem [j]; L.elem [j+1]=L.elem[0]; } } (2)折半插入排序:

分治算法实验(用分治法实现快速排序算法)

算法分析与设计实验报告第四次附加实验

while (a[--j]>x); if (i>=j) { break; } Swap(a[i],a[j]); } a[p] = a[j]; //将基准元素放在合适的位置 a[j] = x; return j; } //通过RandomizedPartition函数来产生随机的划分 template vclass Type> int RandomizedPartition(Type a[], int p, int r) { int i = Random(p,r); Swap(a[i],a[p]); return Partition(a,p,r); } 较小个数排序序列的结果: 测试结果 较大个数排序序列的结果:

实验心得 快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是 重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度 很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确 定轴值,从而可以期望划分是较对称 的,减少了出现极端情况的次数,使得排序的效率挺高了很多, 化算法想呼应,而且关键的是对于随机生成函数,通过这一次的 学习终于弄明白是怎么回事了,不错。 与后面的随机实 验和自己的 实验得分助教签名 附录: 完整代码(分治法) //随机后标记元素后的快速排序 #i nclude #in elude #inelude #include using namespacestd; template < class Type> void S &x,Type &y); // 声明swap函数 inline int Random(int x, int y); // 声明内联函数 template < class Type> int Partition(Type a[], int p, int r); // 声明 Partition 函数template int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数 int a[1000000]; //定义全局变量用来存放要查找的数组 更大个数排序序列的结果:

数据结构课程设计报告---几种排序算法的演示(附源代码)

数据结构课程设计报告 —几种排序算法的演示 时间:2010-1-14 一需求分析 运行环境 Microsoft Visual Studio 2005

程序所实现的功能 对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。 程序的输入(包含输入的数据格式和说明) <1>排序种类三输入 <2>排序数的个数的输入 <3>所需排序的所有数的输入 程序的输出(程序输出的形式) <1>主菜单的输出 <2>每一趟排序的输出,即排序过程的输出 二设计说明 算法设计思想 <1>交换排序(冒泡排序、快速排序) 交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。 <2>插入排序(直接插入排序、折半插入排序) 插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。开始时建立一个初始的有序序列,它只包含一个数据元素。然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。 <3>选择排序(简单选择排序、堆排序)

选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。 <4>归并排序(两路归并排序) 两路归并排序的基本思想是:假设初始排序表有n个数据元素,首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项),先做两两归并,得n/2上取整个长度为2的归并项(如果n为奇数,则最后一个归并项的长度为1);再做两两归并,……,如此重复,最后得到一个长度为n的有序序列。 程序的主要流程图

十大编程算法助程序员走上高手之路

十大编程算法助程序员走上高手之路 本文为大家梳理阐述了十种高效率的变成算法,熟练掌握的程序员可以借这些方法逐渐发展为高手,那么我们一起来探究一下是哪十种算法有这么神奇的效果。 算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。 快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 算法步骤: 1 从数列中挑出一个元素,称为“基准”(pivot), 2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 算法二:堆排序算法 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。 堆排序的平均时间复杂度为Ο(nlogn) 。 算法步骤: 创建一个堆H[0..n-1] 把堆首(最大值)和堆尾互换 3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置 4. 重复步骤2,直到堆的尺寸为1

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

内部排序算法的实现与比较

内部排序算法的实现与 比较 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

实验四:内部排序算法的实现与比较 一、问题描述 1.实验题目:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大致执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。 2.基本要求:(1)对常用的内部排序算法进行比较:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序。 (2利用随机函数产生N(N=30000)个随机整数,作为输入数据作比较;比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。 (3)对结果作出简要分析。 3.测试数据:随机函数产生。 二、需求分析 1.程序所能达到的基本可能:通过随机数据产生N个随机数,作为输入数据作比较;对常用的内部排序算法:直接插入排序、简单选择排序、冒泡排序、快速排序、希尔排序、归并排序进行比较:比较的指标为关键字参加的比较次数和关键字的移动次数(关键字交换记为3次移动)。最后结果输出各种排序算法的关键字参加的比较次数和关键字的移动次数,并按从小到大排列。 2.输入的形式及输入值范围:随机函数产生的N(N=30000)个随机整数。 3.输出的形式:输出各种排序算法的关键字参加的比较次数和关键字的移动次数。并按从小到大排列。 4.测试数据要求:随机函数产生的N(N=30000)个随机整数。 三、概要设计 1. 所用到得数据结构及其ADT 为了实现上述功能,应以一维数组表示集合数据类型。 int s[N]; int compare[6]={0},move[6]={0},D[N]={0},RS[N]={0}; 基本操作: 数组赋值: for(i=1;i

数据结构 课程设计报告(排序算法比较)

数据结构课程设计报告 学院:计算机科学与工程 专业:计算机科学与技术 班级:09级班 学号: 姓名: 指导老师: 时间: 2010年12月

一、课程设计题目:1、哈夫曼编码的实现 2、城市辖区地铁线路设计 3、综合排序算法的比较 二、小组成员: 三、题目要求: 1.哈夫曼编码的实现 (1)打开若干篇英文文章,统计该文章中每个字符出现的次数,进一步统一各字符出现的概率。 (2)针对上述统计结果,对各字符实现哈夫曼编码 (3)对任意文章,用哈夫曼编码对其进行编码 (4)对任意文章,对收到的电文进行解码 2.某城市要在其各个辖区之间修建地铁来加快经济发展,但由于建设地铁的费用昂贵,因此需要合理安排地铁的建设路线。 (1)从包含各辖区的地图文件中读取辖区的名称和各辖区的直接距离 (2)根据上述读入的信息,给出一种铺设地铁线路的解决方案。使乘客可以沿地铁到达各个辖区,并使总的建设费用最小。 (3)输出应该建设的地铁路线及所需要建设的总里程信息。 3.综合排序算法的比较 各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概的执行时间。试通过随机的数据比较各算法的关键字比较次数和关键字移动的次数。 (1)对以下各种常用的内部排序算法进行比较: 直接插入排序,折半插入排序,二路归并排序,希尔排序,冒泡排序,快速排序,简单选择排序,堆排序,归并排序,基数排序。 (2)待排序的表长不少于100,要求采用随机数。 (3)至少要用5组不同的输入数据做比较:比较的次数为有关键字参加的比较次数和关键字移动的次数 (4)改变数据量的大小,观察统计数据的变化情况。 (5)对试验统计数据进行分析。对各类排序算法进行综合评价。 四、项目安排: 1、小组内分工合作 分工:负责哈夫曼编码的实现,负责城市辖区地铁线路设计,负责综合排序算法的比较。 合作:组内,组外进行交流,组长帮助解决组员的在项目过程中的困难,并控制进度。 五、完成自己的任务:

快速排序算法(论文)

1 绪论 快速排序(quicksort)是分治(divide and conquer)法的一个典型例子。快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962 年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 快速排序算法具有良好的平均性能,因此它在实际中常常是首选的排序算法。本次任务主要以快速排序算法实现对任意数字序列的排序,并解决书本P59页 2-26问题: O n n 试说明如何修改快速排序算法,使它在最坏情况下的计算时间为(log) 所选编程语言为C语言。

2 快速排序算法 2.1快速排序算法简介 快速排序算法是基于分治策略的排序算法。即对于输入的子数组a[p:r],按以下三个步骤进行排序。 (1)分解:以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使a[p:q-1]中任何一个元素小于等于a[q],而a[q+1:r]中任何一个元素大于等于a[q]。下标q在划分过程中确定。 (2)递归求解:通过递归调用快速排序算法分别对a[p:q-1]和a[q+1:r]进行排序。 (3)合并:由于对a[p:q-1]和a[q+1:r]的排序是就地进行的,所以在a[p:q-1]和a[q+1:r]都已排好的序后,不需要执行任何计算,a[p:r]就已排好序。

2.2 图1 快速排序算法流程图

2.3快速排序算法的算法实现 第一趟处理整个待排序列,选取其中的一个记录,通常选取第一个记录,以该记录的关键字值为基准,通过一趟快速排序将待排序列分割成独立的两个部分,前一部分记录的关键字比基准记录的关键字小,后一部分记录的关键字比基准记录的关键字大,基准记录得到了它在整个序列中的最终位置并被存放好,这个过程称为一趟快速排序。第二趟即分别对分割成两部分的子序列再进行快速排序,这样两部分子序列中的基准记录也得到了最终在序列中的位置并被存放好,又分别分割出独立的两个子序列。这是一个递归的过程,不断进行下去,直至每个待排子序列中都只有一个记录是为止,此时整个待排序列已排好序,排序算法结束。 快速排序的过程: (1)初始化。取第一个记录作为基准,设置两个整型指针i,j,分别指向将要与基准记录进行比较的左侧记录位置和右侧记录位置。最开始从右侧比较,当发生交换操作后,再从左侧比较。 (2)用基准记录与右侧记录进行比较。即与指针j指向的记录进行比较,如果右侧记录的关键字值大,则继续与右侧前一个记录进行比较,即j减1后,再用基准元素与j所指向的记录比较,若右侧的记录小,则将基准记录与j所指向的记录进行交换。 (3)用基准记录与左侧记录进行比较。即与指针i指向的记录进行比较,如果左侧记录的关键字值小,则继续与左侧后一个记录进行比较,即i加1后,再用基准记录与i指向的记录比较,若左侧的记录大,则将基准记录与i指向的记录比较。 (4)右侧比较与左侧比较交替重复进行,直到指针i与j指向同一位置,即指向基准记录最终的位置。 可实现的快速排序算法如下: void QuickSort(int a[],int p,int r) { i f(p

分治法实现快速排序与两路合并排序

实验报告 (2015 / 2016 学年第二学期) 课程名称 实验名称分治法实现快速排序与两路合并排序 实验时间年月日指导单位计算机学院计算机科学与技术系 指导教师 学生姓名班级学号 学院(系) 专业 实验报告

三、实验原理及内容 实验原理: 分治法:即分而治之。将问题分解为规模较小,相互独立,类型相同的问题进行求解。对于无序数组的有序排序也就是按某种方式将序列分成两个或多个子序列,分别进行排序,再将已排序的子序列合并成一个有序序列。 实验内容: 两路合并排序算法的基本思想是:将待排序元素序列一分为二,得到两个长度基本相等的子序列,其过程类似于对半搜索;然后将子序列分别排序,如果子序列较长,还可以继续细分,知道子序列长度不超过1为止。 以上的实现由下列代码执行: void SortableList::MergeSort() { MergeSort(0,n-1); } void SortableList::MergeSort(int left,int right) { if (left

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

相关文档
最新文档