2020-2021学年冀教版数学九年级下册期末测试题及答案(共4套)
冀教版九年级下册数学期末测试卷及含答案(完整版)
冀教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A. B. C. D.2、掷一枚质地均匀的硬币10次,下列说法正确的是()A.有5次正面朝上B.不可能10次正面朝上C.不可能10次正面朝下D.可能有5次正面朝上3、下列图形中,正方体展开后得到的图形不可能是()A. B. C. D.4、从1、2、3、4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是()A. B. C. D.5、下列投影是平行投影的是()A.太阳光下窗户的影子B.台灯下书本的影子C.在手电筒照射下纸片的影子D.路灯下行人的影子6、二次函数y=ax2+bx+c的图象如图所示,则下列结论中①a<0 b>0 c>0;②4a+2b+c=3;③−>2;④b2-4ac>0;⑤当x<2时,y随x的增大而增大.正确的个数是()A.1个B.2个C.3个D.4个7、二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数D.无实数根8、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A. B. C. D.9、设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y210、抛物线y=x2+bx的对称轴经过点(2,0),那么关于x的方程x2+bx=5的两个根是()A.0,4B.1,5C.﹣1,5D.1,﹣511、已知直线l与半径为r的☉O相交,且点O到直线l的距离为6,则r的取值范围是( )A.r<6B.r=6C.r>6D.r≥612、在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.若横、纵坐标都是整数的点叫做整点,当抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,可得m的取值范围为()A. <m≤B. ≤m<C.0<m<D.0<m≤13、将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是( )A.y=(x+1) 2-4B.y=-(x+1) 2-4C.y=(x+3) 2-4D.y=-(x+3) 2-414、⊙O的直径为6,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.无法确定15、在平面直角坐标系xOy中,已知点M,N的坐标分别为(-1,2),(2,1),若抛物线y=ax2-x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )A.a≤-1或a≥B. ≤a<C.a≤或a>D.a≤-1或≤a<二、填空题(共10题,共计30分)16、一般地,形如________ 的函数是二次函数.17、抛物线y=﹣x2+3x+12经过点(﹣2,________).18、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c的两个根分别是x=1.3和1=________。
(全优)冀教版九年级下册数学期末测试卷及含答案
冀教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,PA、PB、CD分别切⊙O于点A、B、E,CD分别交PA、PB于点C、D.下列关系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互补;④△PCD的周长是线段PB长度的2倍.则其中说法正确的有( )A.1个B.2个C.3个D.4个2、如图的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是().A.①②B.①③C.②③D.③3、用一个平面去截下列几何体,所得截面与其他三个不同的是()A. B. C.D.4、下图的四幅图中,灯光与影子的位置合理的是()A. B. C.D.5、如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B 为切点,则B点的坐标为()A. B. C. D.6、一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A. B. C. D.7、如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.8、已知抛物线y=x2+bx+c的顶点在第三象限,则关于x的一元二次方程x2+bx+c=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根 D.无法确定9、如图所示的三视图表示的几何体是()A.长方体B.正方体C.圆柱体D.三棱柱10、如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0),则下列说法正确的有()①C(9,0);②b+c>﹣10;③y的最大值为﹣16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤.A.①②③④B.①②③C.①③④D.①④11、将一个机器零件按如图方式摆放,则它的俯视图为()A. B. C. D.12、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.513、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积是()A. B.8 C. D.1614、如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;③(S)2=9+2 ;④DF2﹣DG2=7﹣2 .其中结论正确的个数是四边形CDEF()A.1B.2C.3D.415、若的半径为3,且点P到的圆O的距离是5,则点P在( )A. 内B. 上C. 外D.都有可能二、填空题(共10题,共计30分)16、如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为________.17、已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点(x1,0),(x2, 0).则下列说法正确的有:________.(填序号)①该二次函数的图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1、x2满足﹣3<x1<2,﹣1<x<0时,m的取值范围为:<m<11.218、如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为________cm.19、二次函数y=2x2﹣1,∵a=________,∴函数有最________值.20、函数与的图象及交点如图所示,则不等式x2<x+2的解集是________.21、现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是________22、把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O 的半径为________23、对于二次函数有下列说法:①如果,则有最小值;②如果当时的函数值与时的函数值相等,则当时的函数值为;③如果,当时随的增大而减小,则;④如果用该二次函数有最小值,则的最大值为.其中正确的说法是________.(把你认为正确的结论的序号都填上)24、玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有________ 种.25、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.28、抛物线的顶点坐标为,且与y轴的交点为,求此抛物线的解析式.29、桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗匀,然后,随机翻开两张卡片求两张卡片正面所标数字之和是偶数的概率30、如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、B5、D6、D7、A8、A9、A10、B11、B12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、30、。
最新冀教版九年级数学下册期末考试卷【参考答案】
最新冀教版九年级数学下册期末考试卷【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b 3m 2+有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .438.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.计算12的结果是__________.2.分解因式:x 2-9=______.3.若代数式x 有意义,则x 的取值范围为__________. 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为__________.6.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为__________.三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x =12.先化简再求值:(a ﹣22ab b a -)÷22a b a -,其中a=1+2,b=1﹣2.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,AD 是△ABC 的外接圆⊙O 的直径,点P 在BC 延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、D6、B7、A8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、(x +3)(x -3)3、0x ≥且1x ≠. 4、140°5、(12-x )(8-x )=776、16三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.2、原式=a b a b -=+3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)略;(2).5、(1)30;(2)①补图见解析;②120;③70人.6、(1) 4800元;(2) 降价60元.。
冀教版九年级下册数学期末测试卷及含答案(完美版)
冀教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如果,过圆O外一点P引圆O的切线PA,PB,切点为A,B,C为圆上一点,若∠APB=50°,则∠ACB=()A.50°B.60°C.65°D.70°2、如图是一个正方体,则它的表面展开图可以是()A. B. C. D.3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,(1)a<0;(2)b>0;(3)c<0;(4)b2﹣4ac>0;(5)a+b+c>0;(6)4a+2b+c>0,其中判断正确的有()个.A.3B.4C.5D.64、如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C.D.5、已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+ 与反比例函数y= 在同一坐标系内的大致图象是()A. B. C.D.6、一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为()A. B. C. D.7、将抛物线=y=x2+2向右平移1个单位后所得抛物线的解析式是()A.y=x 2+3;B.y=x 2+1;C.y=(x+1)2+2;D.y=(x-1)2+2.8、由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9B.11C.14D.189、抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中符合题意结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A.1个B.2个C.3个D.4个10、已知二次函数y=ax2的图象如图所示,则关于x的一元二次方程x2+x+a﹣1=0的根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定11、在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近12、用一个平面去截一个正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形13、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个14、如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A. B. C. D.15、已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定二、填空题(共10题,共计30分)16、可可西里地区为估计该地区某个区域藏羚羊的只数,先将20只藏羚羊做上标记,然后放回,待有标记的藏羚羊完全混合于藏羚羊群后,第二次观察其中40只藏羚羊,发现其中2只有标记.从而估计该区域有藏羚羊________只。
最新冀教版九年级数学下册期末考试题及答案【A4打印版】
最新冀教版九年级数学下册期末考试题及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm9.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:24x -=__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=_________.5.如图,在△ABC 中,AB=AC=5,BC=45,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、C6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、(x+2)(x-2)3、k<44、55、86、454353x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、(1)证明见解析(2)1或23、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)100,50;(2)10.。
冀教版九年级下册数学期末测试卷及含答案
冀教版九年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图是由6个相同的小正方体搭成的几何体,那么这个几何体从左边看到的形状图是()A. B. C. D.2、已知二次函数的图象与x轴的一个交点为,则关于x的方程的两实数根分别是A.1和B.1和C.1和2D.1和33、如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来4、下列几何体中从正面、左面和上面看到的图形完全相同的是()A. B. C. D.5、如图,路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化6、如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()A. B. C. D.7、将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ).A.y=(x-4) 2-6B.y=(x-4) 2-2C.y=(x-2) 2-2D.y =(x-1) 2-38、北京天安门广场前每天早晨都会举行升国旗仪式,在一个晴朗的日子里,从早晨太阳升起的那一刻起到晚上日落前,旗杆在地面上的影子的变化规律是()A.先变短,后变长B.先变长,后变短C.长度不变,方向改变 D.以上都不正确9、如图所示的圆柱体从左面看是()A. B. C. D.10、在平面直角坐标系xOy中,若点P(4,3)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<4B.3<r<4C.4<r<5D.r>511、将函数的图象向右平移个单位,再向下平移个单位,可得到的抛物线是()A. B. C. D.12、如图,抛物线y=+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C.下列结论:①abc>0;②4a-2b+c>0;③2a-b>0;④3a +c>0.其中正确结论的个数为()A.1个B.2个C.3个D.4个13、如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°14、不论x为何值时,y=ax2+bx+c恒为正值的条件是( )A.a>0,△>0B.a<0,△>0C.a>0,△<0D.a<0,△<015、⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(﹣2,4),则点P与⊙A的位置关系是()A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.点P在⊙A上或外二、填空题(共10题,共计30分)16、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是________.17、抛物线y=2x2﹣3x+4与y轴的交点坐标是________.18、从一副没有“大小王”的扑g牌中随机抽取一张,点数为“”的概率是________.19、半径为5的圆内接正六边形的边心距为________.20、已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)21、已知点A(x1, y1)、B(x2, y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1________y2(填“>”、“<”或“=”).22、有两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查,两个检查组各随机抽取辖区内某三个小区中的一个进行检查,则两个检查组同时抽查到同一个小区的概率是________。
2021年冀教版九年级数学下册期末考试检测试卷及答案
冀教版九年级数学下册期末考试检测试卷时间:90分满分:100分学校:班级:姓名:一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列事件中必然发生的是()A.一个图形平移后所得的图形与原来的图形不全等B.100件产品中有4件次品,从中任意抽取5件,至少有一件是正品C.不等式的两边同时乘一个数,结果仍是不等式D.随意翻一本书的某页,这页的页码一定是偶数2.点P到直线l的距离为3,以点P为圆心、以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43.在下列各平面图形中,是圆锥的表面展开图的是()4. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.17 B.37 C.47 D.575.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()6.若抛物线y=2x m2-4m-3+(m-5)的顶点在x轴的下方,则() A.m=5B.m=-1C.m=5或m=-1D.m=-57.如图,正方形ABCD的边长为1,E,F,G,H分别为各边上的点(与A,B,C,D不重合),且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE 的长为x,则S关于x的函数图像大致是()8.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.一只自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17389.如图所示,平地上一棵树的高度为6 m,两次观察地面上的影子,第一次是当阳光与地面成60°角时,第二次是阳光与地面成30°角时,则第二次观察到的影子比第一次长()A.(6 3-3) mB.4 3 mC.6 3 mD.(3-2 3) m10.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图像可能是()11.如图,P是⊙O外一点,P A,PB分别和⊙O切于A,B两点,C是弧AB上任意一点,过C作⊙O的切线分别交P A,PB于D,E.若△PDE的周长为12,则P A等于()A.12 B.6 C.8 D.1012.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,若∠C=40°,则∠ABD的度数是()A.30° B.25° C.20° D.15°13.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.914.如图,扇形DOE 的半径为3,边长为3的菱形OABC 的顶点A ,C ,B 分别在OD ,OE ,DE ︵上,若把扇形DOE 围成一个圆锥,则此圆锥的高为( )A .12B .2 2C .372D .35215.如图是一副眼镜镜片下半部分的轮廓线,其中有两段抛物线关于y 轴对称,AB ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线D FE 所在抛物线的函数表达式为( )A .y =14(x +3)2B .y =-14(x +3)2C .y =14(x -3)2D .y =-14(x -3)216.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,其对称轴为直线x =1,有如下结论:①c <1;②2a +b =0;③b 2<4ac ;④若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2,其中正确的结论是( )A .①②B .①③C .②④D .③④二、填空题(每题3分,共9分)17.若函数y =kx 2+2x -1的图像与x 轴仅有一个公共点,则实数k 的值为________。
2020-2021石家庄市九年级数学下期末试题(含答案)
2020-2021石家庄市九年级数学下期末试题(含答案)一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1062.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣163.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5 {15 2xyx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==5.函数21y x=-中的自变量x的取值范围是()A.x≠12B.x≥1C.x>12D.x≥126.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.7.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A .B .C .D .8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .9.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .410.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o11.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.14.已知62x =,那么222x x -的值是_____.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 16.正六边形的边长为8cm ,则它的面积为____cm 2.17.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)19.3x +x 的取值范围是_____.20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 .三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A ,B 两种型号的机器.已知一台A 型机器比一台B 型机器每小时多加工2个零件,且一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A ,B 两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查: A .从一个社区随机选取1 000户家庭调查;B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题: ①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.25.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表. 整理情况 频数频率 非常好0.21 较好 70 0.35一般 m 不好36请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了 名学生; (2)m= ;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.26.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.2.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B . 考点:简单组合体的三视图.7.C解析:C 【解析】从上面看,看到两个圆形, 故选C .8.A解析:A 【解析】 【分析】 【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形. 故选A .9.C解析:C 【解析】 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .10.B解析:B 【解析】 【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o , 故选B . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.11.D解析:D 【解析】 【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解. 【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢; 故选D. 【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.12.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.二、填空题13.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴ 解析:65【解析】【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解. 【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°, ∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,225AB BE +=,∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°, ∴在Rt △CDE 中,sin CDE CE=, ∴CD=36sin 255CE E ⋅=⨯=. 14.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4 【解析】 【分析】将所给等式变形为26x =【详解】 ∵62x =,∴26x -=∴(2226x =,∴22226x x -+=, ∴2224x x -=, 故答案为:4 【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.15.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.16.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴O E=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆17.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元), 故答案为:2160. 【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】 【分析】直接利用二次根式的定义求出x 的取值范围. 【详解】.在实数范围内有意义, 则x +3≥0, 解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3. 故答案为:x ≥﹣3. 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】 【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)-台,根据每小时加工零件的总量8A=⨯型机器的数量6B+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩…„,解得:6m8剟,mQ为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可; ①100万乘以不生二胎的百分比即可. 【详解】解:(1)A 、B 两种调查方式具有片面性,故C 比较合理; 故答案为:C ;(2)①B :100030%300⨯=户 1000-100-300-250=350户 补全统计图如图所示:(3)因为350100351000⨯=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户. 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)213y x x 222=--;(2)D 的坐标为1727,2⎛- ⎝⎭,1727,2⎛⎫+ ⎪ ⎪⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12x 2﹣32x ﹣2.(2)当x =0时,y =12x 2﹣32x ﹣2=﹣2,∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5. ∵AC 2+BC 2=25=AB 2, ∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC, ∴△AD 1M 1∽△ACB. ∵S △DBC =35S ABC ∆,∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0), ∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0), 将B (4,0),C (0,﹣2)代入y =kx+c ,得: 402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ ,∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72.联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2).(3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC, 设直线AC 的解析设为y =mx+n (m≠0), 将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2. ∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y xy x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点F 1的坐标为(45,﹣85 );②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E . ∵EC=EB ,EF 2⊥BC 于点F 2, ∴点F 2为线段BC 的中点, ∴点F 2的坐标为(2,﹣1); ∵BC=,∴CF2=12BC=5,EF2=12CF2=52,F2F3=12EF2=5,∴CF3=55.设点F3的坐标为(x,12x﹣2),∵CF3=55,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.24.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH , ∴BH =.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.25.(1)200;(2)52;(3)840人;(4)16【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数; (2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可; (4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人); (2)非常好的频数是:200×0.21=42(人), 一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等, 其中两次抽到的错题集都是“非常好”的情况有2种, ∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.26.该建筑物需要拆除. 【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米, 在Rt ABC ∆中,45CAB ∠=︒, ∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒, ∴103tan BCDB CDB==∠∴()DH AH AD AH DB AB =-=-- 101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.。
2020-2021学年冀教版九年级下册数学 期末达标测试卷
期末达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列事件中必然发生的是( )A .一个图形平移后所得的图形与原来的图形不全等B .100件产品中有4件次品,从中任意抽取5件,至少有1件是正品C .不等式的两边同时乘一个数,结果仍是不等式D .随意翻一本书的某页,这页的页码一定是偶数2.在下列各平面图形中,是圆锥的表面展开图的是( )A B C D 3.点P 到直线l 的距离为3,以点P 为圆心、以下列长度为半径画圆,能使直线l 与⊙P 相交的是( )A .1B .2C .3D .44.某人在做掷硬币试验时,投掷m 次,正面朝上有n 次⎝ ⎛⎭⎪⎫即正面朝上的频率是f =n m .则下列说法中正确的是( ) A .f 一定等于12 B .f 一定不等于12C .多投一次,f 更接近12D .随投掷次数逐渐增加,f 稳定在12附近5.如图,A 是某公园的入口,B ,C ,D 是三个不同的出口,小明从A 处进入公园,恰好从C 出口出来的概率为( )A.14B.13C.12D.23(第5题) (第6题) (第7题)6.某地的秋千出名后吸引了大量游客前来,该秋千高度h (m)与推出秋千的时间t (s)之间的关系可以近似地用二次函数刻画,其图像如图所示,已知秋千在静止时的高度为0.6 m ,则当推出秋千3 s 时,秋千的高度为( )A .10 mB .15 mC .16 mD .18 m7.如图所示的几何体是由5个相同的小正方体搭成的,它的左视图是( )8.已知二次函数y =x 2+1的图像经过A ,B 两点,且A ,B 两点的坐标分别为(a ,10),(b ,10),则AB 的长度为( )A .3B .5C .6D .79.如图,在△ABC 中,AB =AC ,BC =4,tan B =2,以AB 的中点D 为圆心,r为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取( )A .2B .3C .4D .5(第9题) (第10题) (第11题)10.如图,△ABC 的内切圆⊙O 与BC ,CA ,AB 分别相切于点D ,E ,F ,且AB=5,BC =13,CA =12,则四边形AEOF 的面积是( )A .4B .6.25C .7.5D .911.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则AB ︵的长为( )A.π3B.π6C.23πD.π512.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组⎩⎨⎧ax +by =2,2x +y =3只有正数解的概率为( )A.112B.16C.518D.133613.若点A (m -1,y 1),B (m ,y 2)都在二次函数y =ax 2+4ax +3(a >0)的图像上,且y 1<y 2,则m 的取值范围是( )A .m <-32B .m <-52C .m >-32D .m >-5214.对于题目“当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,求实数m 的值.”甲的结果是2或3,乙的结果是-3或-74,则( )A .甲的结果正确B .甲、乙的结果合在一起才正确C .乙的结果正确D .甲、乙的结果合在一起也不正确15.如图,I 是△ABC 的内心,AI 的延长线与△ABC 的外接圆相交于点D ,连接BI ,BD ,DC ,则下列说法中错误的是( )A .线段DB 绕点D 按顺时针方向旋转一定能与线段DC 重合B .线段DB 绕点D 按顺时针方向旋转一定能与线段DI 重合C .∠ABI 绕点B 按顺时针方向旋转一定能与∠IBC 重合D .线段CD 绕点C 按顺时针方向旋转一定能与线段CA 重合(第15题) (第16题) 16.如图所示的抛物线是二次函数y =ax 2+bx +c (a ≠0)的图像,则下列结论:①b+2a =0;②抛物线与x 轴的另一个交点为点(4,0);③a +c >b ;④若(-1,y 1),⎝ ⎛⎭⎪⎫72,y 2是抛物线上的两点,则y 1<y 2.其中正确的有( ) A .4个 B .3个 C .2个 D .1个二、填空题(17题3分,其余每空2分,共11分)17.某班的同学进行抛掷一枚图钉的试验,且将收集到的数据绘制成如下折线统计图.(第17题)试验继续进行下去,根据上面的折线统计图,估计出现“图钉针尖触地”的概率是________.18.如图,这是抛物线形拱桥,P 处有一照明灯,水面OA 宽4 m ,从O ,A 两处测P 处,仰角分别为α,β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系,则P 点的坐标为______;若水面上升1 m ,水面宽为__________m .(第18题) (第19题) 19.如图,这是由6个小正方形组成的网格图(每个小正方形的边长均为1),则 ∠α+∠β的度数为________;设经过图中M ,P ,H 三点的圆弧与AH 交于R ,则MR ︵的长为________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.如图,这是一个正方体的展开图,标注了字母A ,C 的面分别是正方体的正面和底面,其他面分别用字母B ,D ,E ,F 表示.已知A =kx +1,B =3x -2,C =1,D =x -1,E =2x -1,F =x .(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,请求出x 的值;(2)如果正面字母A 代表的代数式与其对面字母代表的代数式的值相等,且x 为整数,求整数k 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冀教版数学九年级下册期末测试题及答案(一)(时间:90分钟分值:100分)一、选择题(每小题4分,共32分)1.在同一时刻,两根长度相等的标杆被放置于阳光之下,但它们的影长不相等,那么这两根标杆的放置情况是( )A.两根标杆直立在水平地面上B.两根标杆平行地放在水平地面上C.一定是一根标杆直立在地面上,另一根标杆平放在地面上D.两根标杆放置的方向不平行2.给出以下命题,其中正确的有( )①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.A.1个B.2个C.3个D.4个3.如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是( )(第3题)4.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( )5.从分别写有整数-4,-3,-2,-1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数的绝对值小于2的概率是( )A.19B.13C.12D.236.小明要给刚结识的朋友小林打电话,他只记住了7位电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通小林电话的概率是( )A.112B.16C.14D.137.国家出台全面二孩政策,自2016年1月1日起家庭生育无需审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是( )A.12B.13C.14D.无法确定8.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是( )A.12B.25C.35D.718二、填空题(每小题5分,共20分)9.已知一个物体由x个相同的正方体堆成,它的主视图和左视图如图,那么x的最大值是________.(第9题)(第10题)10.一个立体图形的三视图如图,这个立体图形的表面积是________.(结果保留π) 11.如图31-Z-1,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是________.图31-Z-1 图31-Z-212.从如图31-Z-2所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是________.三、解答题(共48分)13.(10分)一个质地均匀的小正方体,六个面上分别标有数字1,1,2,4,5,6,掷一次小正方体,观察朝上一面的数字.(1)朝上的数字是“3”的事件是什么事件?它的概率是多少?(2)朝上的数字是“1”的事件是什么事件?它的概率是多少?(3)朝上的数字是偶数的事件是什么事件?它的概率是多少?14.(12分)一个口袋中放着若干个红球和白球,这两种球除了颜色以外没有其他区别.袋中的球已经搅匀,蒙上眼睛从口袋中随机取出一个球,取出红球的概率是14.(1)取出白球的概率是多少?(2)如果袋中的白球有18个,那么袋中的红球有多少个?15.如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =0.8 m ,窗高CD =1.2 m ,并测得OE =0.8 m ,OF =3 m ,求围墙AB 的高度.(第15题)16.图①是一个三棱柱包装盒,它的底面是边长为10 cm 的正三角形,三个侧面都是矩形.现将宽为15 cm 的彩色矩形纸带AMCN 沿虚线裁剪成一个平行四边形ABCD (如图②),然后用这条平行四边形纸带按如图③的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图②中,计算∠BAD 的度数;(2)计算按图③的方式包这个三棱柱包装盒所需的矩形纸带的长度.①②③(第16题)参考答案:1.D 点拨:本题容易误选C .实际上,只要两根标杆不平行放置,都有可能出现其影长不相等的情况.2.A 3.B 4.D 5.B 6.B7.C [解析] 画树形图,得∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都有女孩的概率是14.故选C.8.B [解析] 1开头的两位自然数有10,11,12,13,14,15,16,17,18,19其中有8个“上升数”;2开头的两位自然数有20,21,22,23,24,25,26,27,28,29,其中有7个“上升数”;同理以3开头的两位自然数也有10个,其中有6个“上升数”;一直到8开头的两位自然数也有10个,其中有1个“上升数”; 9开头的两位自然数没有“上升数”;所以全部两位自然数有90个,“上升数”一共有:1+2+3+4+5+6+7+8=36(个),所以任取一个两位数,是“上升数”的概率是3690=25.故选B.9.11 10.150π 11.1212.13[解析] 画树状图如下:共有12种等可能的结果数,其中交换一次后能使①,②两数在相对位置上的结果数为4,所以交换一次后能使①,②两数在相对位置上的概率=412=13.13.解:(1)朝上的数字是“3”的事件是不可能事件,它的概率为0. (2)朝上的数字是“1”的事件是随机事件,它的概率为13.(3)朝上的数字是偶数的事件是随机事件,它的概率为12.14.解:(1)P (取出白球)=1-P (取出红球)=1-14=34.(2)设袋中的红球有x 个,则有xx +18=14(或18x +18=34),解得x =6, 所以袋中的红球有6个.15.解:由题意可知OD =OE ,∠DOE =90°, ∴∠DEO =45°.又∵∠ABE =90°,∴∠BAE =45°=∠DEO.∴AB =BE ,即AB =BO +OE.连接CD ,易知C ,D ,O 三点在同一直线上.在△ABF 和△COF 中,∠ABF =∠COF =90°,∠AFB =∠CFO ,∴△ABF ∽△COF.∴AB CO =BF OF ,∴AB BF =COOF ,即BO +OE BO +OF =CD +OD OF ,即BO +0.8BO +3=1.2+0.83.∴BO =3.6 (m ).∴AB =3.6+0.8=4.4(m ),即围墙AB 的高度为4.4 m .点拨:首先根据DO =OE =0.8 m ,可得∠DEO =45°,然后证明AB =BE ,再证明△ABF ∽△COF ,可得AB BF =COOF,然后代入数值可得方程,解出方程即可得到答案.16.解:(1)AB 的长等于三棱柱的底面周长,为30 cm . ∵纸带的宽为15 cm ,∴sin ∠DAB =sin ∠ABM =AM AB =1530=12,∴∠DAB =30°.(第26题)(2)在题图中,将三棱柱沿过点A的侧棱剪开,得到如图所示的侧面展开图.将△ABE向左平移30 cm,△CDF向右平移30 cm,拼成如图所示的平行四边形A′B′C′D′.此平行四边形即为题图②中的平行四边形ABCD.易得AC′=2AE=2×ABcos30°=403(cm),∴在题图②中,BC=403cm,∴所需矩形纸带的长度为MB+BC=30·cos30°+403=553(cm).冀教版数学九年级下册期末测试题及答案(二)(时间:90分钟分值:120分)一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)1.将二次三项式x2-4x+1配方后得()A.(x-2)2+3B.(x-2)2-3C.(x+2)2+3D.(x+2)2-32.关于x的二次函数y=-(x-1)2+2,下列说法正确的是()A.图像的开口向上B.图像的顶点坐标是(-1,2)C.当x>1时,y随x的增大而减小D.图像与y轴的交点坐标为(0,2)3.已知☉O的半径为5,直线l是☉O的切线,则点O到直线l的距离是 ()A.2.5B.3C.5D.104.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是65.某市民政部门“五·一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元)1000500 100 50 10 2数量(个) 10 40 150 400 1 10000 000如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是()A. B. C. D.6.如图所示的是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()ABCD7.如图所示的是由大小一样的小正方体摆成的立体图形的三视图,它共用小正方体()A.5个B.8个C.7个D.6个8.如图所示,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则☉C的半径为()A.2.3B.2.4C.2.5D.2.69.已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A.m=-1B.m=3C.m≤-1D.m≥-110.某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行视力检查,发现有12名学生近视,据此估计这500名学生中,近视的学生人数是()A.150B.200C.350D.40011.如图所示,PA,PB分别与☉O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°12.形状相同、大小相等的两个小木块放置于桌面上,其俯视图如图所示,则其主视图是()A.B.C.D.13.已知反比例函数y=的图像如图所示,则二次函数y=2kx2-4x+k2的图像大致为()A.B.C.D.14.如图所示,边长为a的正六边形内有两个三角形,则等于()A.3B.4C.5D.615.已知某几何体的三视图如图所示(单位: cm),则该几何体的侧面积等于()A.12π cm2B.15π cm2C.24π cm2D.30π cm216.如图所示,在矩形ABCD中,AB=4 cm,AD=2 cm,动点M自点A出发沿A→B的方向以每秒1 cm的速度运动,同时动点N自点A出发沿A→D→C的方向以每秒2 cm的速度运动,当点N 到达点C时,两点同时停止运动,设运动时间为x(秒),△AMN的面积为y( cm 2),则下列图像中能反映y与x之间的函数关系的是()ABCD二、填空题(第17~18小题各3分,第19小题4分,共10分)17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800100020005000发芽种子粒数85 318 652 79316044005发芽频率0.850.7950.8150.7930.8020.801根据以上数据可以估计该玉米种子发芽的概率为(精确到0.1).18.如图所示,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.(第18题图)(第19题图)19.如图所示的是二次函数y=ax2+bx+c(a≠0)图像的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),是抛物线上两点,则y1>y2.其中正确的序号是.三、解答题(共68分)20.(9分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球不放回,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.21.(9分)(1)某糖果厂专为儿童设计出一种新颖别致的糖果包装盒,它的外形是由一个圆锥和一个半圆组成的不倒翁,如图所示.请你画出这个包装盒的三视图.(2)画出图①中四棱柱的主视图、左视图、俯视图.(3)画出图②中物体的主视图、左视图、俯视图.①②22.(9分)如图所示,AB是☉O的弦,∠OAB=45°,C是优弧AB上的一点,BD∥OA,交CA延长线于点D,连接BC.(1)求证BD是☉O的切线;(2)若AC=4,∠CAB=75°,求☉O的半径.23.(9分)如图所示,有两个可以自由转动的转盘A,B,转盘A被平均分成4等份,每份标上数字1,2,3,4四个数字;转盘B被正均分成6等份,每份标上数字1,2,3,4,5,6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:①同时转动转盘A与B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的游戏规则是否公平?如果公平,请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.24.(10分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?25.(10分)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+b2与两坐标轴分别交于A,D两点,与抛物线交于B(1,3),C(2,2)两点.(1)求直线与抛物线的解析式.(2)若抛物线在x轴上方的部分有一动点P(x,y),求△PON面积的最大值.(3)若动点P保持(2)中的运动路线,则是否存在点P,使得△POA的面积等于△POD面积的?若存在,请求出点P的坐标;若不存在,请说明理由.26.(12分)已知抛物线C:y=x2-2x+1的顶点为P,与y轴的交点为Q,点F.(1)求点P,Q的坐标;(2)将抛物线C向上平移得抛物线C',点Q平移后的对应点为Q',且FQ'=OQ'.①求抛物线C'的解析式;②若点P关于直线Q'F的对称点为K,射线FK与抛物线C'相交于A,求点A的坐标.参考答案:1.B(解析:∵x2-4x+1=x2-4x+4-4+1=(x-2)2-3.)2.C(解析:这个函数的顶点是(1,2),函数图像的开口向下,与y轴的交点坐标为(0,1),对称轴是直线x=1,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.)3.C(解析:∵直线l与半径为r的☉O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.)4.C(解析:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,故A选项正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B选项正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故C选项错误;D.P(红球)=,取得的是红球的概率与不是红球的概率相同,所以m+n=6,故D选项正确.)5.C(解析:因为从10万张彩票中购买一张,每张被买到的机会相同,所以有10万个结果,奖金不少于50元的共有10+40+150+400=600(个),所以P(所得奖金不少于50元)==.)6.B(解析:由题意可知该几何体的左视图有3列,第1列有2个小正方形,第2列有3个小正方形,第3列有1个小正方形.)7.D(解析:先在俯视图中的各位置上标上字母,如图所示.根据左视图可知C,D,E处至少有一处是2个小正方体,根据主视图可知C处是2个小正方体;根据主视图与左视图,可知A,B,D,E处都只有一个小正方体,所以小正方体的个数为2+1+1+1+1=6(个).故选D.)8.B(解析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图所示,设切点为D,连接CD,∵AB是☉C的切线,∴CD⊥AB,∵S△ABC=AC·BC=AB·CD,∴AC·BC=AB·CD,即CD====2.4,∴☉C的半径为2.4.)9.D(解析:∵当x>1时,y随x的增大而增大,∴对称轴在直线x=1的左侧,即-≤1,解得m≥-1.)10.B(解析:500×=200(人),即近视的学生人数约为200.)11.C(解析:∵PA,PB是☉O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,∴∠P=360°-(90°+90°+130°)=50°.)12.D(解析:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,由此得到它的主视图应为选项D.)13.D(解析:∵函数y=的图像经过第二、四象限,∴k<0,由图知当x=-1时,y=-k>1,∴k<-1,∴抛物线y=2kx2-4x+k2的开口向下,又对称轴为x=- = ,-1< <0,∴对称轴在-1与0之间.)14.C(解析:正六方形可看成6个边长为a的正三角形拼凑而成,则正六边形的面积为×a×a ×6=a2,由图可知正六边形内的两个三角形是有一个角为60°的直角三角形,则S空白=2××a×a=a2,则S阴影=a2-a2=a2,所以=5.)15.B(解析:根据三视图可判断出该几何体为圆锥,由俯视图可得圆锥底面圆的半径为3 cm,由主视图可得圆锥的高为4 cm,由勾股定理可得圆锥的母线长为=5(cm),根据圆锥的侧面积计算公式S侧=πrl可得S侧=π×3×5=15π(cm2).)16.D(解析:在矩形ABCD中,AB=4 cm,AD=2 cm,AD+DC=AB+AD=4+2=6(cm).∵点M以每秒1 cm 的速度运动,∴ 4÷1=4(秒).∵点N以每秒2 cm的速度运动,∴ 6÷2=3(秒),∴点N先到达终点,运动时间为3秒.①点N在AD上运动时,y=AM·AN=x·2x=x2(0≤x≤1);②点N在DC 上运动时,y=AM·AD=x·2=x(1≤x≤3).∴能反映y与x之间的函数关系的是选项D.) 17.0.8(解析:由表知种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.)18.30°(解析:连接BD,由题意知∠DAB=180°-∠BCD=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠DAB=30°.连接OD,易得∠ODB=∠ABD=30°,∴∠ODA=60°,∵PD是切线,∴∠PDO=90°,∴∠ADP=∠PDO-∠ADO=30°.故填30°.)19.①③④(解析:对称轴是直线x=-1,即-=-1,所以b-2a=0,①正确;由图像可知x=-2时,y>0,即4a-2b+c>0,②不正确;由图像知x=-1为对称轴,所以-=-1,即b=2a,由图像知4a+2b+c=0,所以c=-8a,所以顶点的纵坐标a-b+c=-9a,③正确;对称轴为直线x=-1,所以x=-3和x=1的函数值相等,而x>-1时,y随x的增大而减小,1<,所以y1>y2,④正确.故填①③④.)20.解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为=. (2)设从袋中取出x个黑球,根据题意得=,解得x=2.经检验,x=2是原分式方程的解.∴从袋中取出黑球的个数为2.21.解:(1)如图所示.(2)三视图如图所示.(3)三视图如图所示.22.(1)证明:如图所示,连接OB,则∠OBA=∠OAB=45°.因为BD∥OA,所以∠DBA=∠OAB=45°,所以∠DBO=90°,又OB为☉O的半径,所以BD是☉O的切线. (2)解:因为∠OAB=45°,∠CAB=75°,所以∠OAC=30°.如图所示, 延长AO交☉O于点E,连接CE,则∠ACE=90°.在Rt △ACE中,AC=4,∠CAE=30°,所以AE=8,所以☉O的半径为4.23.解:游戏不公平.理由如下:列出表格如下,由表可知所有等可能结果共24种,其中积为奇数的结果有6种,积为偶数的结果有18种,所以P(奇数)=,P(偶数)=,所以P(偶数)>P(奇数),所以不公平.新规则:①同时自由转动转盘A 和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作和,若得到的和是偶数,则甲胜;若得到的和是奇数,则乙胜.理由如下:因为所有等可能结果共有24种,其中和为奇数的结果有12种,和为偶数的结果有12种,所以P(奇数)=,P(偶数)=,所以P(偶数)=P(奇数),所以公平.24.解:(1)点D的横坐标、纵坐标的实际意义为:当产量为130 kg时,该产品每千克生产成本与销售价相等,都为42元,既不亏损也不盈利. (2)设线段AB所表示的y1与x之间的函数表达式为y1=k1x+b1,∵函数图像过点A(0 ,60)和B(90 ,42),∴解得∴y1与x之间的函数表达式为y1=-0.2x+60(0≤x≤90). (3)由图可知当90≤x≤130时,y1=42.设y2与x之间的函数表达式为y2=k2x+b2,∵y2=k2x+b2的函数图像过点C(0 ,120)和D(130 ,42),∴解得∴y2与x之间的函数表达式为y2=-0.6x+120(0≤x≤130),设该产品产量为x千克,获得的利润为W元,当0≤x≤90时,W=(y2-y1)x=x[(-0.6x+120)-(-0.2x+60)]=-0.4(x-75)2+2250, ∴当x=75时,W取得最大值,最大值为2250元;当90≤x≤130时,W=x[(-0.6x+120)-42]=-0.6(x-65)2+2535,在90≤x≤130内,W随x的增大而减小,所以当x=90时,W取得最大值,最大值为-0.6×(90-65)2+2535=2160(元).∵2250>2160,∴当该产品产量为75 kg时,获得的利润最大,最大利润为2250万元.25.解:(1)根据题意,得解得∴直线的解析式是y=-x+4.根据图像可知抛物线经过点B(1,3),C(2,2),O(0,0),∴解得∴抛物线的解析式是y=-2x2+5x.(2)当y=0时,-2x2+5x=0,解得x1=0,x2=,∴点N的坐标是.∵点P的纵坐标越大,△PON的面积越大,∴当点P是抛物线的顶点时,△PON的面积最大,此时==,S△PON最大=××=. (3)由(1)知直线的解析式是y=-x+4,当x=0时,y=4,当y=0时,由-x+4=0,解得x=4,∴点A,D的坐标是A(0,4),D(4,0).设点P的坐标是(x,-2x2+5x),x>0,-2x2+5x>0,则×4x=××4×(-2x2+5x),整理得2x2+4x=0,解得x1 =0,x2=-2,此时点P不在x轴的上方,不符合题意,∴不存在点P,使得△POA的面积等于△POD面积的.26.解:(1)∵y=x2-2x+1=(x-1)2,∴顶点P的坐标为(1,0).∵当x=0时,y=1,∴点Q的坐标为(0,1). (2)①根据题意,设抛物线C'的解析式为y=x2-2x+m,则点Q'的坐标为(0,m),其中m>1,设O为坐标原点,则OQ'=m.如图所示,过点F作FH⊥OQ',垂足为H,∵点F,∴FH=1,Q'H=m-.在Rt△FQ'H中,根据勾股定理,得FQ'2=Q'H2+FH2,∴FQ'2=+12=m2-m+.∵FQ'=OQ',∴m2-m+=m2,解得m=,∴抛物线C'的解析式为y=x2-2x+. ②设点A(x0,y0),则y0=-2x0+.过点A作x轴的垂线,与直线Q'F相交于点N,可设点N的坐标为(x0,n),则AN=y0-n,其中y0>n.连接FP,由点F,P(1,0),得FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN.连接PK,则直线Q'F是线段PK 的垂直平分线,∴FP=FK,∴∠AFN=∠PFN,∴∠ANF=∠AFN,∴AF=AN.根据勾股定理,得AF2=(x0-1)2+,其中(x0-1)2+=+-y0=,∴AF=y0.∴y0=y0-n,解得n=0,即点N的坐标为(x0,0).设直线Q'F的解析式为y=kx+b,则解得∴y=-x+.由点N在直线Q'F上,得-x0+=0,解得x0=.将x0=代入y0=-2x0+,得y0=.∴点A的坐标为.冀教版数学九年级下册期末测试题及答案(三)(时间:90分钟分值:120分)一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)1.圆的直径为13 cm,如果圆心与直线的距离是d,那么 ()A.当d=8 cm时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.抛物线y=2x2-5x+6的对称轴是()A.x=B.x=C.x=-D.x=-3.在△ABC中,∠C=90°,AC=BC=4 cm,点D是AB边的中点,以点C为圆心,4 cm长为半径作圆,则点A,B,C,D四点中在圆内的有()A.1个B.2个C.3个D.4个4.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图像可能是()ABCD5.已知抛物线y=-x2+mx+n的顶点坐标是(-1,-3),则m和n的值分别是 ()A.2,4B.-2,-4C.2,-4D.-2,06.对于函数y=-x2-2x+2使得y随x的增大而增大的x的取值范围是()A.x≥-1B.x≥0C.x≤0D.x≤-17.在Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作☉C和AB相切,则☉C的半径为()A.8B.4C.9.6D.4.88.若(2, 5),(4, 5)是抛物线y=ax2+bx+c上的两点,则它的对称轴是()A.x=-1B.x=1C.x=2D.x=39.如图所示,PA切☉O于点A,PO交☉O于点B,若PA=6,BP=4,则☉O的半径为()A.2B.C.D.5(第9题图)10.如图所示,PA,PB是☉O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB等于()(第10题图)A.90°B.100°C.110°D.120°11.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能是15≤x≤22,那么一周可获得最大利润是()A.20元B.1508元C.1550元D.1558元12.若二次函数y=x2-6x+c的图像过A(-1,y1),B(2,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y213.如图所示,正六边形ABCDEF内接于☉O,则∠ADB的度数是()A.60°B.45°C.30°D.22.5°(第13题图)(第14题图)14.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论:①ac>0;②a-b+c<0;③x<0时,y <0;④ax2 + bx + c=0(a≠0)有两个大于-1的实数根.其中错误的有()A.①②B.③④C.①③D.②④15.对于任意实数t,抛物线y=x2+(2-t)x+t总经过一个固定的点,这个点是()A.(1, 0)B.(-1, 0)C.(-1, 3)D. (1, 3)16.若二次函数y=ax2+bx+c(a≠0)的图像与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,若图像上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0B.b2-4ac≥0C.x1<x0<x2D.a(x0-x2)(x0-x2)<0二、填空题(第17~18小题各3分,第19小题4分,共10分)17.函数y=2x2-4x-1写成y=a(x-h)2+k的形式是,其图像的顶点坐标是,对称轴是.18.如图所示,已知AB为☉O的直径,PA,PC是☉O的切线,A,C为切点,∠BAC=30°,则∠P的度数为.19.将抛物线y=2(x-3)2+3向右平移2个单位长度后,再向下平移5个单位长度,所得抛物线的顶点坐标为.三、解答题(共68分)20.(9分)如图所示,AB是☉O的直径,AC是弦,CD是☉O的切线,C为切点,AD⊥CD于点D.求证:(1)∠AOC=2∠ACD;(2)AC2=AB·AD.(第20题图)(第21题图)21.(9分)已知二次函数y=x2+mx+n的图像经过点P(-3,1),对称轴是经过(-1,0)且平行于y 轴的直线.(1)求m,n的值;(2)如图所示,一次函数y=kx+b的图像经过点P,与x轴相交于点A,与二次函数的图像相交于另一点B,点B在点P的右侧,PA∶PB=1∶5, 求一次函数的表达式.22.(9分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,求每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23.(9分)[2016·天津中考]在☉O中,AB为直径,C为☉O上一点.(1)如图①所示,过点C作☉O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(2)如图②所示,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.24.(10分)如图所示,一位篮球运动员在距篮圈水平距离4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的高度为3.05 m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)已知该运动员身高1.8 m,在这次跳投中,球在头顶上方0.25 m处出手,则球出手时,他跳离地面的高度是多少?25.(10分)如图所示,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC 相切于点D,分别交AC,AB于点E,F.(1)若AC=6,AB= 10,求☉O的半径;(2)连接OE,ED,DF,EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.26.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:y2=(1)用x的代数式表示t为t=;当0<x≤4时,y2与x的函数解析式为y2=;当4≤x<时,y2=100.(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数解析式,并指出x的取值范围.(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?参考答案:1.C(解析:当d<r时,则直线与圆相交;当d=r时,则直线与圆相切;当d>r时,则直线与圆相离.已知圆的直径为13 cm,则半径为6.5 cm,当d=6.5 cm时,直线与圆相切,当d<6.5 cm时,直线与圆相交,当d>6.5 cm时,直线与圆相离,故A,B,D错误,C正确.)2.A(解析:对称轴为x=-=-= .)3.B(解析:以C为圆心、4 cm长为半径作圆.∵∠C=90°,AC=BC=4 cm,∴A,B到圆心C的距离等于半径,∴点A,B在圆上;∵在直角三角形ABC中,D是AB的中点,AC=BC=4 cm,∴AB=4 cm,∴CD=AB=2 cm,∵2<4,∴点D在☉C内,那么在圆内只有点C和点D两个点.)4.C(解析:当a<0时,二次函数图像开口向下,一次函数图像经过第二、四象限,此时C,D符合,又由C,D中图像可知二次函数图像的对称轴在y轴左侧,所以-<0,即b<0,只有C符合.同理可讨论当a>0时的情况.)5.B(解析: 抛物线y=-x2+mx+n的顶点坐标是,所以=-1,=-3,解得m=-2,n=-4.)6.D(解析:由题意知函数图像开口向下,所以在对称轴左侧y随x的增大而增大,由对称轴为x=-1,知所求x的取值范围是x≤-1.)7.D(解析:在Rt△ABC中,∠C=90°,AB=10,AC=6,所以BC=8.过点C作CD⊥AB,交AB于点D,则CD=4.8,因为☉C和AB相切,所以CD即为☉C的半径,所以☉C的半径为4.8.)8.D(解析:因为已知两点的纵坐标相同,所以横坐标应关于对称轴对称,从而抛物线的对称轴为x=3.)9.B(解析:连接OA,∵PA切☉O于点A,∴∠OAP=90°,∴PA2+OA2=OP2.∵PA=6,BP=4,∴36+OA2=(OB+4)2,解得OA=.)10.D(解析:由题意易得PA===2,△APO≌△BPO,∴∠AOP=∠BOP.∵sin∠AOP=AP∶OP=2∶4=∶2,∴∠AOP=60°.∴∠AOB=120°.)11.D(解析:∵y=-2(x-20)2+1558,a=-2<0,∴抛物线开口向下,函数有最大值,∴x=20时,y最大=1558(元).∵x=20在15≤x≤22范围内,∴y的最大值为1558元.)12.B(解析:由题意知A(-1,y1),B(2,y2)在对称轴x=3的左侧,且y随x的增大而减小,因为-1<2,所以y2<y1,根据二次函数图像的对称性可知C(3+,y3)中,|3+-3|=,-1<<2,所以y1>y3>y2.)13.C(解析:∵正六边形ABCDEF内接于☉O,∴弧AB的度数等于360°÷6=60°,∴∠ADB=30°.)14.C(解析:①由图像可知二次函数y=ax2+bx+c(a≠0)的图像开口向下,∴a<0,∵与y轴的交点在x轴上方,∴c>0,∴ac<0,①错误;②∵当x=-1时,y=a-b+c,而由图像知当x=-1时,y<0,∴a-b+c<0,②正确;③根据图像可知当x<-1时,抛物线在x轴的下方,∴当x<-1时,y<0,③错误;④从图像可知抛物线与x轴的交点的横坐标都大于-1,∴方程ax2+bx+c=0(a≠0)有两个大于-1的实数根,④正确.故错误的有①③.)15.D(解析:当x=1时,y=1+(2-t)+t=3,故抛物线经过固定点(1,3).)16.D(解析:二次函数图像的开口方向可能向上,也可能向下,所以选项A错误.若二次函数y=ax2+bx+c(a≠0)与x轴有两个不同的交点,则b2-4ac>0,所以选项B错误.符合条件的点M(x0,y0)有多种可能,当a>0时,x1<x0<x2;当a<0时,有两种情况:一种是x0<x1<x2,另一种是x1<x2<x0,所以选项C错误.而当a>0时,x1<x0<x2,所以a(x0-x1)(x0-x2)<0;当a<0时,无论x0<x1<x2,还是x1<x2<x0,a(x0-x1)(x0-x2)都小于0,所以选项D正确.)17.y=2(x-1)2-3(1,-3)x=1(解析:配方可得y=2(x-1)2-3,所以顶点坐标为(1,-3),对称轴为x=1.)18.60°(解析:∵PA是☉O的切线,AB为☉O的直径,∴PA⊥AB,∴∠BAP=90°.∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA,PC分别切☉O于点A,C,∴PA=PC,∴△PAC 为等边三角形,∴∠P=60°.)19.(5,-2)(解析:y=2(x-3)2+3向右平移2个单位长度,再向下平移5个单位长度,得到抛物线y=2(x-5)2-2,所以顶点坐标为(5,-2).)20.证明:(1)∵CD是☉O的切线,C为切点,∴∠OCD=90°, 即∠ACD+∠ACO=90°.①∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+∠ACO=90°.②由①②,得∠ACD-∠AOC=0,即∠AOC=2∠ACD. (2)如图所示,连接BC.∵AB是☉O的直径,∴∠ACB=90°.在Rt△ACD与Rt△ABC中,∵∠AOC=2∠B,∠AOC=2∠ACD(由(1)知),∴∠B=∠ACD,∴ Rt△ACD∽Rt△ABC,∴ =,即AC2=AB·AD.。