微带贴片天线设计实验
微波技术与天线实验三
微波技术与天线实验报告图1.新建HFSS工程图2. 设置求解类型2.创建微带天线模型2.1设置默认的长度单位为mm图3. 设置默认的长度单位为mm 2.2建模相关选项设置图4. 建模相关选项设置2.3 创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm, -45mm),大小为90mm×90mm 的矩形面作为参考地,命名为GND,并为其分配为理想导体边界条件。
2.4 创建介质板模型创建一个长、宽、高为80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上,其顶点坐标为(-40,-40, 0),介质板的材料为R04003,介质板层命名为Substrate2.5 创建微带贴片在Z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为30.0mm×41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。
2.6 创建同轴馈线的内芯创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材质为理想导体,同轴馈线命名为Feed。
2.7 创建信号传输端口面同轴馈线需要穿过参考地面,传输信号能量,因此需要在参考地面GND上开一个圆孔允许能量传输。
圆孔的半径为 1.5mm,圆心坐标为(9.5mm,0,0),并将其命名为port.2.8 创辐射边界表面创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长宽高为160mm ×160mm×75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air,创建好这样一个长方体之后,设置其四周表面为辐射边界条件。
、图5 微带贴片天线模型3.设置激励端口设置同轴信号端口面的激励方式为集总端口激励。
4.添加和使用变量添加设计变量Length,初始值为30.0mm,用以表示微带贴片天线的长度,添加设计变量Width,初始值为41.4mm, 用以表示微带贴片天线的宽度,添加设计变量Xf, 用以表示同轴馈线的圆心点的X轴坐标。
实验七-微带贴片天线的设计与仿真
实验七微带贴片天线的设计与仿真一、实验目的1.设计一个微带贴片天线2..查看并分析该微带贴片天线的二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理传输线模分析法求微带贴片天线的辐射原理如下图所示:设辐射元的长为L,宽为ω,介质基片的厚度为h。
现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。
在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。
缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。
这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。
四、实验内容利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。
中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。
最后得到反射系数和三维方向图的仿真结果。
五、实验步骤1.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。
2.将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>Solution Type。
(2)在弹出的Solution Type窗口中(a)选择Driven Modal。
(b)点击OK按钮。
3.设置模型单位(1)在菜单栏中点击3D Modeler>Units。
(2)在设置单位窗口中选择:mm。
基于HFSS矩形微带贴片天线的仿真设计报告
.. .. ..矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
cst微带贴片天线仿真实验报告
cst微带贴片天线仿真实验报告CST微带贴片天线仿真实验报告1. 引言1.1 背景介绍1.2 目的和意义2. 实验原理2.1 微带贴片天线的结构和工作原理2.2 CST仿真软件简介3. 实验步骤3.1 设计微带贴片天线的几何结构3.2 导入设计参数到CST软件中3.3 进行电磁场仿真分析3.4 对仿真结果进行分析和优化4. 实验结果与讨论4.1 微带贴片天线的辐射特性分析结果- 辐射图案分析- 增益和方向性分析- 驻波比和带宽分析4.2 影响微带贴片天线性能的因素讨论- 基底材料特性对性能的影响- 贴片尺寸对性能的影响5. 实验结论与展望5.1 实验结论总结5.2 对实验结果的评价与展望6. 参考文献7. 致谢1 引言:1.1 背景介绍在现代通信系统中,微带贴片天线因其小巧、轻便、易制造等优点被广泛应用于无线通信设备中。
通过对微带贴片天线的仿真实验,可以分析其辐射特性,优化设计参数,提高天线的性能。
1.2 目的和意义本次实验旨在使用CST仿真软件对微带贴片天线进行电磁场分析,探究不同设计参数对天线性能的影响,并通过优化设计参数提高天线的工作效果。
这对于实际应用中的无线通信系统设计具有重要意义。
2 实验原理:2.1 微带贴片天线的结构和工作原理微带贴片天线由导体贴片和基底材料组成。
导体贴片被固定在基底上,并与馈电源相连。
当电流通过导体贴片时,产生电磁场并辐射出去,实现无线信号传输。
2.2 CST仿真软件简介CST是一款常用于电磁场仿真分析的软件工具。
它基于有限元方法和时域积分方程等数值计算方法,可以模拟各种复杂结构下的电磁场分布,并提供丰富的分析工具和可视化功能。
3 实验步骤:3.1 设计微带贴片天线的几何结构根据实验要求和设计目标,确定微带贴片天线的几何结构,包括导体贴片的形状、尺寸和基底材料等参数。
3.2 导入设计参数到CST软件中在CST软件中创建一个新项目,导入微带贴片天线的设计参数。
包括导体贴片的形状、尺寸、基底材料的特性等。
基于HFSS矩形微带贴片天线的仿真设计报告
. . . .. .矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
HFSS 矩形微带贴片天线的仿真设计报告
HFSS 矩形微带贴片天线的仿真设计报告hfss矩形微带贴片天线的仿真设计报告基于HFSS的矩形微带贴片天线模拟设计实验目的:利用HFSS的模拟能力模拟矩形微带天线内容:矩形微带天线模拟:工作频率7.55ghz天线结构尺寸见表:名称起始点尺寸类型材料SUB00028.1,32,-0.79boxrogers5880(TM)gnd0,0,-0.7928.1,32,-0.05boxpatch 7.0 03,8012.45,16,0.05boxpecmsline10。
13,0,-0.7910。
13,0,-0.79air-5,-5,-5.792.49,8,0.05boxpec2。
49,0,0.89矩形38。
1,42,10.79。
创建、重命名、保存和更改环境设置。
(1) . 在菜单栏文件>>另存为中,输入天线并单击保存。
(2). 设置激励终端的解决方法:菜单栏HFSS>解决方案类型>驱动终端,点击确定。
(3)设置模型单位:3dmodeler>units,选择mm,然后单击OK。
(4) . 在菜单栏上,工具>>选项>>建模器选项,选中“编辑新PRI的属性”,然后单击确定。
二、建立微带天线模型(1)点击创建gnd,起始点:x:0,y:0,z:-0.79,dx:28.1,dy:32,dz:-0.05将名称修改为GND,将材质属性修改为PEC,(2)介质基片:点击,:x:0,y:0,z:0。
dx:28.1,dy:32,dz:-0.794,修改后的名称为sub,修改后的材质属性为rogersrt/duriod5880,修改后的颜色为绿色和透明度0.4。
点击OK(3)建立天线模型patch,点击,X:7.03,Y:8,Z:0,DX:12.45,Dy:16,DZ:0.05命名为patch,点击ok。
(4)微带线天线模型的建立点击,x:10.13,y:0,z:0,dx:2.46,dy:8,dz:0.05命名为msline,材料pec,透明度0.4选择patch和msline,然后单击modeler>Boolean>unite(5)、建立端口。
(整理)微带天线设计
08通信陆静晔0828401034微带天线设计一、实验目的:●利用电磁软件Ansoft HFSS设计一款微带天线⏹微带天线的要求:工作频率为2.5GHz,带宽(S11<-10dB)大于5%。
●在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、实验原理:微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L、辐射源的宽度W、介质层的厚度h、介质的相图1-1对介电常数εr和损耗正切tanδ、介质层的长度LG和宽度WG。
图1-1所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。
矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有λg/2的改变,而在宽度W方向上保持不变,如图1-2(a)所示,在长度L方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘由于终端开路,所以电压值最大电流值最小。
从图1-2(b)可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
假设矩形贴片的有效长度设为L e ,则有L e =λg ∕2 (1-1)式中,λg 表示导波波长,有λg =λ0∕√εe (1-2)式中,λ0表示自由空间波长;εe 表示有效介电常数,且εe =εr +12+εr −12(1+12h W)−12 (1-3) 式中,εr 表示介质的相对介电常数;h 表示介质层厚度;W 表示微带贴片的厚度。
微带天线设计实验报告hsff
微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。
由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。
本实验旨在设计一种基于微带天线的无线通信系统。
2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。
在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。
微带天线主要由导体衬底、金属贴片和喇叭线组成。
导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。
金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。
喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。
3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。
确定导体衬底的尺寸,以便适应工作频率。
步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。
一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。
步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。
喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。
步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。
常用的制作方法包括化学腐蚀、电镀等。
步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。
4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。
经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。
为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。
基于HFSS矩形微带贴片天线的仿真设计报告
基于HFSS矩形微带贴片天线的仿真设计报告矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.0528.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16,0.05Box pecMSLine -3.1125,-8,0.794 2.49 , -8 ,0.05Box pecPort -3.1125,-16,-0.052.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创立GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4) 介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
24GHz微带贴片天线设计-毕业论文
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要根据矩形贴片天线相关知识,设计出一款1×4的24GHz阵列贴片天线,此天线可以应用于交通测速以及汽车智能驾驶等方面。
首先是使用微带线馈电的方法建立单元贴片天线模型,进行优化仿真后得到最佳的单元贴片天线模型,然后在单元贴片天线的基础上,设计出合适的馈电馈电网络。
再通过仿真优化得到最佳的参数,从而设计出24GHz的阵列贴片天线。
并对天线设计进一步展望。
通过HFSS软件仿真设计,得到了一款1×4的阵列天线,回波损耗S11<-20dB,馈电点的输入阻抗值为50Ω,驻波比约为1.2,最大增益方向的增益为13.6dB,和之前所定的设计指标比较符合。
关键词:微带贴片天线;阵列天线;阻抗匹配; 方向图AbstractAccording to the knowledge of the rectangular patch antenna, a 1×4 24 GHz array patch antenna was designed. This antenna can be used in traffic speed measurement and intelligent driving of automobiles. The first is to use the method of microstrip line feeding to establish the unit patch antenna model, optimize the simulation to obtain the best unit patch antenna model, and then design a suitable feed power feed network based on the unit patch antenna. . Then the optimal parameters are obtained through simulation optimization to design a 24 GHz array patch antenna.Through the HFSS software simulation design, a 1×4 array antenna was obtained with a return loss S11<-20dB, a feed point input impedance of 50Ω, a standing wave ratio of approximately 1.2, and a maximum gain gain of 13.6dB. To meet the requirements of design indicators.Keywords: microstrip patch antenna; array antenna; Impedance matching;Direction pattern第1章绪论1.1论文的研究背景及意义毫米波(millimeter wave )是波长为1~10毫米的电磁波,它的波长处于微波与远红外波相交叠的波长范围,所以同时具有两种波谱的特点。
一种2.4GHz圆极化微带贴片天线的设计与实现
0 引言20世纪70年代中期,微带天线理论得到重大发展。
微带天线由于体积小、重量轻、馈电方式灵活、成本低、易于目标共形等优点而深受人们亲睐,在移动通信、卫星通信、全球卫星定位系统(GPS)、无线局域网通信等领域得到了大力推广和广泛应用。
然而随着卫星通讯、运载火箭测控通讯技术的不断发展,雷达应用范围的扩大以及对高速目标在各种极化方式和气候条件下的跟踪测量需要,单一极化方式很满足要求,圆极化天线的应用研究就显得十分重要[1-2]。
圆极化天线具有旋向正交性,即圆极化波入射到对称目标(平面、球面等)具有旋向逆转的特性,这一特性在通信、电子对抗中得到广泛应用,尤其是在移动通信和GPS 领域中用来抗雨雾干扰和多径反射;圆极化天线能够接收任意极化的来波,其辐射波也可被任意极化的天线接收,这一特性在电子对抗中用来干扰侦察敌方的各种线极化、椭圆极化的无线电波,在微波探测领域用来减少信号漏失并提高探测灵敏度[3]。
基于微带圆极化天线的优点,为一谐波探测雷达设计了中心频率为2.4GHz 的圆极化微带贴片发射天线,使得谐波探测雷达在探测时不需考虑扫描角度的影响,提高了探测的速度和灵敏度,文中将给出天线的详细设计方案和实测性能。
1 微带贴片天线工作原理1.1 辐射机理微带天线是在带有导体接地板的介质基片上贴加金属薄片而形成的天线[4]。
通常介质基片的厚度与波长相比是很小的,属于电小天线。
微带天线结构比较简单,实际上就是一块印刷电路板,全部功率分配器、匹配网络、辐射器都可以刻在介质基片的一侧,另一侧为金属地板。
导体贴片一般是规则形状的面积单元,如矩形、圆形、三角形、椭圆形或其它形状,其中矩形贴片较为常用。
其馈电方式也是多种多样,除微带线馈电和同轴线馈电两种基本方式外,还有临近耦合馈电、口径耦合馈电、共面波导馈电等技术。
常用的微带天线是由微带传输线馈电的矩形贴片天线[5]。
在贴片和接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射,因此微带天线也可看作是一种缝隙天线。
实验五 微带天线设计
四.ADS 仿真步骤: 1.新建一个工程,并命名 Patch,长度单位为 mm (1)打开新的 Degisn,命名为 patch_antenna
或者在工程开始界面中选 New Layout 快捷按钮
选择当前的 Layout 层位 cond 层
(2)创建贴片模型
单击工具栏中的矩形工具
(4)添加端口 执行菜单命令【Insert】 【Port 】 执行菜单命令【Momentum】 【Port Edit】,选择端口 1,设置端口参数
(5)S 参数仿真 执行菜单命令【Momentum】 【Simulation】 【S-Parameters】,参数设置 完成后,单击“Update”按钮,然后单击“Simulate”按钮,开始仿真
1 2
r
1 r
11
10
h
1 /
2
w
缝隙两端间有一辐射电导 Gs:
1
90
W 0
2
2
Gs
1 120
W 0
1 60
2
1 120
W 0
2
(w 0.350 ) (0.350 w 20 ) (w 20 )
开路端缝隙的等效导纳还有一电容部分。可用延伸长度Δl 来表示:哈默斯塔德
给出Δl 的经验公式如下:
r
归一化方向性因子 F ( ,) f ( ,) fmax
(2)E 面和 H 面方向图 工程上常采用通过最大辐射方向的两个正交平面上的剖面图来描述天线的方
向图。这两个相互正交的平面称之为主面,对于线极化天线来说通常取为 E 面 和 H 面。
E 面:指通过天线最大辐射方向并平行于电场矢量的平面。 H 面:指通过天线最大辐射方向并平行于磁场矢量的平面。 (3)主瓣宽度 方向图主瓣上两个半功率点之间的夹角,记为 2θ0.5。又称为半功率波束宽 度或 3dB 波束宽度。一般情况下,天线的 E 面和 H 面方向图的主瓣宽度不等, 可分别记为 2θ0.5E 和 2θ0.5H。可以描述天线波束在空间的覆盖范围,主瓣瓣 宽越窄,则方向性越好,抗干扰能力越强。
微带贴片天线阵列的研究与设计
微带贴片天线阵列的研究与设计随着无线通信技术的快速发展,天线作为无线通信系统的重要组件,其性能和设计受到了广泛。
微带贴片天线作为一种常见的平面天线,具有体积小、重量轻、易于集成等优点,被广泛应用于现代通信系统中。
本文将重点探讨微带贴片天线阵列的研究与设计。
微带贴片天线的基本原理是利用微带线来传输信号,并在贴片表面形成电磁场,从而实现电磁波的辐射和接收。
微带贴片天线的应用范围广泛,如移动通信、卫星通信、雷达等领域。
为了满足现代通信系统的需求,微带贴片天线阵列的研究与设计成为了关键。
微带贴片天线阵列的研究与设计方法包括理论分析、实验测试和数据分析。
理论分析是研究微带贴片天线阵列的基础,通过建立模型来分析天线的辐射特性和性能参数。
常用的分析方法包括电磁场理论和有限元法等。
实验测试是研究微带贴片天线阵列的重要环节,通过测试数据来验证理论分析的正确性。
实验测试包括天线性能参数的测量和辐射特性的测试等。
数据分析是对实验测试结果进行处理和解释的过程,通过对比不同数据来优化天线阵列的设计。
实验结果表明,微带贴片天线阵列具有优良的性能特点和优势。
微带贴片天线阵列的辐射性能较强,能够实现方向性和增益的控制。
微带贴片天线阵列的带宽较宽,有利于实现多频段通信。
微带贴片天线阵列易于集成和制造,具有较低的成本和较高的可靠性。
这些优点使得微带贴片天线阵列在未来通信领域中具有广泛的应用前景。
本文通过对微带贴片天线阵列的研究与设计,总结了其性能特点和优势,并指出了微带贴片天线阵列在技术创新和应用推广方面的意义。
微带贴片天线阵列作为一种重要的平面天线,具有广泛的应用前景。
在未来的研究中,可以进一步探索微带贴片天线阵列的高效设计和优化方法,提高其性能和可靠性,以满足不断发展的无线通信需求。
随着无线通信技术的快速发展,天线作为通信系统中关键的组成部分,其性能和设计受到了广泛。
特别是高性能宽带双极化微带贴片天线,其在无线通信领域具有广泛的应用前景。
HFSS-矩形微带贴片天线的仿真设计报告
基于HFSS矩形微带贴片天线的仿真设计-、新建文件、重命名、保存、环境设置。
(1) 、菜单栏File»save as,输入Antenna,点击保存。
(2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units 选择mm,点击OK。
(4)、菜单栏Tools»Options>>Modeler Options,勾选"Edit properties of new pri ”,点击OK。
建立微带天线模型Sf W41Vhi t |Ev«l i Qftttdl ¥D«1CTkptLi9in"ordintl 吉GlebaFoil ti DBL o B o■■O M魯Oto * …ISlEt2S 1M 2& iwttiit32—321--Q 05■-Q CO**修改名称为GND,修改材料属性为pec ,LJCwhna | I修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色透明度0.4。
⑴点击创建GND起始点:x:0 , y:0 , z:-0.79 dx:28.1,dy:32,dz:-0.05ITIN1fT11 11Or a rht * 般z心lh ■>!看fi...UnTruiiptrtiit.0 21Ut4"«hljr厂厂厂厂厂厂厂厂(2)介质基片:点击,:x:0,y:0,z:0。
dx: 28.1,dy: 32,dz: - 0.794,点击OK(3) 建立天线模型patch , 匚gag]C^crdiMlt .7 03 #812 «5-»TSi m命名为patch ,点击OK£弹・・^扌 ikt-lir iIMSLine,dx:2.46 , dy: 8 , dz: 0.05 ,点击: ,x:7.03,y: 8, z:0,dx: 12.45 , dy: 16 , dz: 0.05(4)建立天线模型微带线点击:,x:10.13,y: 0, ,z: 0V AI IP«ICTiptLMCcMtniCrtktitBtiGUbtlPtiili m10 13 H 0』p> 10 1A d 0t 炸■A tIStnB MA MZSi r«4 «0 ffiM命名为MSLine,材料pec,透明度0.4班“啊叶¥Dwfcripti Mt R4*4-«JyKi lEUn.r V^lerial■p -W**p«*厂 lEkiidltF厂Ori GlobdLr B«4*lr厂r Ccl^T* Edit rTrimjspw*»t0 *r选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite(5)、建立端口。
cst微带贴片天线仿真实验报告
cst微带贴片天线仿真实验报告介绍本实验旨在通过CST(Computer Simulation Technology)软件进行微带贴片天线的仿真实验。
微带贴片天线作为一种常见的天线类型,在无线通信和雷达系统中得到广泛应用。
本实验将对微带贴片天线进行设计、仿真和性能分析,为实际应用提供指导。
设计与建模1. 设计要求微带贴片天线作为一种通用天线,其设计要求取决于具体的应用场景。
本实验中,我们将设计一个工作频率为2.4GHz的微带贴片天线,用于无线局域网(WLAN)应用。
设计要求如下:•频率范围:2.4GHz±100MHz•阻抗匹配:输入阻抗为50Ω•带宽:达到-10dB带宽为100MHz以上•工作模式:偏振方向为垂直(竖直)2. 设计步骤步骤一:确定尺寸根据设计要求,我们选择基板材料为FR4,其相对介电常数为4.4。
根据微带贴片天线的理论公式,我们可以计算出电磁波在介质中的传播速度,从而确定天线尺寸。
步骤二:确定基本参数根据设计要求,我们选择天线的工作频率为2.4GHz,那么根据传播速度和波长的关系,我们可以确定天线的波长,进而计算出天线的长度。
步骤三:确定天线结构在确定了天线的尺寸和基本参数后,我们需要选择一种合适的天线结构。
常见的微带贴片天线结构包括直缝贴片天线、T型贴片天线和L型贴片天线等。
根据实验要求,我们选择了直缝贴片天线。
步骤四:优化设计通过CST软件进行仿真实验,我们可以对天线进行优化设计。
在仿真实验中,我们可以调整天线的尺寸、形状和位置等因素,以达到更好的性能指标。
通过多次仿真和优化设计,我们可以找到最佳的天线参数。
3. 建模与仿真步骤一:建模在CST软件中,我们可以通过绘制几何结构来建模天线。
根据前面的设计步骤,我们可以绘制出直缝贴片天线的几何形状。
在建模过程中,需要注意几何结构的精度和尺寸的一致性,以确保仿真结果的准确性。
步骤二:设定边界条件和材料属性在进行仿真之前,我们需要设定边界条件和材料属性。
实验三 微带天线的仿真设计与优化
实验三微带天线的仿真设计与优化一、设计目标设计一个谐振频率为2.45GHz的微带天线,讨论微带贴片的尺寸对谐振频率的影响,并分析馈电点位置对输入阻抗的影响,最后给出优化设计的天线尺寸和优化后的天线性能(给出S11、Smith圆图、E面增益方向图和三维增益方向图的仿真结果)。
二、设计步骤1、添加和定义设计变量:将天线的相应变量定义好,如图:2、设计建模(1)创建微带天线的模型:创建介质基片:创建一长方体模型用以表示介质基片,模型的底面位于xoy平面,中心位于坐标原点,设置模型的材质为“FR4_epoxy”、透明度为0.6、颜色为深绿色,并将其命名为“Substrate”;模型的长度、宽度和厚度分别为2*W0、2*L0和H(模型的顶点坐标设置为(-L0,-WO,0),在XSize、YSize和ZSize分别输入2*L0、2*W0和H)。
在z=plength的平面上创建一个中心位于z轴,长度和宽度用a1和b1表示的矩形面,并将其命名为Aperture,颜色设为深蓝色,顶点位置坐标为(-a1/2,-b1/2,plength)。
创建辐射贴片:在介质基片的上表面创建一个中心位于坐标原点,长度和宽度分别为W0和L0的矩形平面(顶点坐标设置为(-L0/2,-WO/2,H),在XSize和YSize分别输入L0和W0),设置模型的透明度为0.4、颜色为铜黄色,并将其命名为“Patch”。
创建参考地:在介质基片的底面创建一个中心位于坐标原点,大小与介质基片的底面相同的矩形面(顶点坐标设置为(-L0,-WO,0),在XSize和YSize分别输入2*L0、2*W0),设置模型的透明度为0.4、颜色为铜黄色,并将其命名为“GND”。
创建同轴馈线的内芯:创建一个圆柱体作为同轴馈线的内芯,圆柱体底部圆心位于X轴并且与坐标原点的距离为L1,半径为0.6mm,高度为H(圆心坐标(L1,0mm,0mm),Radius为0.6mm,Height为H),设置模型的材质为理想导体(“pec”)、颜色为铜黄色,并将其命名为“Feed”。
实验六:微带天线设计与仿真
在下列窗口中可以看到各种天线仿真结果(如面电流分布)。
点击远场菜单“far field”,可有如下三维电场分布图,可见辐射场只在天线的上侧。
天线电流分布动画
11、枝节匹配法 进入电路图设计窗口,将文件命名为pipei,选择元件列表中的 将 拖入窗口中,它代表天线的相关参数。利用前面学过的匹配原理可得到一 个匹配网络。
⑴分别设置源 和负载阻抗
⑵加入一段 传输线,调 整特性阻抗 和电长度使 源与负载间 建立一个匹 配线。
通过前面的匹配得到了该段传输线的特性阻抗为122Ω,电长度为830,通过 linecalc计算模块得到两端传输线的导带宽带和长度如下图。该段传输线之后可 以在连接任意长度和特性阻抗为50的传输线代表输入天线的馈Monentum】→【Substrate】→ 【Create/Modify】,在弹出的菜单中设置基板基本参数,将”FreeSpace“重新 命名为”Air”,将介质命名为FR4,并设置介质厚度为1.6mm,介电常数为4.4, 以及损耗角正切为0.02,接地板不需设置,默认为”//////GND/////。如图
同理计算50Ω馈线的导带宽度和长度(可任意)。
得到的馈线参数结 果
由得到的计算结果对前面的匹配电路图的两端传输线进行宽带和长度进行 设置,然后进行仿真,观察匹配后的仿真结果。
可见匹配后的仿真图符合输入端反射损耗大于10dB要求,下面我们将得到 的两端传输线创建到电路板图中去,实现微带天线的匹配,最后测试版图仿真结 果。
辐射贴片
L
L
εr
h W
h
W △L L 辐射缝隙 一般W的长度要小于L的长度,否则会产生高次模而导致场畸变。
微带天线的馈电方式: 1、微带线馈电 2、同轴线馈电 W
微带贴片天线
微带天线设计
一、 实验内容
了解微带天线工作原理和微带天线工程设计方法,设计微带贴片天线,理解微带贴片天线工作机理,熟悉HFSS 软件使用。
二、 实验原理
微带贴片天线是由介质基片、在基片一面上有任意平面形状的导电贴片和基片另一面上的地板所构成。
电场仅沿约为半波长的贴片长度L 方向变化,辐射基本由贴片开路边沿场引起。
两端场相对地板可分解为法向分量和切向分量,因贴片长近似半波长,所以法向分量反向,在远区场抵消,切向分量同相叠加,所以垂直结构表面方向上辐射场最强。
三、 实验过程
利用HFSS 软件创建微带天线模型,创建介质Sub ,创建馈源Probe ,同轴线馈电建模,创建辐射边界,创建地板Plane ,设置材料,创建波端口,辐射场角度设置,求解设置。
查看S11dB 曲线,查看方向性图。
四、仿真结果和分析
分析:S11不是很好,因为我们的馈源阻抗是50Ω,而馈电点输入阻抗为ZL=39.260-j67.747Ω,要是源和负载匹配还需加匹配网络。
中心频率 1.44GHz ,S11=-4.5dB=10lg P−
P+,得P−
P+=35.5%,反射会较多功率。
要辐射方向为Z方向,垂直于贴片。
五、实验总结
通过本次实验,进一步掌握了ADS和HFSS软件,学会用HFSS设
计微带贴片天线,了解了微带天线的工作原理和工程设计方法。
实验10-微带贴片天线设计
实验十:综合设计-微带贴片天线设计
(自我认为这个做的非常好)
一、设计要求
设计一个矩形微带贴片天线,要求与50Ω馈线匹配连接,匹配结构采用短路单枝节形式。
基板参数:FR4基板,介电系数4.5,基板厚度3 mm,双面覆铜,金属厚度0.018 mm.过孔壁金属厚度0.05 mm.
设计指标:中心频率800 MHz,带宽10 MHz,反射系数小于-10 dB,驻波比小于2,增益大于6 dB。
二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、贴片天线设计
2、匹配电路设计
3、总体电路设合计
四、数据记录及分析
1、贴片天线设计
(1)尺寸计算:
参数εre
辐射单元馈线
宽度/mm 长度/mm 宽度/mm 长度/mm
计算值 3.4 113 102 5.6 50.7 优化结果—138.1615906405 86.5 ——(2)贴片天线模型:
(3)参数化设置:
(4)Patch参数化模型:(5)分析及优化:
(6)注释分析:
2、匹配电路设计
天线阻抗/Ω参数 d l Z0圆图计算结果0.1930987λ0.109773λ50
电长度/deg 69.515532 39.51828 W/mm
实际值/mm 0.072412 0.041165 5.61906
调节结果/mm —
3、总体电路设合计
(1)建立电路原理图:
(2)版图验证:
(3)分析与调节:调节前:
调节后:
(4)AXIEM电磁提取分析:AXIEM提取后比没有提取的效果差!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术与天线实验报告
姓名张思洋学号411109060103 实验日期2014.04.11 实验名称微带贴片天线设计实验实验类型设计性
实验目的1、熟悉并掌握HFSS设计微带天线的操作步骤及工作流程。
2、掌握ISM频段微带贴片天线的设计方法。
实验内容
使用HFSS进行微带贴片天线的设计实现,创建设计模型,进行求解设置,设置求解频率为 2.45GHz,同时添加 1.5-3.5GHz的扫频设置,分析天线在1.5-3.5GHz频段内的电压驻波比,并运行仿真计算。
将谐振频率落在2.45GHz频点上。
最后进行相关的数据后处理。
实验原理
微带天线是当今无线通信领域中广泛应用的一种天线,具有质量轻、体积小、易于制造等特点,本实验的ISM频段微带贴片天线是工作在2.45GHz,采用同轴线馈电的一种简单的微带天线。
微带天线的基本参数:工作频率 2.45GHz,介质板相对介电常数3.38,介质层厚度5mm,矩形贴片宽度41.4mm,辐射缝隙长度2.34mm,矩形贴片长度31mm,参考地长宽为61.8mm*71.4mm,同轴线馈点坐标(9.5,0)。
要求设计的天线最大增益大于7dB。
前后比大于5dB。
实验步骤及结果一、新建HFSS工程
1.新建一个名为MSAntenna.hfss的工程文件。
2.将求解类型设置为Driven Model
二、创建微带天线模型
1.将模型的默认长度设置为毫米mm
2.创建参考地
在Z=0的XOY面上创建一个顶点位于(-45mm,-45mm),大小为90mm*90mm的矩形面作为参考面,并把它命名为GND,并为其分配理想导体边界条件。
然后将此边界命名为PerfE_GND
3.创建介质板层
创建一个80mm*80mm*5mm的长方体作为介质板层,介质板层位于参考地面上,
顶点坐标为(-40,-40,0),介质的材料为R04003。
4.创建微带贴片
在z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为31.0mm*41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。
并将此边界条件命名为Perf_Patch。
5.创建同轴馈线的内芯
创建一个圆柱体作为同轴馈线额内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材料为理想导体,同轴馈线命名为Feed。
6.创建信号传输端口面
在参考面GND上开一个圆孔以便能量可以从同轴线传输。
圆孔的半径为1.5mm,圆心坐标为(9.5mm,0,0),名字为Port。
7.创建辐射边界表面
创建一个长方体,顶点坐标为(-80,-80,-35),大小为160mm*160mm*75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air。
并设置其四周表面为辐射边界条件。
三、设置激励端口
将同轴线信号端口面的激励方式设置为集总端口激励。
四、添加和使用变量
1.添加设计变量Length,初始值为31.0mm,用来表示微带贴片的长度;添加设计变量Width,初始值为41.4mm,用来表示微带贴片的宽度;添加设计变量Xf,初始值为9.5mm,用来表示同轴线的圆心点的X轴坐标。
2.在模型中使用变量
使用变量Length和Width表示微带贴片Patch的长度和宽度,并设置微带贴片的起点坐标为(-Length/2,-Width,5mm)。
使用变量Xf代替同轴馈线Feed的底部圆心和集总端口Port的圆心在x方向的坐标。
五、求解设置
1.设置HFSS的求解频率为
2.45Ghz
2.扫频设置为1.5-
3.5Ghz,选择Fast扫频类型
六、设置完成后进行设计检查,无误后进行下一步。
七、查看天线的谐振点
从图中可以看出,当频率为2.45Ghz时,S11最小,最小为-16.63dB
八、优化设计
1.参数扫描分析:将sweep1的频率范围设置为
2.2GHZ-2.8GHZ
2.Length的扫描分析:添加扫描变量为length,扫描方式设置为LinearStep,开始,结束和步长设置为28mm,31mm,0.5mm,设置完成后从result查看结果。
从图中可以看出Length=29.5mm时,谐振频点约为2.45GHz。
3.Width的扫描分析,将变量设置为Width,开始,结束,步长分别设置为39mm,42mm,0.5mm。
从图中可以看出当贴片长度不变时,宽度的改变对天线谐振点的影响很小。
4.优化设计:因为从上面的设计可以得出长度对S11的影响比较大,所以优化时只对长度进行优化
(1)添加优化设置
(2)将长度的优化范围设置为29-30mm
(3)设计优化函数
(4)优化分析
(5)查看优化后的结果
从图中可以看出,软件做了22次迭代计算,其中第8次迭代计算的目标函数数值最小,对应的length长度为=29.5mm。
九、查看优化后的天线性能
1.查看S11参数
从图可以看出,当length为29.5,Width为41.4mm时,天线的谐振点在2.45GHz,此时S11=-16.63dB。
2.查看S11参数的史密斯圆图
在2.45GHz时,天线的归一化输入阻抗为(0.83-0.25i)Ω
3.产看电压驻波比
从图中可以看出在2.4-2.5GHz频段,电压驻波比小于1.78
4.查看天线的三维增益方向图
从图中可以看出最大辐射方向为z方向,最大增益为7.42dB。
5.查看平面方向图
此图为E面的切面图,可以看出有三个旁瓣。
6.其他天线参数
从图中可以看出最大电压值为0.43,前后比为84.134和一些其他参数的值。
实验结果1.从本次实验中,我们得知微带贴片的长度对于天线的谐振点有很大的影响,而微带贴片的宽度对天线的谐振点没什么太大的影响。
2.优化后的天线可以使谐振点落在2.45GHz,但是输入阻抗并没有达到标准的50Ω,可以通过使用参数扫描分析功能分析变量Xf的变化对输入阻抗的影响,然后
11。