5.静态基线处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章静态基线处理

基线处理软件的优劣不但影响着GPS相对静态测量的精度,而且也影响着相对静态测量可靠性、所需观测时间等。对于一个商业用途的基线处理软件而言,不但要求能准确、可靠地处理出基线向量,而且要求软件对用户友好、易于使用。

HDS2003 数据处理软件很好地实现了复杂的基线处理理论与简易的软件使用的有机统一。对于正常的观测数据,通常不需人工干预,就能很快得到准确的结果。而对于观测质量比较差的数据,用户也可以根据各种基线处理的输出信息,进行人工干预,使基线的处理结果符合工程的要求。

§5.1 基线处理的过程

按指定的数据类型录入GPS观测数据后,软件会自动分析各点位采集到的数据内在的关系,并形成静态基线后,就可以进行基线处理了。

基线处理的过程可分为如下几个主要部分:

一、设定基线解算的控制参数

基线解算的控制参数,用以确定数据处理软件采用何种处理方法来进行基线解算。设定基线解算的控制参数是基线解算时的一个非常重要的环节。通过控制参数的设定可以实现基线的优化处理。

控制参数在“基线解算设置”中进行设置,主要包括“数据采样间隔”、“截止角”、“参考卫星”及其电离层和解算模型的设置等。

二、外业输入数据的检查与修改

在录入了外业观测数据后、在基线解算之前,需要对观测数据进行必要的检查。检查的项目包括测站名点号、测站坐标、天线高等。对这些项目进行检查的目的是为了避免外业操作时的误操作。

三、基线解算

基线解算的过程一般是自动进行的,无需人工干预。基线解算有分为如下几步:

1)基线解算自检

基线解算之前,软件会检查基线解算控制参数的设置、观测数据及星历文件、起算坐标等等。

2)读入星历数据

星历数据的格式可以为RINEX格式,也可以为中海达自定义的二进制格式(*.zhd),也可以为SP3格式的精密星历。

3)读入观测数据

HDS2003 GPS 数据处理软件进行单基线处理时,首先需要读取原始的GPS 观测值数据,一般来说各接收机厂商随接收机一起提供的数据处理软件都可以直接处理从接收机中传输出来的GPS 原始观测值数据,而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理。HDS2003 GPS 数据处理软件能处理的数据已经在第十章作了全面介绍。

读入起始站和终点站的观测数据,其中还包括观测时记录的单点定位坐标、观测时刻、C/A码伪距、载波相位,若单点定位坐标不正确,则需要进行单点定位计算,以将起算坐标用于后续的解算,起算坐标也可由外部输入。在读入的同时,组成单差观测值,并寻找一个合适的参考卫星。

4)三差解算

将双差观测值在历元间进行相减,组合成三差观测值,建立观测方程,进行解算,得到三差解。但对于短边,三差解的精度往往不高1,通常三差解的目的在于得到比较近似的基线边,便于进行周跳修复。

1一般认为,对于短边,双差固定解的精度最高,对于长边,往往也利用三差解。

图5-1 单基线解算的主要步骤

5)周跳修复

基线解算的关键在于找到正确的整周模糊度,能够求解整周模糊度的前提是接收机对载波相位的连续跟踪,但是接收机不可能总是连续跟踪载波相位,遮挡、干扰等都会造成对载波相位的跟踪中断,从而使历元之间的载波相位观测值出现所谓的周跳,如何探测并修复周跳,往往是基线处理软件需要解决的主要问题。

6)进行双差浮点解算

若共观测到N颗卫星的信号,则双差观测方程组将比三差观测方程组增加N-1个未知数,双差解得到更进一步的未知点坐标和以浮点数表示的整周模糊度。理论上,整周模糊度应为整数,但由于其在解算时吸收了观测噪声以及其它未模型化的误差,因此通常只能得到一个浮点数。该浮点数往往与实际的整数有一定的偏差,有时偏差甚至达到几周。

7)整周模糊度分解

一般说来,在足够长的同步观测时间和得到足够多的观测数据的情况下,仅靠取整

也可以得到正确的整周模糊度,但采用快速求解整周模糊度(FARA, Fast Ambiguity Resolution Approach)方法和LAMBDA方法,可以大大地缩短观测时间,提高工作效率。

8)进行双差固定解算

在整周模糊度得到正确的固定后,进行双差固定解算,双差固定解的精度最高。但若整周模糊度不正确,双差固定解的精度当然也不正确。

四、基线质量的检验

基线解算完毕后,基线结果并不能马上用于后续的处理,还必须对基线的质量进行检验。只有质量合格的基线才能用于后续的处理,如果不合格则需要对基线进行重新解算或重新测量。基线的质量检验需要通过RATIO、RDOP、RMS、同步环闭合差、异步环闭合差和重复基线较差来进行。

§5.2 基线处理的设置

作基线向量处理前,要进行“基线向量处理设置”,执行菜单“静态基线”下的“基线处理设置”,出现如图(5-2)的对话框:

图5-2 基线处理设置

对话框共由三页组成,分别为常用设置、对流层和电离层设置、高级设置。

下面分别对话框中各项的意义做简要的介绍:

§5.2.1常用设置

一、历元间隔

所谓历元间隔,就是在基线处理时,软件从原始观测数据中抽取数据的间隔。如图(10-3)所示:

图5-3 历元间隔

比如,两台仪器在作静态观测时,设置为每5秒采集一组数据,但在内业处理时,这么高密度的的观测数据通常并不能显著提高基线的精度,反而会大大增加基线处理的时间。因此,为提高基线处理的速度,用户可适当增大数据处理的采样间隔。

那么,多大的采样间隔合适呢?通常认为,对于短边,且观测时间较短时,可适当缩小采样间隔,而对于长边,可适当增大采样间隔。比如,对于2公里以内的静态基线,而观测时间又在20分钟以内时,我们可设置采样间隔为5秒。但基线较长时,通常可增大采样间隔,可达到60秒或120秒。

那么,为什么还需要在野外观测时,设置比较小的采样间隔呢?这是因为,当遇到不太好的数据时,由于观测数据具有一定的随机性以及软件本身的功能所限,通过修改历元间隔后重新处理基线,往往能改善处理结果。

软件缺省的历元间隔是60秒。

二、高度截止角

高度截止角用来限制高度比较低的卫星数据,使其不参与基线解算。

由于大气层对高度比较低的卫星信号的影响比较复杂,难以用模型进行改正,又由于高度比较低的信号容易受到如多路径、电磁波等各种因素的影响,因此,它们的信号质量通常也比较低。所以,在数据处理中,通常将它们剔除。

如单从大气层折射的角度来看,对于短距离的观测,可以降低高度截止角;而对于长距离的观测,应该加大高度截止角,因为距离越短,大气折射影响越容易相互抵消。当然,高度截止角的设置要还要视观测站点周围的环境如何。

在野外观测时,应根据卫星分布状况降低高度截止角,以采集尽量多的数据,方便处理。

相关文档
最新文档