1博弈论概述2完全信息静态博弈3完全信息动态博弈4

合集下载

第11章-博弈论教材全篇

第11章-博弈论教材全篇

田忌
齐王 b1 b2 b3 b4 b5 b6
a1
3 1 1 1 1 1
a2
1 3 1 1 1 1
a3
1 1 3 1 1 1
a4 1 1 1 3 1 1
a5
1 1 1 1 3 1
a6
1 1 1 1 1 3
2-2 具有鞍点的博弈
通过下面的例3说明,什么是局中人的最优纯策略, 如何求出这个纯策略以及博弈解和博弈值的概念。
博弈的三个要素的矩阵表示(局中人A的收益)
局中人B
局中人A

a1
a2

am
b1
c11 c21
cm1

b2
c12 c22
cm 2

bn
c1n c2 n
cmn
局中人A的收益函数可用如下的矩阵表示:
c11
A
c21
cm1
c12 c22
cm 2
c1n c2n
cmn
二人零和博弈也称为矩阵博弈。
博弈论的研究建立在下述假设前提下:即参与博弈 的各局中人都是理性的。
“博弈中一个理性的决策必定建立在预测其他局中人 的反应之上。一个局中人将自己置身于其他局中人的 位置,并为他着想从而预测其他局中人将选择的行为, 在这个基础上该局中人决定自己最理想的行动。”
博弈的三个要素,即局中人,策略集和收益函数 构成了博弈信息,根据不同信息可对博弈做如下 分类:
同样乙方应从收益表中每列找出最大正数(恰为乙 方输掉的数值),为了减少损失,应从这些数字中 求出最小数,它所对应的列策略为乙方的最优纯策 略。
计算过程如下:
对局中人甲,先从每一行中求出最小值
min6,1, 8 8,min3, 2,6 2, min3,0, 4 3,再求出其中的最大值 max8, 2, 3 2。数字2对应的行策略

《西方经济学》第七章 博弈论

《西方经济学》第七章 博弈论

21
第五节
不完全信息动态博弈
对应于不完全信息动态博弈的均衡概念是精炼 精炼 贝叶斯均衡(perfect Bayesian equilibrium). 贝叶斯均衡 这个概念是完全信息动态博弈的子博弈精炼纳 什均衡与不完全信息静态均衡的贝叶斯纳什均 衡的结合.具体来说,精炼贝叶斯均衡是所有 参与人战略和信念的一种结合.它满足如下条 件:第一,在给定每个参与人有关其他参与人 类型的信念的条件下,该参与人的战略选择是 最优的.第二,每个参与人关于其他参与人所 属类型的信念,都是使用贝叶斯法则从所观察 到的行为中获得的.
22
贝叶斯法则 贝叶斯法则是概率统计中的应用所观察 到的现象对有关概率分布的主观判断 (即先验概率)进行修正的标准方法.
23


1. 什么是占优策略均衡?什么是重复剔除的占优策 略均衡?什么是纳什均衡? 2. 什么是子博弈精炼纳什均衡?重复博弈与一次性 博弈有何不同? 3. 假定两寡头生产同质产品,两寡头的边际成本为 0.两寡头所进行的是产量竞争.对于寡头产品 的市场需求曲线为P=30-Q,其中Q=Q1+ Q2.Q1是寡头1的产量,Q2是寡头2的产量. (1)假定两个寡头所进行的是一次性博弈. 如果两寡头同时进行产量决策,两个寡头各生产 多少产量?各获得多少利润?
25

第七章
第一节 第三节 第四节 第五节
博弈论
完全信息静态博弈 完全信息动态博弈 不完全信息静态博弈 不完全信息动态博弈
第一节 博弈问题概述
一,博弈的基本概念 二,博弈的分类
2
一,博弈的基本概念
博弈论 博弈论(game theory)是研究决策主体的 行为发生直接相互作用时候的决策以及这 种决策的均衡问题的. 博弈论的基本概念包括:参与人 行动 参与人,行动 参与人 行动, 战略,信息 支付函数,结果 均衡. 信息,支付函数 结果,均衡 战略 信息 支付函数 结果 均衡

第三章信息经济学的研究方法—博弈论

第三章信息经济学的研究方法—博弈论

第一节 概述-人生处处皆博弈
人生是永不停歇的博弈过程,博弈意 略达到合意的结果。
作为博弈者,最佳策略是最大限度地 利用游戏规则,最大化自己的利益;
作为社会最佳策略,是通过规则使社 会整体福利增加。
一、博弈论的定义
博弈论(game theory,又译为对策论,游戏论)
定义:研究决策主体的行为在直接相互作用时,人们如 何进行决策、以及这种决策如何达到均衡。
五、博弈论与信息经济学
博弈论是给定信息结构求均衡结果,它实际上是一种均衡理论, 我们最终要找的是一个均衡的结果,博弈论是方法论导向的, 它实际上是一种解决问题的方法。它是一个实证的方法。
信息经济学是给定信息结构求契约的安排。它实际上是一种契 约设计理论,它是问题导向的。它是一个规范的方法。
石匠的决策与拳击手的决策的区别
一、博弈论的定义
2、理性人假设 理性人是指一个很好定义的偏好,在面临给定的约束条件下
最大化自己的偏好。
博弈论说起来有些绕嘴,但理解起来很好理解,那就是 每个对弈者在决定采取哪种行动时,不但要根据自身的利益 和目的行事,而且要考虑到他的决策行为对其他人可能的影 响,通过选择最佳行动计划,来寻求收益或效用的最大化。
(一)囚徒困境
假定: (1)每个局中人都知道博弈规则和博弈结果的支付
矩阵; (2)每个局中人都是理性的(个人理性和个人最优
决策); (3)不能“串通”
(一)囚徒困境——纳什均衡
囚徒A
坦白
坦白 囚徒 B
-8,-8
抵赖 -10,0
抵赖 0,-10 -1,-1
-8大于-10 0大于-1
(坦白,坦白)是纳什均衡
第三章 信息经济学的研究方法 ——博弈论

博弈模型汇总

博弈模型汇总

博弈模型汇总如下:
1.合作博弈与非合作博弈:这是根据参与者之间是否可以达成具
有约束力的协议来划分的。

合作博弈强调团队合作和协作,目标是达成共赢;而非合作博弈则强调个人利益最大化,不考虑其他参与者的利益。

2.静态博弈与动态博弈:这是根据参与者做出决策的时间顺序来
划分的。

静态博弈是指所有参与者同时做出决策,或者决策顺序没有影响;动态博弈是指参与者的决策有先后顺序,后行动者可以观察到先行动者的决策。

3.完全信息博弈与不完全信息博弈:这是根据参与者对其他参与
者的偏好、策略和支付函数了解的程度来划分的。

完全信息博弈是指所有参与者都拥有完全的信息,能够准确判断其他参与者的策略和支付函数;不完全信息博弈则是指参与者只拥有部分信息,无法准确判断其他参与者的策略和支付函数。

4.零和博弈与非零和博弈:这是根据所有参与者的总收益是否为
零来划分的。

零和博弈是指所有参与者的总收益为零,一方的收益等于另一方的损失;非零和博弈则是指所有参与者的总收益不为零,各方的收益和损失不一定相关。

5.竞争博弈与合作博弈:这是根据参与者之间是否存在竞争或合
作关系来划分的。

竞争博弈是指参与者之间存在竞争关系,目标是追求个人利益最大化;合作博弈则是指参与者之间存在合作关系,目标是追求共同利益最大化。

6.微分博弈与离散博弈:这是根据决策变量的连续性来划分的。

微分博弈是指决策变量是连续变化的,需要考虑时间、速度等因素;离散博弈则是指决策变量只有有限个可能的取值,通常只考虑状态的变化而不考虑时间、速度等因素。

博弈论概述

博弈论概述
“坦白”是A的占优策略。同样,“坦白”也是B的占优策略。
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.

博弈论概述

博弈论概述

定义: 标准型或战略型表达
一个博弈G的标准型或战略型表达:
有限的参与人集合{1,
2, ..., n}, 参与人的战略空间(战略集)S1 S2 ... Sn 以及 他们的收益函数u1 u2 ... un 这里 ui : S1 × S2 × ...× Sn→R.
标准型表达: 2人博弈

完全信息静态 (或者同时行动)博弈
参与人是否会相互合作?
不. 我们只考虑非合作博弈 方法论个人主义(哈耶克意义上的:参见《个人主 义与经济秩序》) 决策时点 每一参与人i 选择他/她的战略 si 时并不知晓别人的 选择(如果知道别人的选择会有好处吗?). 每一参与人i 得到他/她的收益为 ui(s1, s2, ..., sn). 博弈结束.
-9 ,
0
认罪
-6 , -6
经典例子: 囚徒困境
The meaning of symmetry

Single population dynamics Evolutionary game theory

Smith(1982)
例子:男女之争
克里斯和帕特需要决定在晚上到底是去看歌剧
呢还是看拳赛. 他们认为: 他们都想共渡一个夜晚而不想分开. 但克里斯更喜欢歌剧. 而帕特则更喜欢拳赛.
博弈论概述

什么是博弈? 完全信息静态博弈(最简单); 完全信息动态博弈(比较简单); 不完全信息静态博弈(比较困难); 不完全信息动态博弈(十分困难)
完全信息静态博弈概要
博弈的介绍 标准型 (或者战略型) 表达 重复剔除严格劣战略
纳什均衡
纳什均衡的应用 混合战略纳什均衡
Player 1 s12 s13

第七章博弈论高鸿业

第七章博弈论高鸿业

(二)重复剔除的占优策略均衡
• 在绝大多数博弈中,占优策略均衡是不存在的。 在绝大多数博弈中,占优策略均衡是不存在的。 • 智猪博弈(boxed pigs)是博弈论中的另一个著名的例子。 pigs)是博弈论中的另一个著名的例子。 智猪博弈( • 表7 -3 智 猪 博 弈 的 收 益 矩 阵 小猪 等待 2,4 0,0
求解智猪博弈均衡的方法
• 首先找出某一个参与者的严格劣战略,将其剔除 首先找出某一个参与者的严格劣战略, 严格劣战略 然后构造新博弈, 掉,然后构造新博弈,继续剔除新博弈中某一参 与人的严格劣战略;重复进行这一过程, 与人的严格劣战略;重复进行这一过程,直到剩 下唯一的参与人战略组合为止, 下唯一的参与人战略组合为止,这一唯一剩下的 参与人战略组合就是这个博弈的均衡解, 参与人战略组合就是这个博弈的均衡解,称为 重复剔除的占优战略均衡” “重复剔除的占优战略均衡” • 严格劣战略是指无论其他参与者选择什么战略, 严格劣战略是指无论其他参与者选择什么战略, 某一参与人可能采取的对自己不利的战略
这个博弈的均衡解是什么呢? 这个博弈的均衡解是什么呢?
这个博弈的均衡解是大猪选择按按钮, 这个博弈的均衡解是大猪选择按按钮,小 猪选择等待,这时, 猪选择等待,这时,大猪和小猪的净收益水平 分别为2个单位和4个单位。 分别为2个单位和4个单位。 这是一个“多劳不多得,少劳不少得” 这是一个“多劳不多得,少劳不少得”的 均衡。 均衡。
• 占优策略均衡 占优策略均衡要求任何一个参与人对于其 他参与人的任何策略 任何策略选择来说,其最优的 任何策略 策略都是唯一的。 • 纳什均衡 纳什均衡只要求任何一个参与人在其他参 与人的策略选择给定 策略选择给定的条件下,其选择的 策略选择给定 策略是最优的。 • 占优策略均衡一定是纳什均衡,但纳什均 衡不一定就是占优策略均衡。

博弈论完整版PPT课件

博弈论完整版PPT课件

ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战

研究生-第六章 博弈论与信息经济学

研究生-第六章 博弈论与信息经济学

逆向选择
3.逆向选择与信贷市场 信贷配给是信贷市场上存在的一种典型现象,原因在于逆 向选择现象存在,高风险的项目驱赶了低风险的项目. 信贷市场中,一般高风险与高收益成正比,银行不了解贷 款者的类型,厂商知道自己的信息.导致贷款利率与银 行期望收益之间的变化如图所示,利率上升的(直接的) 收益效应大于(间接的)风险效应,π随r上升而上升; 当r>r*时,利率上升的(间接的)风险效应超过(直接 的)收益效应,π随r的上升而下降,银行期望收益最大 化的利率为r*.
隐藏行动 事前 隐藏信息 逆向选择模型 信号传递模型 信息筛选模型 隐藏信号的道德风险模型
事后
隐藏行动的道德风险模型
第一节 逆向选择
1.逆向选择与旧货市场(Akerlof,the market for lemons) 逆向选择:在鉴定交易契约前,进行市场交易的一方 可能因为占据信息优势,做出对自己有利,对另一方 有害的事情,从而降低了市场效率,甚至可能导致这 一市场的萎缩. 在旧货市场,卖者拥有信息,买者缺乏信息,买者以 平均质量的价格购买旧商品,将质量较高的旧商品逐 出市场,质量较差的旧商品留在市场,并最终成交. 即为旧货市场的逆向选择行为.
第三节 完全信息静态博弈(二) ——混合策略(mixed strategies) ——混合策略(mixed strategies)
1.混合策略 定义:σ*=(σ1*,…,σn*)=(σi*,σ-i *)是一纳什混合 策略均衡,当且仅当对所有局中人而言, σi* 是σ-i*的最适反应,ui(σi*,σ-i *)≥ ui(σI',σ-i *), σ σ σ ≥ σ σ 对所有σi'∈∑i成立). 持混合策略的前提是在均衡时两种策略的报酬会 相等,是预期支付最大化的推导结果. 2.案例分析 掷硬币

《博弈论》精品讲义

《博弈论》精品讲义
指定n个局中人,以及他们各自的纯策略空间
Si,i1 ,2, ,n
和这些局中人各自的支付(盈利)函数
u i( S 1 ,S 2 , ,S n )i, 1 ,2 , ,n
我们将该博弈表示为:
G { S 1 ,S 2 , ,S n ;u 1 ,u 2 , ,u n }
博弈论20092009
正大光明 公正無私
7
➢长街上的超市 (海滩占位模型)
*********************
0
1/4 A’ 1/2 O’
3/4
1
✓资源浪费还是理性的必然?
✓其它相似情形:旅行社的热门路线;黄金时间 的电视节目;总统竞选。
博弈论20092009
正大光明 公正無私
8
➢狩猎与投资 狩猎:
两个猎人围住一头鹿,各卡住两个关口中的 一个,齐心协力即可成功获得并平分猎物。此时 有一群兔子跑过,任何一人去抓兔子必可成功, 但鹿会跑掉。
博弈论20092009
正大光明 公正無私
20
策略型表述: (两人有限博弈;Fra bibliotek阵形式)高需求情况
B
A
低需求情况?
博弈论20092009
正大光明 公正無私
21
➢房地产博弈分析
假设:同时决策;市场需求双方已知
若市场需求大,双方开发,各得0.4万元。 若市场需求小,依赖于对方行动。 若市场不确定,依赖对市场的判断及对方行动。
博弈论20092009
正大光明 公正無私
23
4.博弈练习
➢游戏一:心灵感应 两个人一组,独立写出1至10之间的任
意5个数。如果不重复则得奖;否则受罚。 获胜的秘诀是什么?
博弈论20092009

博弈论简介

博弈论简介

双方都没有占优策略 存在两个稳定的状态(纳什均衡):(-1,1);(1,-1) 纳什均衡):( ,1);(1,):(- ;(1,
双方都避免两败俱伤,斗鸡博弈有两个纳什均衡, 双方都避免两败俱伤,斗鸡博弈有两个纳什均衡,一方 前进,另一方后退。由于有两个均衡点,结果无法预知。 前进,另一方后退。由于有两个均衡点,结果无法预知。 20世纪 年代苏美间的古巴导弹危机就是一个斗鸡博弈的 世纪60年代苏美间的古巴导弹危机就是一个斗鸡博弈的 世纪 很好例子 。 古巴导弹危机是冷战时期苏美之间最严重的一次危机, 古巴导弹危机是冷战时期苏美之间最严重的一次危机, 赫鲁晓夫1962年偷偷将导弹运到古巴对付美国,被美国 年偷偷将导弹运到古巴对付美国, 赫鲁晓夫 年偷偷将导弹运到古巴对付美国 U2飞机侦察到,美国派出携带核武器的战机、航母,威 飞机侦察到, 飞机侦察到 美国派出携带核武器的战机、航母, 胁苏联限期从古巴撤出导弹。苏美这两只大公鸡均在考虑 胁苏联限期从古巴撤出导弹。 进还是退? 进还是退? 战争的结果当然是两败俱伤, 战争的结果当然是两败俱伤,但任何一方退下来则是很 不光彩的事。博弈结果是苏联从古巴撤回了导弹, 不光彩的事。博弈结果是苏联从古巴撤回了导弹,做了丢 面子的“撤退的鸡” 而美国坚持了自己的策略, 面子的“撤退的鸡”,而美国坚持了自己的策略,做了 不退的鸡” 当然为了给苏联面子,同时也担心战争, “不退的鸡”。当然为了给苏联面子,同时也担心战争, 美国也从土耳其撤了一些导弹。 美国也从土耳其撤了一些导弹。
☺中国人研究博弈论是有优势的☺
三国演义》 孙子兵法》 三十六计》 《三国演义》、《孙子兵法》、《三十六计》、 厚黑学》都是博弈论教材, 《厚黑学》都是博弈论教材,如何在人与人的博 弈中取得成功。 弈中取得成功。

博弈论

博弈论

• 4. 战略(strategy)
• 指参与人在给定信息集的情况下的行动规则, 它规定参与人在什么时候选择什么行动。 • (1)一般用si 表示第i个参与人的一个特定战 略,Si = {si}代表第i 个参与人的所有可选择 的战略集合。如果n个参与人每人选择一个战略, n维向量s=(s1,…,si,…,sn )称为一个战略组 合(strategy profile),其中si是第i个参与人 选择的战略。

囚徒困境引出重要结 论: 一种制度(体制)安 排,要发生效力,必须是 一种纳什均衡。否则,这 种制度安排便不能成立。 现实中囚徒困境问题: 军备竞赛、公共产品私 人提供、寡头竞争等。
领域
纳什均衡 (增产,增 产)
制度安排
寡头竞争 公共产品 私人 提供
• (2)战略与行动是两个不同的概念,战略是行动 的规则而不是行动本身。 • 例如:“人不犯我,我不犯人;人若犯我,我 必犯人”是一种战略,“犯”与“不犯”是两种 行动,战略规定了什么时候“犯”,什么时候 “不犯”。 • (3)作为一种行动规则,战略必须是完备的,它 要给出参与人在每一种可想象到的情况下的行动 选择,即使参与人并不预期这种情况会实际发生。
博 弈 论
西 北 大 学 经济管理学院
课程主体结构
一、博弈论概述 二、博弈论的基本概念 三、完全信息静态博弈 四、完全信息动态博弈
课程主体结构
五、不完全信息静态博弈
六、不完全信息动态博弈
一、博弈论概述
• 1.博弈论概念(game theory) • (1)博弈:又称为对策或游戏,是指一些人或组 织在“策略相互依存”情形下相互影响、互相作 用的状态。 • (2)博弈论:研究决策主体的行为发生直接相互 作用时的决策,以及这种决策的均衡问题,即当 一个主体的选择受到其他主体选择的影响,而且 反过来影响到其他主体选择时的决策问题和均衡 问题。

博弈论-1

博弈论-1

泽尔腾(1975)
海萨尼(1967-1968) Kreps和Wilson(1982) Fudenberg和Tirole
(1991)
决策理论与方法-博弈论
2020年1月15日12时34分
博弈论基本假设
1、理性假设(Rationality)
认知的理性——自我利益的最佳判断者 偏好的完备性(completeness) 偏好的传递性(transitivity)
1996年,英国剑桥大学的 詹姆斯·莫里斯(James A. Mirrlees)与美国 哥伦比亚大学的威廉·维克瑞(William Vickrey)。
2001年,美国加州大学伯克莱分校的乔治·阿克尔洛夫(George A. Akerlof )、美国斯坦福大学的迈克尔·斯宾塞(A. Michael Spence ) 和美国纽约哥伦比亚大学的约瑟夫·斯蒂格利茨(Joseph E. Stiglitz)。
ui(s1,,si,,sn)
决策理论与方法-博弈论
2020年1月15日12时34分
博弈论相关术语
6、结局(outcome):某种行动、策略或损益的组合 7、均衡(equilibrium):行为主体间相互作用的一种结局,
在该结局中,参与人无法通过改变策略增加收益(效用)。 又称“僵局”。此乃局外人所关心的。 8、博弈(game):参与人的集合+策略空间的集合+损益函数 的集合。
完全信息静态博弈的特点:
策略集已知 互不知道对方选择何种策略 各博弈方的损益完全可预见
完全信息静态博弈是非合作博弈的最基本类型。
决策理论与方法-博弈论
2020年1月15日12时34分
上策均衡
上策均衡(Dominant strategy equilibrium)

博弈论四种博弈类型

博弈论四种博弈类型

华为在阿根廷电信设备市场上的竞争博弈华为技术有限公司是一家总部位于中国广东省深圳市的生产销售电信设备的员工持股的民营科技公司,经过数十年的发展,成为全球最大的电信网络解决方案提供商,全球第二大电信基站设备供应商,同时也是全球第六大手机厂商,其海外市场的利润占到其总利润的75%。

在华为进入阿根廷电信设备市场之前,阿根廷的电信设备市场由爱立信、阿尔卡特-朗讯以及阿根廷本土设备供应商三家共同分享市场份额,接下来,我们将分析其不同条件下的博弈结果:1、完全信息情况下的静态博弈A 、纳什均衡:我们将上述三家公司统称为原有垄断者,华为称为虎视眈眈的潜在进入者,原有垄断者想要保住自己现有的垄断地位,就会想要阻止潜在进入者进入,在这个博弈中,原有垄断者有两种选择:一是进行斗争,打价格战;二是不斗争,默许其进入从而共同竞争,具体的支付矩阵结果表示如下:原有垄断者潜在进入者 进入 不进入根据纳什均衡的定义:各个参与者所做的是在给定其他参与者的策略是所能够做出的最好的一组策略。

当潜在进入者选择进入时,原有垄断者的最优选择是不斗争,获得70单位的利润;同样的,原有垄断者选择不斗争的情况下,潜在进入者的最优选择是进入,获得20单位的利润,从而获得一个要求纳什均衡的均衡(进入,不斗争),同理可以得出另一个纳什均衡(不进入,斗争)。

B 、占优策略:现假设华为公司已经获得了阿根廷电信集团的经营许可证,在严格管制情况下二者都不能以低于成本的价格进行价格战,同时禁止出现单一寡头垄断的情形,(各自均有正的利润)在这两种情况下考虑两者是否进行价格战的情况,具体支付矩阵如下所示:原有垄断者 低价 高价潜在进入者低价 高价对于潜在进入者而言,不论原有垄断者是否进行价格战,潜在进入者的占优策略都是进行价格战,因为在原有垄断者定低价时,潜在进入者定低价可以获得额外的20单位利润,在原有垄断者定高价时,潜在进入者定低价可以获得额外的10单位利润,从而确定华为必将进行价格战,在完全信息情况下,原有垄断者会将自己置于潜在进入者的位置进行决策,从而决定自己也要进行价格战,否则会失去更多的利润。

博弈论最全完整-讲解

博弈论最全完整-讲解

问题是,大家都这么做。这样一来,所有人 的成绩都不比大家遵守协议来得高。而且, 大家还付出了更多的功夫。
正因为这样的博弈对所有参与者存在着或大 或小的潜在成本,如何达成和维护互利的合 作就成为一个值得探究的重要问题。
存在双赢的博弈吗?实用文档
6
例2:焦点博弈 “We Can’t Take the Exam,
获奖理由:在非合作博弈的均衡分析理 论方面做出了开创性的贡献,对博弈论 和经济学产生了重大影响 。
实用文档
17
约翰·纳什 1928年生于美国
莱因哈 德·泽 尔腾, 1930 年生于 德国
实用文档
约翰· 海萨尼 1920年 生于美 国
18
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和美国人威廉-维克瑞 (William Vickrey)
获奖理由:前者在信息经济学理论领域做 出了重大贡献,尤其是不对称信息条件 下的经济激励理论的论述;后者在信息 经济学、激励理论、博弈论等方面都做 出了重大贡献。
实用文档
19
威廉·维克瑞, 1914-1996, 生于美国
詹姆斯·莫里斯 1936年生于英 国
实用文档
20
2001年诺贝尔经济学奖获得者
实用文档
35
第一章 完全信息静态博弈
博弈论的基本概念及战略式表述 纳什均衡
纳什均衡应用举例 混合战略纳什均衡 纳什均衡的存在性与多重性
实用文档
36
第一节 博弈论的基本概念
与战略式表述
Байду номын сангаас
实用文档
37
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行 为发生直接相互作用时候的决策以及这种 决策的均衡问题。

博弈论知识点总结完整版

博弈论知识点总结完整版

博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。

1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。

1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。

两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。

倘若不能,则称非合作博弈(Non-cooperative game)。

合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。

目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。

博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。

把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②从局中人行动的先后顺序可划分为静 态博弈(Static game)和动态博弈 (dynamic game)。静态博弈是指在博弈中, 局中人同时选择行动或虽非同时行动但后行 动者并不知道先行动者采取了什么具体行动。 动态博弈是指局中人的行动有先后顺序,且 后行动者能够观察到先行动者所选择的行动。
③从局中人是否具有有关其他参与人 (对手)的特征、策略空间及支付函数方面 的知识的角度,可划分为完全信息博弈
合作博弈和非合作博弈的区别在于人们的行动为相互 作用时,当事人能否达成一个具有约束力(binding agreement)的协议。若有,就是合作博弈;否则就是非合 作博弈。例如,两个寡头企业,如果他们之间达成一个协议, 联合最大化垄断利润,且各自按该协议生产,即是合作博弈。 其面临的问题是如何分享合作带来的剩余。但若两个企业间 的协议不具有约束力,即没有哪一方能强制另一方遵守该协 议,每个企业都只选择自己的最优产量(或价格),则是非 合作博弈。另外,合作博弈强调的是团体理性、效率、公正 和公平。非合作博弈强调的是个人理性、个人最优决策,其 结果可能是有效率的,也可能是无效率的。
一、占优策略均衡
通常情况下,每个局中人的支付是博弈中所有参与 人策略的函数,故每个局中人的最优策略选择依赖于所 有其他参与人的策略选择。但在一些特殊博弈中,一个 参与人的最优策略选择可能并不依赖于其他参与人的策 略选择,即无论其他参与人选择什么策略,他的最优策 略是唯一的,这种最优策略被称为“占优策略” (dominant strategy)。 例:“囚徒困境” 囚徒困境是博弈论中的经典案例。该故事讲的是,两 个嫌疑犯作案后被警察抓住,分别被关在不同的房间里 进行审讯。警察知道两人有罪,但缺乏有力的证据,除 非两人之中有一个坦白。警察告诉每个人,他们的可选 择的策略与支付如下表:
第二节 完全信息静态博弈
“完全信息”指的是每个局中人对所有其他参与人的特 征(策略空间、支付函数等)有完全的了解,“静态”指的 是所有局中人同时选择行动且只选择一次。纳什均衡是完全 信息静态博弈解的一般概念,也是所有其他类型博弈解的基 本要求。本节先讨论纳什均衡的特殊情况,然后讨论纳什均 衡的一般概念。 在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
博弈论的基本概念包括:局中人、策略、支付。
①局中人(Player):局中人是指在博弈中选择行动以最 大化自身效用的决策主体。可能是个ห้องสมุดไป่ตู้或团体(如国家、企 业等)。
②策略或策略空间(Strategy):策略是局中人选 择行动的规则,它规定局中人如何对其他人的行动作 出反应,即在每种可能的情况下应该如何行动。它与 行动不同,行动是局中人的决策变量。如“人不犯我, 我不犯人;人若犯我,我必犯人”是一种策略,而 “犯”与“不犯”是两种不同的行动,策略规定了什 么时候选择“犯”什么时候选择“不犯”。局中人可 选择的策略的全体构成了策略空间(或策略集)。 ③支付(Payoff)(支付函数与支付矩阵):博弈 论中,可用数值表示各局中人从博弈中所获得的收益 或效用水平,该数值称为支付。支付依赖于各个局中 人所作出的策略,这种收益与策略的依赖关系构成了 支付函数。参与博弈的多个局中人的收益可用一个矩 阵或框图表示,这种矩阵或框图叫做收益矩阵。
John F. Nash Jr
博弈论提供了一种研究人类理性行 为的通用方法,运用这些方法可以更为清 晰完整地分析各种社会力量冲突和合作的 形势,具体分析人与人之间在利益相互制 约下理性主体的策略选择行为及相应结局。 博弈论强调在既定约束条件下追求效用最 大化(服从微观经济学的一般分析方法)。 同时,信息和时序问题成为博弈论的两个
除此之外,博弈论中的基本概念还包括: 行动、信息、结果和均衡。它们关系是:行 动是局中人的决策变量;信息是局中人在进 行博弈时有关其他局中人的特征和行动的知 识;结果是博弈分析者感兴趣的要素的集合; 均衡是所有局中人的最优策略或行动的集合。
一、博弈论的基本概念
①根据博弈者选择的策略,博弈论可划 分为合作博弈与非合作博弈。纳什 (Nash)、泽尔腾(Selten)和海萨尼 (Harsanyi)(1994诺贝尔经济学奖获得 者)的主要贡献在于非合作博弈方面,而 且现在大多数经济学家论及博弈时,也主 要是指非合作博弈。
B
坦白
抵赖
A
坦白 抵赖
-8,-8 -10,0
0,-10 -1,-1
在该博弈中,每个囚徒有两种可能选择的策略:
坦白和抵赖。显然,无论同伙选择什么策略, 每个囚徒的最优策略都是“坦白”。如,B选 择坦白,若A选择坦白时支付为-8,选择抵赖 时支付为-10,因而坦白比抵赖好;若B选择抵 赖,A坦白时的支付为0,抵赖时为-1,因而坦
一、博弈论的基本概念
博弈论研究人与人之间相互“斗智”的形式和结果。 当经济主体间的利益存在冲突时,一方所获得的利益不仅取 决于自己所采取的行动,而且也取决于其他主体采取的行动 或对自己行动的反应。博弈论就是描述在这种形势下各方理 性地选择自己的行动所实现的结果,分析各决策主体的行为 发生相互作用时的决策以及这种决策的均衡问题。
第十章
§1.博弈论概述
博弈论
§2.完全信息静态博弈
§3.完全信息动态博弈
§4.不完全信息静态博弈 §5.不完全信息动态博弈
第一节
博弈论(the
博弈论概述
Game Theory)也就是运筹学 中的对策论,“是关于策略相互作用的理 论”,研究两个或两个以上参加者在对 抗性或竞争性局势下如何采取行动,如 何作出有利于己方的决策及其均衡问题。 对策思想最早产生于我国古代。 对策思想明确地应用于经济领域,始于 Cournot (1838), Bertrand (1883), Edgeworth (1925)等人关于寡头竞争、 产量与价格垄断、产品交易行为的研究。
相关文档
最新文档