结构几何构造分析概念
结构力学(几何组成分析)详解
![结构力学(几何组成分析)详解](https://img.taocdn.com/s3/m/e54976d5f61fb7360b4c65ab.png)
单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3
Pr
A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1
Ⅰ
.O2
ⅡⅡ
Ⅲ
ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回
结构力学《第二章几何组成分析》龙奴球
![结构力学《第二章几何组成分析》龙奴球](https://img.taocdn.com/s3/m/25e07a7b02768e9951e738f0.png)
第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4
Ⅰ
1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律
结构力学结构的几何构造分析课件
![结构力学结构的几何构造分析课件](https://img.taocdn.com/s3/m/9e13e97ceffdc8d376eeaeaad1f34693daef102e.png)
02
结构的几何构造基础
结构的几何构造概念
01
02
定义
重要性
03 研究内容
结构几何构造的基本元素
01
02
03
04
点
线
面
体
结构几何构造的分类
。
03
结构的几何构造分析方法
矩阵分析法
总结词 优点
描述 缺点
几何变换法
拓扑分析法
04
结构几何构造分析应用
桁架结构的几何构Biblioteka 分析节点类型识别杆件几何特性分析
案例二:某高层建筑结构的几何构造分析
建筑整体形态和 布局分析
高层建筑的整体形态 (如塔式、板式等) 和内部布局(如核心 筒、剪力墙布置等) 是其结构性能的关键 因素。通过建筑图纸 和实地考察,详细了 解相关信息。
结构竖向传力系 统分析
高层建筑的竖向传力 系统主要由楼盖、竖 向构件(柱、墙等) 和基础组成。分析各 竖向构件的几何尺寸、 布置间距以及与楼盖 和基础的连接方式。
案例三:某复杂工业设备结构的几何构造分析
设备整体结构和功能分析
关键部件几何形状和尺寸 精度分析
连接件和紧固件分析
设备运行环境和工作条件 分析
06
结构几何构造分析的未来发展
结构几何构造分析的研究现状
研究方法
研究成果
结构几何构造分析的未来发展趋势
01 多学科交叉融合
03
02
绿色与可持续发展 04
大数据与人工智能 技术
超材料与智能结构
THANKS
感谢观看
结构力学结构的几何 构造分析课件
目 录
• 结构力学基础 • 结构的几何构造基础 • 结构的几何构造分析方法 • 结构几何构造分析应用 • 复杂结构几何构造分析案例 • 结构几何构造分析的未来发展
于玲玲结构力学第一章_结构的几何构造分析
![于玲玲结构力学第一章_结构的几何构造分析](https://img.taocdn.com/s3/m/227e43355a8102d276a22f1b.png)
(2)图 b
刚片 I、II 和 I、III 分别由无穷远处的瞬铰 A、B 相连,由于点 A 和点 B 为同方向的无穷远点,根
据结论(1),两点其实是一点,因此该点与连接刚片 II、III 的铰 C 共线,三点共线,所以该体系为几何
瞬变体系。
(3)图 c
显然为几何常变体系。
(4)图 d
刚片 I、II、III 分别由铰 C 和无穷远处的瞬铰 A、B 相连,由于 A、B 不同方向,所以其连线是一条
(a)
A
(b) A
B
(c)
B
(d)
A
B
C
C
A
B
C
C
(a) E
C
A
D
图 1-5 B
(b) E
C
A
DB
图 1-6
注意:二元体的三个结点都必须是铰接,如图 1-6,b 图中的 CEB 部分是二元体,而 a 图中的 CEB
2
部分不是二元体,区别仅在于 C 结点的连接方式不同。 去掉二元体是体系的拆除过程,应从体系的周边开始进行,而增加二元体是体系的组装过程,应从
结点 F、G、H、I、J 用 10 根链杆分别连于基础和刚片,约束数为 10,因此,
W=1×3+2×5-6-10=-3
2、由计算自由度得出的结论
(1)若 W > 0,则体系缺乏必要约束,是几何常变的。注意:若所分析的体系没有与基础相连,应
将计算出的 W 减去 3,如果仍大于零,才可判断体系为几何常变,否则不是几何常变,详见例 1-3。
刚片,因此铰 O 不是瞬铰;而 b 图中的铰 O 是瞬铰,因为刚片 I、II 和链杆 3 组成一更大的刚片 IV,即
杆 1 和 2 连接的都是刚片 III 和 IV,因此铰 O 是瞬铰。
第一章 结构的几何构造分析
![第一章 结构的几何构造分析](https://img.taocdn.com/s3/m/28925e5b804d2b160b4ec0ba.png)
(2)体系中约束的布置方式要合理。
17
结构的几何构造分析
二 平面几何不变体系的基本组成规则 1、三刚片规则
三刚片用不在同一直线上的三个单铰两两相联,组成的体系 是几何不变体系,且无多余约束。
2、二刚片规则
两个刚片用三根不完全平行也不交于一同一点的链杆相联, 组成的体系是几何不变体系,且无多余约束。
在对结构进行分析计算前,首先分析体系的几何组成,以确 定其几何不变性,只有几何不变体系才能作为工程结构应用,
因此,几何构造分析的目的为:
1 判别体系是否为几何不变体系,从而决定能否 作为结构应用。
2 掌握几何不变体系的组成规则,便于设计出合理 的结构形式。 3 用以区分体系为静定结构或超静定结构,从而决 2 定采用不同的计算方法。
15
结构的几何构造分析
§1-6 平面几何不变体系的基本组成规则
一 平面几何不变体系应满足的条件 1 计算体系的自由度(或可变度),能否判断体系为几何不 变体系? 平面体系计算自由度(可变度)的计算结果,可能有以下三 种情况: (1)W 0 ,表明体系缺少足够的约束,体系肯定为几何 可变体系。 (2)W 0 ,表明体系具有成为几何不所需的最少约束数 目,此时体系可能为几何不变体系,也可能为几何可变体 系。
5
结构的几何构造分析
约束的种类:
⑴ 链杆: 一根链杆相当一个约束。
y
B
y x A
y
B A
2 1
o
x
o
x
6
结构的几何构造分析
⑵ 单铰:
连接两个刚片的铰称为单铰 。 一个单铰相当于两个 约束。
y
x 1 Ⅰ
A
2 Ⅱ y
o
结构力学第2章 结构的几何构造分析
![结构力学第2章 结构的几何构造分析](https://img.taocdn.com/s3/m/39a044175f0e7cd1842536b4.png)
有一根链杆是多余约束
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:从微小运动的角度看,这是一个可变体系;
经微小位移后又成为几何不变体系;
在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移 常变体系:可发生大位移
可变体系
§2-1 几何构造分析的几个概念
6. 瞬铰 O为两根链杆轴线的交点,刚片I
可发生以O为中心的微小转动, O点
称为瞬时转动中心。 两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰 两根平行的链杆把刚片I与基础相
连接, 则两根链杆的交点在无穷远处。
两根链杆所起的约束作用相当于无穷远 处的瞬铰所起的作用。
体系计算自由度:
W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的
若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则 为几何可变 若W<0,则n>0, 体系有多余约束 例 2-4 试计算图示体系的W。 方法一:
m=7,h=9,b=3, g=0
W=3m-2h-b=3×7-2×9-3=0 方法二: j=7,b=14
W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10 体系几何不变,S=0 n=S-W=0-(-10)=10
第2章
§2-1 §2-2
第二章结构几何构造分析方案
![第二章结构几何构造分析方案](https://img.taocdn.com/s3/m/7a76fca2700abb68a982fbd6.png)
例题:分析图示体系的几何构造(习题2-10b)
将由若干个杆件组成的几何不变体视为一个刚片,然后 运用规律二。
补充例题:分析图示体系的几何构造
利用规律二, 运用了瞬铰的概念。
补充例题:分析图示体系的几何构造
运用规律二形成更大的 刚片,最后装配于基础 (上部简支与基础)。
补充例题:分析图示体系的几何构造
二元体
两个不共线的链杆,由一个节点相连 。
在任何一个体系上增加或减去一个二元体,对体系 的组成性质无影响。
几何体系的组成
刚片
体系
约束
内部无多余约束的刚片 内部有多余约束的刚片
必要约束 多余约束
几何构造分析方法
1.逐步拆去二元体,使结构简单。 2.从基础出发,反复运用规律一、二进行装配。 3.将由若干个杆件组成的几何不变体视为一个刚片,然后反
体系中全部约束数
体系计算自由度的计算
1.当组成体系的部件为刚片时 W=3m-(3g+2h+b) m:内部无多余约束的刚片数,若有多余约束,则将其 计入 3g+2h+b g:单刚结点数 h:单铰结点数 b:单链杆数
2.当组成体系的部件为结点时 W=2j-b
j:具有自由度的点的个数 b:单链杆数
例题 计算体系的W
W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10
例题 计算体系的W
W=3m-(3g+2h+b)=3×9-(3×0+2×12+3)=0 W=2j-b=2 ×6-12=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0
例题 计算体系的W
W=3m-(3g+2h+b)=3×7-(3×0+2×9+3)=0 W=2j-b=2 ×7-14=0 W=3m-(3g+2h+b)=3×2-3=3 W=3m-(3g+2h+b)=3×1-3=0
结构力学平面体系的几何构造分析高教书苑
![结构力学平面体系的几何构造分析高教书苑](https://img.taocdn.com/s3/m/7db6e113bf1e650e52ea551810a6f524cdbfcb59.png)
高级教育
14
2.方法
§2-2 几何不变体系的组成规律
㈠计算自由度法
m—刚片总数; g—单刚结点总数;
高级教育
30
§2-3 平面杆件体系的计算自由度
例2-3-4 求图示体系的计算自由度。
解:
m 2 g 1 h 1 b 5
I A II
W 3 2 (31 2 1 5)
6 10 4
1
3
2
45
例2-3-5 求图示体系的计算自由度。
A
1
B
解:
j 5 b 10
2 34 5
W 2 5 10 0
四、约束(联系)
凡是能减少体系自由度的装置就称为约束。
约束
非多余约束:能真正减少体系自由度的约束。 多余约束:加上此约束体系的自由度并不因此而减少。
1)链杆约束
①单链杆约束(连接两个点的链杆)
结论:一根单链杆可减少一个自由度相当于一个约束或联系。
②复链杆约束(连接两个以上点的链杆) 结论:连接n个点的复链杆相当于(2n-3)根单链杆的作用。
21
§2-2 几何不变体系的组成规律
例2-2-1 试分析图示体系的几何构造。
解:
A
3
6
I
B
1 II
III
2C
5
4
刚片I、 II用链杆1、2相连, (瞬铰A);
刚片I、 III用链杆3、4相连, (瞬铰B);
刚片II、III用链杆5、6相连, (瞬铰C)。
结构力学2结构的几何构造分析
![结构力学2结构的几何构造分析](https://img.taocdn.com/s3/m/9708f105763231126edb11d1.png)
(2)从内部刚片出发构造
例1
1,3
例2 . .1,2
2,3
.
.
无多余约束的几何不变体系 例3
1,2
几何瞬变体系
.
.
1,3 2,3
. 2,3
几何瞬变体系
1,2 1,3
§2-3
• • • • • • • • • • • 体系的自由度S:
平面杆件体系的计算自由度
S=a-c A为各部件自由度总和,c为全部约束中的非多余约束数 计算自由度W: W=a-d d为全部约束的总数 即得: S-W=n 这就是W、S、 n三者之间的关系式。 由于自由度S与多余约束数n都不是负数,即S≥ 0, n ≥ 0 则可得出下面两个不等式:s≥n, n ≥-W 也就是说,W是自由度S的下限,而(-W)则是多余约束n 的下限 。
第二章
结构的几何构造分析
Geometrical Constitution Analysis Of Plane Systems
几何构造分析的目的主要是分析、判断一个体系是否 几何可变,或者如何保证它成为几何不变体系,只有几何不变 体系才可以作为结构。 §2-1 几何构造分析的几个概念
一、几何不变体系和几何可变体系
六、瞬铰
B C’
0 P O
.
. O’
C
A 0'
M 0 0
N3 P r 0
N1 N2 N3
B
D
N3
Pr
七、无限远处的瞬铰:
关于∞ 点和∞线的下列四个结论 1、每个方向有一个 ∞点(即该方向各平行线 的交点) 2、不同方向有不同的 ∞点 3、各∞点都在同一直线上,此直线称为∞线 。 4、各有限点都不在∞线上。
结构的几何构造分析概念
![结构的几何构造分析概念](https://img.taocdn.com/s3/m/eb0cb4c4d5d8d15abe23482fb4daa58da0111c03.png)
结构的几何构造分析概念概述:结构的几何构造分析是一种用于研究和分析建造结构的方法,通过对结构的几何形态和构造特征进行详细的分析,以揭示其力学特性和性能。
本文将介绍结构的几何构造分析的概念、目的、方法和应用,并通过实例进行说明。
一、概念:结构的几何构造分析是指对建造结构的几何形态和构造特征进行系统性的研究和分析,以获取结构的几何特性、力学行为和性能的方法。
它涉及到结构的形状、尺寸、布置、连接方式等方面的分析,旨在揭示结构的力学特性和行为。
二、目的:1.了解结构的几何形态:通过几何构造分析,可以了解结构的形状、尺寸和布置等几何特征,从而对结构的整体形态有一个清晰的认识。
2.揭示结构的力学特性:几何构造分析可以揭示结构的刚度、稳定性和变形特性等力学特性,为结构的设计和优化提供依据。
3.评估结构的性能:通过几何构造分析,可以评估结构的承载能力、抗震性能和耐久性等性能,为结构的安全和可靠性提供保障。
三、方法:1.几何形态分析:通过对结构的形状、尺寸和布置等几何特征进行分析,包括平面形态、立面形态和剖面形态等方面的研究。
2.构造特征分析:对结构的构造特征进行详细的分析,包括结构的构件形式、连接方式、节点形态等方面的研究。
3.力学行为分析:通过对结构的几何形态和构造特征进行力学分析,揭示结构的刚度、稳定性、变形特性等力学行为。
4.性能评估分析:通过分析结构的几何构造,评估结构的承载能力、抗震性能、耐久性等性能指标。
四、应用:1.结构设计:几何构造分析为结构的设计提供了重要的依据,可以通过分析结构的几何形态和构造特征,优化结构的形态和构造,提高结构的性能。
2.结构评估:几何构造分析可以用于对已有结构的评估,通过分析结构的几何特征和构造特征,评估结构的安全性和可靠性。
3.结构优化:通过几何构造分析,可以识别出结构的不足之处,进而进行结构的优化设计,提高结构的性能。
4.结构研究:几何构造分析可以用于研究结构的力学行为和性能,为结构的理论研究提供依据。
结构力学——几何构造分析
![结构力学——几何构造分析](https://img.taocdn.com/s3/m/c60639f481c758f5f61f67f4.png)
如果将链杆视为一刚片, 则三规律等价
三角形规律的应用技巧
• • • • • 1. 刚片的广义化 2. 约束的等价性 3. 二元体增减的等效性 4. 内部大刚片定义的灵活性 5. 瞬变体系的多样性
1. 刚片的广义化
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点.
三刚片规则: 三个刚片用不在同 一直线上的三 个单 铰两两相连,组成 无多余联系的几何 不变体系。
图2-11 瞬变体系
规则3 二元体规则
在体系上用两个不共线杆件或刚片连接一个 新结点,这种产生新结点的装置称为二元体,图 2-12a符合定义为二元体,而图2-12b因为不符合上 述定义条件,因此不是二元体。
(a)
图2-12
(b)
二元体和非二元体
基于二元体的定义,在任意一体系上加二元体
或减二元体都不会改变体系的可变性。 利用加二元体规则,可在一个按上述规则构成
行吗?
瞬变体系
它可 变吗?
找虚铰 无多几何不变
F
D E
G
找刚片 无多几何不变
C
F
D
内部不 变性
E 找刚片
A B
5. 瞬变体系的多样性
瞬变体系
A C
P
B
不能平衡 C1 微小位移后,不能继续位移 瞬变体系(instantaneously unstable system) --原为几何可变,经微小位移后即转化为 几何不变的体系。
n=3
每个结点有 多少个 自由度呢? n=2
每个单铰 能使体系减少 多少个自由度 呢? s=2
每个单链杆 能使体系减少 多少个 自由度呢? s=1
每个单刚结点 能使体系减少 多少个 自由度呢? s=3
结构的几何组成分析
![结构的几何组成分析](https://img.taocdn.com/s3/m/ef3e5ab0710abb68a98271fe910ef12d2af9a9d8.png)
结构的几何组成分析结构的几何组成分析是建筑设计中的一个重要环节,它涉及到结构的形式和几何特征,通过分析结构的几何组成,可以评估结构的稳定性、刚度和性能,并为后续的结构设计提供依据。
以下是对结构的几何组成分析的详细介绍。
1.结构的几何形式结构的几何形式是指结构的整体形状和布局,它包括建筑的平面形式和立面形式。
建筑的平面形式通常是对称的,例如对称轴线、对称平面。
立面形式主要体现建筑的垂直方向的几何特征,包括建筑的高度、层高、外墙的形式等。
通过分析结构的几何形式,可以了解结构的总体布局和形态特征。
2.结构的几何参数结构的几何参数是指结构中各个构件和元件的尺寸和形状,它包括构件的截面形状、长度、宽度、高度等参数。
通过分析结构的几何参数,可以确定结构的尺寸比例,进而评估结构的刚度和稳定性。
例如,在分析桥梁的几何参数时,通过确定桥梁的主跨长度、桥梁墩高和桥梁宽度等参数,可以评估桥梁的刚度和承载能力。
3.结构的几何构造结构的几何构造是指结构中的构件和元件之间的相互连接方式和排列方式。
不同的几何构造方式会影响结构的刚度和稳定性。
常见的几何构造包括平行构造、直交构造、等距构造等。
通过分析结构的几何构造,可以评估结构的整体刚度和受力性能,并为结构的材料选择和构造方式提供依据。
4.结构的几何约束结构的几何约束是指结构中各个构件和元件之间的相互约束关系。
几何约束决定了结构的运动自由度,影响结构的整体稳定性和刚度。
常见的几何约束方式包括铰支约束、弹性支座约束、弹簧约束等。
通过分析结构的几何约束,可以确定结构的运动自由度,进而评估结构的刚度和稳定性。
在进行结构的几何组成分析时,通常采用计算机辅助设计软件进行建模和分析。
通过建立结构的几何模型,可以对结构的几何特征进行精确描述,并对结构的性能进行定量分析。
同时,可以通过调整结构的几何参数和几何构造,优化结构的性能和经济性。
总之,结构的几何组成分析是建筑设计中不可或缺的一个环节,通过对结构的几何形式、几何参数、几何构造和几何约束进行分析,可以评估结构的稳定性、刚度和性能,为结构的后续设计和施工提供依据。
《结力》第2章 结构的几何构造分析
![《结力》第2章 结构的几何构造分析](https://img.taocdn.com/s3/m/d31c2a31ee06eff9aef807e5.png)
几何可变体系不能作为结构来使用。
六、瞬铰(虚铰)
两根链杆的约束作用相当于在链杆交点处一个简 单铰所起的约束作用。故两根链杆可以看作为在交 点处有一个瞬铰(虚铰)。 A 相交在∞点 A
关于∞点的情况需强调几点:
——每一个方向有一个∞点; ——不同方向有不同∞点; ——各∞点都在同一直线上,此直线称为∞线; ——各有限点都不在∞线上。
Ⅰ
Ⅲ
Ⅱ
何可变。
Ⅲ
3、 三虚铰在无穷远处
Ⅰ
Ⅱ
瞬变体系
Ⅲ
习题四:
•图示体系进行几何组成分析。
(a)
(b)
(a)
O12 O23 O13
Ⅱ
Ⅲ
Ⅰ
瞬变体系
∞ O13
O12 O23
(b)
Ⅲ Ⅰ
Ⅱ
瞬变体系
分析 1
3
(1,2) 1 (2,3) 2 (1,2) 1
1
2
3
2
3
5 4 6 4 6
5
(2,3) 4 6
§2-2 平面几何不变体系的组成规律
讨论没有多余约束的几何不变体系的组成规律。
1、一个点与一个刚片之间的连接方式
规律1 一个刚片与一个点用两根链杆相连,且三 个铰不在一直线上,则组成几何不变的整体,且 没有多余约束。
A
C
B
由不共线的两根链杆联结一个新结点的装置,称为二元体。 (二元体规则)在一个体系上增加或撤去一个二元体,则体系的几何性质 不会改变。
Ⅱ
3
Ⅱ
4
Ⅰ Ⅱ Ⅲ
Ⅰ
Ⅰ
∞
小结:三刚片中虚铰在无穷远处
1、 一虚铰在无穷远处 Ⅰ Ⅱ
虚铰方向与另外 两铰连线不平行,几 何不变。 虚铰方向与另外 两铰连线平行,几 何瞬变。
第二章 平面结构的几何构造分析_
![第二章 平面结构的几何构造分析_](https://img.taocdn.com/s3/m/e7484913a216147917112872.png)
刚片Ⅰ、Ⅱ由不共线的铰D和链 杆C相连组成大刚片Ⅰ ,同理 大刚片Ⅰ、刚片Ⅲ也由不共线 的铰B和链杆A相连,所以体系 为无多余约束的几何不变体。
刚片Ⅰ、Ⅱ由不共线的铰A和链 杆1相连组成大刚片Ⅰ ,同理大 刚片Ⅰ、基础也由不共线的一铰 和一链杆相连,所以体系为无多 余约束的几何不变体。
【例2.4 】 试分析图示体系的几何构造
解: 解:
013 基础 Ⅲ
Ⅰ
023
Ⅱ
012
刚片Ⅰ、Ⅱ、Ⅲ由不共线的三 铰相连,所以体系为无多余约 束的几何不变体。 刚片ABCDEF由铰D和链杆F 相连,组成几何不变体系, 所以体系为有多余约束 (链杆A或F)体系。
◆通过以上几个例题,可以归纳出以下几点: (1)体系通常是由多个构造单元逐步形成的,即从第一个构造单元 开始,然后按照某种顺序,把其他构造单元逐个地装配起来。在构造 分析中,通常先找出—个几何不变的部分作为第一个构造单元,然后 在其基础上扩大、装配,把由构造单元到体系的装配过程分析清楚。 (2)要注意约束的等效替换。例如,联系两个刚片的两根链杆可用 相应的瞬铰来替换,或复杂形状的联结杆可用直线链杆来替换。 (3)有的体系只有一种装配方式,有的体系却有几种装配方式,还 有一些结构体系的几何构造比较复杂,需要采用其它的构造方式装配。
2 7
(3)混合体系:
W 3m 2 j (3 g 2h b)
2 8
体系的计算自由度: 计算自由度等于刚片总自由度数减总约束数
W = 3m-(3g+2h+b)
m---刚片数(不包括地基) g---单刚结点数 h---单铰数 b---单链杆数(含支杆)
铰结链杆体系---完全由两端铰结的杆件所组成的体系
第二章 结构的几何构造分析
![第二章 结构的几何构造分析](https://img.taocdn.com/s3/m/bb100f41bd64783e08122b1f.png)
G
元体A、B、C、D、E、F、
F
E
G后,剩下大地。
A 故该体系为无多余约束
D
C
B
的几何不变体系。
20
2. 如上部体系与基础 用满足要求的三个 约束相联时,可去 掉基础只分析上部.
??
• 如上部为几何可变, 整体也是几何可变;
• 如上部为几何不变, 整体也是几何不变。
例2:对图示体系进行几何组成分析。
被约束对象:刚片 I,II,III 提供的约束:铰A、B、C
15
铰接三角形是最简单的几何不变体系
规律4: 三刚片用三个铰两两铰接,
且三铰不在一直线上, 则组成几何不变体系,且无多余约束。
问题:其中的一些铰用等 效链杆代替呢?
16
刚片I, II——用铰A连接 刚片I, III——用铰B连接 刚片II,III——用铰C连接
•逐步添加二元
体确定刚片Ⅰ
•同理得刚片Ⅱ •大地为刚片Ⅲ
•三刚片用不共
(Ⅰ,Ⅲ )
(Ⅱ,Ⅲ )
Ⅰ
Ⅱ
(Ⅰ,Ⅱ )
线三铰相连,
Ⅲ
故该体系为无多余约束的几何不变体系。
23
例5:对图示体系进行几何组成分析。
①抛开基础,只分析上部。 ②在体系内确定三个刚片。 ③三刚片用三个不共线的三铰相连。 ④该体系为无多余约束的几何不变体系。
W (3m 2 j) (3g 2h b)
m、j、g、h、b意义同前。
44
4. 一个体系若求得W >0,一定是几何可变体系;若W 0
,则可能是几何不变体系,也可能是几何可变体系,取决于 具体的几何组成。
所以W 0是体系几何不变的必要条件,而非充分条件。
Chapter 2 结构的几何构造分析汇总
![Chapter 2 结构的几何构造分析汇总](https://img.taocdn.com/s3/m/98a40f14bb68a98271fefa72.png)
2.1.4 瞬变体系
结构的几何构造分析 2.1 几何构造分析的几个概念
2018-9-14-21:12
2.1 几何构造分析的几个概念
2.1.1 几何不变体系和几何可变体系 1.几何不变体系(geometrically changeless system)
在不考虑材料应变的条件下,体系的 位置和形状均不能改变的体系 能够承受荷载,处于静力平衡状态
固定两个刚片的装配格式:复合装配格式;
多次应用上述基本组成规则或基本装配格式,即可组成各式各样 无多余约束的几何不变体系。
结构的几何构造分析 2.2平面几何不变体系的组成规律
2018-9-14-21:12
2. 两种装配过程 从基础出发进行装配 先取基础作为基本刚片,将周围某个部件(一个结点,一个刚片或 两个刚片)按照基本装配格式固定在基本刚片上,形成一个扩大的 基本刚片。然后,由近及远地、由小到大地、逐个地按照基本装配 格式进行装配,直至形成整个体系。
使体系自由度减少的约束,被称为必 要约束。
2.1.3 瞬铰及无穷线
瞬铰 (instantaneous hinge) 不直接相交的两根链杆的交点,所组成的铰称为瞬铰。
无穷远线和无穷远点 每个方向有一个点;不同方向有不同的点;各点 都在同一直线上,此直线称为线;各有限点都不在 线上。
结构的几何构造分析 2.1 几何构造分析的几个概念
W 3m (3g 2h 则体系的计 算自由度W也可表示为
W 2j b
结构的几何构造分析 2. 3 平面杆件体系的计算自由度
2018-9-14-21:12
Remarks
体系的自由度有三种可能性: W > 0; W = 0; W < 0. 如果与基础不相连,则自由度有三种可能性: W > 3; W = 3; W < 3. W > 0对应于几何可变体系; 通常,W = 0,W < 0 不能说明什么问题,但在体系为几何不变体系 的前提下, W = 0 对应于无多余约束的几何不变体系, W < 0 对应 于有多余约束的几何不变体系,其绝对值为体系的多余约束数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构的几何构造分析概念1-11、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。
几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。
几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。
2、自由度:描述几何体系运动时,所需独立坐标的数目。
平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。
平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。
3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。
可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。
4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。
约束有三种:5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。
使体系减少一个独立运动参数的装置称为一个约束。
例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。
如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。
如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。
平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。
6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。
区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。
7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。
2-2平面杆件体系的计算自由度1、体系是由部件(刚片或结点)加上约束组成的。
2、刚片内部:是否有多余约束。
内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。
3、复铰:连接两个以上刚片的铰结点。
连接n个刚片的铰相当于(n-1)个单铰。
4、单链杆:连接两个铰结点的链杆。
5、连接两个以上铰结点的链杆。
连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。
6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。
W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。
7、自由度与几何体系构造特点:静定结构的受力分析一、二、梁的内力主要采取截面法,截面法可以用六个字描述:2、截面内力计算的基本方法:截面法:截开、代替、平衡。
内力的直接算式:直接由截面一边的外力求出内力。
1、轴力=截面一边的所有外力沿轴切向投影代数和。
2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。
3、弯矩=截面一边的所有外力对截面形心的外力矩之和。
弯矩及外力矩产生相同的受拉边。
静定结构影响线当结构上作用有与杆件主轴正交的、沿结构跨度移动的单位集中荷载(P=1)时,用以表示确定的截面或位置上某一特定的受力效果(内力、位移或支座反力)的变化规律的函数图形(曲线),称为该结构在荷载作用下某一截面特定受力效果的影响线,简称影响线。
概念桥梁上行驶的火车、汽车,活动的人群,吊车梁上行驶的吊车等等,这类作用位置经常变动的荷载称为移动荷载。
常见的移动荷载有:间距保持不变的几个集中力(称为行列荷载)和均布荷载。
为了简化问题,我们往往先从单个移动荷载的分析入手,再根据叠加原理来分析多个荷载以及均布荷载作用的情形。
对于工程计算中的各种物理量和几何量,我们统称为量值,记作Z。
由于移动荷载的作用位置是变化的,使得结构的支座反力、截面内力、应力、变形等等也是变化的。
因此,在移动荷载作用下,我们不仅要了解结构不同部位处量值的变化规律,还要了解结构同一点处的量值随荷载位置变化而变化的规律,以便找出可能发生的最大内力是多少,发生的位置在哪里,此时荷载位置又怎样,从而保证结构的安全设计和施工。
在竖向单位移动荷载作用下,结构内力、反力或变形的量值随竖向单位荷载位置移动而变化的规律图像称为影响线。
计算利用某量值S(某支座反力、某截面弯矩、剪力等)的影响线,求位置一定的一组荷载产生的该量值S之值(叫S的影响量)。
(图1)作用在影响线同一直线线段上的各力的影响等于其合力的影响,即(图2)。
其成立的条件是各力位于S影响线的同一直线线段上。
据此,不能将S影响线顶点B两侧之力以一个合力代替去计算S。
均布荷载产生的影响量S等于荷载集度口与荷载下面的S影响线的面积的乘积,即。
注意;均布荷载下面的影响线纵标有正有负,因此,面积也有正有负,这个结论,对于曲线型影响线(如静不定力影响线)也是成立的。
对于位于影响线同一直线段上的分布荷载也可用其合力代替去求影响量。
影响方程在思路上与静定结构内力影响线一样一是建立影响方程;二是建立影响方程的方法,与固定荷载作用下求内力的方法相同。
即静定结构用平衡方程建立影响方程,而超静定结构则用解超静定的方法——力法、位移法、力矩分配法等建立影响方程。
根据影响方程来绘制影响线的方法叫静力法。
用绘制位移图的方法来得到影响线的方法叫机动法。
机动法有一个很大的优点,就是能很快地画出内力影响线的形状,以判定荷载的最不利分布,而这是计算最大内力值所需要的。
①欲绘制超静定结构支座反力R的影响线,则去掉相应联系(支杆),把支杆反力R暴露出来,沿反力R正向加一个力使与之相应的广义位移(竖向位移)等于1,这样得到的位移图(挠度曲线)即为R的影响线。
符号:轴线上面的纵标取正号。
②欲绘制超静定结构弯矩MK影响线形状,应把截面K切断,再用铰联结起来(把刚结变为铰结,丢掉了阻止相对转动的联系)。
沿弯矩正向(使下面受拉)加一对大小任意的力偶矩M。
画出位移图的形状,轴线上方取为正,这就得到了影响线的形状。
③欲绘制超静定结构剪力影响线形状,应把截面K切断,再用一对平行杆联结起来(去掉了阻止相对错动的联系)。
采用这种方式时,左右两部分只能相对错动,而不能相对转动(和沿轴向相对移动),因之体系变形后,左右两部分变形曲线于联结处的切线相互平行。
沿剪力正向加一对任意大小的剪力Q画出位移图,即得影响线的形状。
上面取正号,下面取负号。
由于超静定结构去掉一个联系后仍为一几何不变体系,其位移图是曲线的,所以超静定结构内力的影响线是曲线的。
由于静定结构去掉一个联系后即成为机构(可变体系),其位移图是直线图形,因而静定结构内力影响线是直线图形。
超静定结构中的静定内力(如挑臂上的弯矩、剪力),其影响线也是直线图形。
影响形状均布活荷载的最不利分布①对于跨中载面,当活荷载作用于载面所在跨及每间隔一跨的各跨上时,出现最大正弯矩。
②对于支座截面,当活荷载作用于该支座左右两跨及每间隔一跨的各跨上时,出现最大负弯矩。
③在整个结构上都布满活荷载时,对于支座弯矩、跨中弯矩都不是最不利情况。
④一种内力出现最大(最小)值时,其他内力并不同时出现最大(最小)值。
与活荷载不同,恒荷载经常作用,永远要计算,没有最不利分布问题。
确定行列荷载在什么样的位置上量值s取得最大值,这个行列荷载位置为最不利荷载位置。
得到极大值时行列荷载所处位置的特点是;(1)有一个集中力居于影响线顶点上。
(2)将行列荷载自此左移一点,(图3)是正的,右移一点(图4)是负的。
满足这种条件(使取得极大值)的位于影响线顶点上的集中力叫临界荷载(以表示),与此对应的行列荷载位置,称为临界位置。
(3)MK在行列荷载移动全过程中得到的极大值可能不止一个。
对于三角形影响线:多边形影响线,在由多个集中力组成的行列荷载作用下,都是适用的。
S生极大值所对应的行列荷载位置,必须具备以下两个条件:①有一个集中力位于影响线的顶点上。
②自此位置向左移:自此位置向右移:。
这两个公式称为临界条件,满足临界条件的集中力为临界荷载,相应的荷载位置为临界位置。
把临界荷载算在影响线顶点的哪一边,哪一边单位长度上的平均荷载就大。
对于三角形影响线,求量值S最大值的步骤为:①按前述方法估计能产生最大值的若干可能的临界荷载。
②逐个地把估出的力放在影响线顶点上,验算是否满足临界条件。
如果满足临界条件,则利用影响线求出相应的S,它是S一个极大值。
比较这样求得的几个S极大值,其中最大的就是行列荷载移劫过程中可能产生的最大S 值。
根据临界条件的推导过程知:临界条件中的前一个不等式代表力在左方时后一个不等式代表力在右方时。
若满足前一个不等式,而不满足后一个不等式,就表明不论把力放在左面,还是放在右面,都有即越往右移S越大。
因此应把行列荷载向右移。
反之,若不满足前一个不等式,而满足后一个不等式,则不论力在左、力在右都有即越往右移S越小,因此求S极大值耍向左移动行列荷载。
对于桥梁要考虑车辆右行,左行两种情况,按最不利情况设计。
工业厂房吊车荷载则不会改变方向。
静定结构位移计算一、位移计算引起位移的主要原因:各种因素对静定结构的影响:荷载√√√×√√温度改变或材料胀缩××√支座移动或制造误差引起位移的主要原因有上述三种:①荷载作用、②温度变化、③支座移动和制造误差。
计算方法本章只讨论线性变形体系的位移计算,计算方法是单位荷载法,其理论基础是虚功原理。
线性变形体系和叠加原理的使用条件是:①材料处于弹性阶段,应力与应变成正比;②小变形。
因此可以应用叠加原理计算结构的位移。
虚功和虚功原理(1)实功:力在本身引起的位移上作功,恒为正值(2)虚功:力在其它原因引起的位移上所作的功(力在虚位移上作的功),可正可负如图(9-1)力与位移同向,虚功为正,力与位移反向,虚功为负。
虚位移:与作功的力无关。
是结构的支承条件和变形条件允许的微小位移。
引起位移的原因:可以是一组力,温度变化、支座位移等,也可以是假想的位移,故称为“虚”。
(3)广义力和广义位移:在功的计算公式W=PΔ中,涉及到两方面因素:①与力有关的因素:例如,一个力、一个力偶、一对力、一对力偶。
把这些与力有关的因素称为广义力;②与广义力相应的位移因素:例如,与集中力相应的广义位移是该力的作用点的总全位移在力的方向上的分量;与集中力偶相应的广义位移是它所作用截面的转角;与作用点不同但等值、反向、共线的一对力相应的广义位移是两力作用点沿两力方向的相对线位移;与等值、反向一对力偶相应的广义位移是两力偶作用截面的相对转角,等……。
把这些与位移有关的因素称为广义位移。
广义力与相应广义位移的关系是:它们的乘积是虚功。
变形体虚功原理:变形虚功:当给体系一虚位移时,除了外力(荷载、反力)在虚位移上作虚功外,内力在相应变形上也要作虚功。