钛酸钡制备方法之固相法
钛酸钡合成工艺技术概述
钛酸钡合成工艺技术概述钛酸钡是一种重要的无机化合物,广泛应用于电介质、声学、光学和电子器件等领域。
其合成工艺技术主要包括溶液法、水热法和固相法等。
溶液法是钛酸钡合成的常用方法之一。
首先,将钛酸四丁酯和硝酸钡等原料按一定摩尔比溶解在适量的溶剂中,如水或有机溶剂。
然后,在加热和搅拌的条件下,逐渐滴加氢氧化钠或硝酸铵等碱性溶液,使反应体系保持碱性。
随着滴加溶液的不断进行,钛酸钡会逐渐沉淀出来。
最后,将沉淀物进行过滤、洗涤和干燥,得到钛酸钡产物。
水热法是一种在高压高温水热条件下进行钛酸钡合成的方法。
首先,将钛酸四丁酯和硝酸钡等原料溶解在适量的溶剂中,如水或有机溶剂。
然后,将溶液转移到高压反应器中,在一定的温度和压力下进行反应。
随着时间的推移,钛酸钡会形成晶体沉淀。
最后,将沉淀物进行过滤、洗涤和干燥,得到钛酸钡产物。
固相法是一种将钛酸和钡盐直接进行反应合成钛酸钡的方法。
首先,将钛酸和钡盐按一定的摩尔比混合均匀。
然后,在高温下将混合物煅烧,使其发生反应生成钛酸钡。
最后,将产物进行冷却、研磨和筛分,得到钛酸钡的细粉末。
此外,还有其他方法如溶胶-凝胶法、电化学合成法等也可用于钛酸钡的合成。
这些方法都有各自的特点和适用范围,选择合适的方法是根据实际需求和条件进行确定的。
总之,钛酸钡的合成工艺技术包括溶液法、水热法、固相法等多种方法。
这些方法可以根据需要选择合适的合成条件和原料配比,从而获得高纯度、结晶度良好的钛酸钡产物。
随着科学技术的不断进步,钛酸钡的合成工艺技术也将不断改进和创新,以满足各个领域的需求。
钛酸钡是一种重要的无机化合物,具有优异的性能和广泛的应用前景。
它在电介质、声学、光学和电子器件等领域中发挥着重要的作用。
随着对钛酸钡性能和应用需求的不断提高,研究和掌握高效、低成本的合成工艺技术变得尤为重要。
钛酸钡的合成工艺技术主要包括溶液法、水热法和固相法等多种方法。
溶液法是钛酸钡合成中常用的方法之一。
这种方法的优点是反应条件温和,反应物易得,可以控制产物的形貌和晶型。
钛酸钡陶瓷制备实验报告(3篇)
第1篇实验目的本实验旨在了解钛酸钡陶瓷的制备过程,掌握固相反应法合成钛酸钡陶瓷的实验步骤,并通过对实验结果的分析,探讨影响钛酸钡陶瓷性能的关键因素。
实验原理钛酸钡(BaTiO3)是一种具有钙钛矿结构的压电陶瓷材料,广泛应用于电容器、传感器、换能器等领域。
钛酸钡陶瓷的制备主要通过固相反应法,即利用高温使钡源和钛源发生化学反应,生成钛酸钡晶体。
实验材料1. 纯度≥99.9%的钛酸钡原料2. 纯度≥99.9%的钡源3. 纯度≥99.9%的钛源4. 纯度≥99.9%的氧化铝(Al2O3)作为助熔剂5. 砂轮研磨机6. 高温炉7. 精密天平8. 精密移液器9. 烧结炉10. 显微镜11. X射线衍射仪(XRD)实验步骤1. 原料准备:称取适量的钛酸钡原料、钡源、钛源和氧化铝,精确至0.01g。
2. 原料混合:将称取好的原料放入球磨罐中,加入适量的去离子水,开启砂轮研磨机进行球磨,时间为2小时。
3. 干燥:将球磨后的浆料在60℃下干燥12小时,得到干燥的粉体。
4. 压制成型:将干燥后的粉体进行压制成型,得到尺寸为10mm×10mm×1mm的陶瓷片。
5. 烧结:将陶瓷片放入高温炉中,在1300℃下烧结2小时。
6. 性能测试:对烧结后的钛酸钡陶瓷进行XRD分析,测定其物相组成;使用显微镜观察其微观结构;测量其介电常数和介电损耗。
实验结果与分析1. XRD分析:通过XRD分析,发现钛酸钡陶瓷主要成分为BaTiO3,没有其他杂质相生成。
2. 微观结构:通过显微镜观察,发现钛酸钡陶瓷晶粒尺寸均匀,分布良好。
3. 介电常数和介电损耗:测量结果表明,钛酸钡陶瓷的介电常数为3450,介电损耗为1.89%,满足实验要求。
结论本实验采用固相反应法成功制备了钛酸钡陶瓷,实验结果表明,该方法能够得到物相组成单一、微观结构良好的钛酸钡陶瓷。
通过调整原料配比、球磨时间、烧结温度等因素,可以进一步优化钛酸钡陶瓷的性能。
钛酸钡制备实验报告
化学化工学院材料化学专业实验报告实验名称:压电陶瓷钛酸钡的制备年级:09级材料化学日期:2011-9-7 姓名:蔡鹏学号:222009316210096 同组人:邹磊一、预习部分电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。
由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。
钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。
主要制备方法1,固相法,即氧化物固相烧结法2,液相法,即溶胶---凝胶法,水热法和共沉淀法等固相法简介:以氢氧化钡和钛酸丁酯为原料,采用固相研磨和低温煅烧技术相结合的方法制得钛酸钡纳米材料粉体。
用XRD、TEM、IR和ICP对粉体进行表征结果表明,所得钛酸钡粉体的粒径约为15—20nm,粒子形状近似为球形,晶体结构为立方相,钛钡物质的量比约为1.0.样品制备:称取4.679Ba(OH)2・8H20于研钵中研细后,为668~892℃时,存在于晶格中的羟基被除去。
加人1ml无水乙醇,拌匀,使Ba(0H)2・8HzO被乙醇充分湿润,然后加入5.oml钛酸丁酯(使反应物中钡与钛的物质的量之比为1.01t1.o).混匀后,研磨30min,得白色糊状物,放置24h,变为白色粉末状体。
研细后,置于马弗炉中在不同温度下煅烧3h(将1马弗炉加热到所需温度后再放入样品),产物冷却后。
用50ml0.1mol/L的HAc溶液浸泡1h(洗去反应过程中Ba(OH)2吸收空气中的C02生成的BaC03),离心分离。
先用蒸馏水洗涤3次,再用蒸馏水和无水乙醇交替洗涤2次,置于恒温干燥箱中于80℃干燥6h,得BaTiO。
钛酸钡的制备方法
钛酸钡的制备方法
钛酸钡是一种无机化合物,化学式为BaTiO3,具有良好的介电性能和压电性能,在电子学和通信方面有广泛的应用。
本文将介绍钛酸钡的制备方法,包括溶胶-凝胶法、水热法、固相反应法等多种方法。
1. 溶胶-凝胶法
溶胶-凝胶法是一种通过水热反应制备钛酸钡的方法。
首先将钛酸四丙酯和钡丙酸盐在醇水溶液中混合,并加入分散剂,形成均匀的溶胶。
然后在高温高压条件下进行凝胶化反应,得到粉末状的前驱体。
最后,在高温下进行烧结得到钛酸钡。
这种方法能够制备出具有高纯度和均匀颗粒大小的钛酸钡。
2. 水热法
3. 固相反应法
固相反应法是一种传统的制备钛酸钡的方法。
首先将氧化钛和碳酸钡在高温下进行固相反应,生成钛酸钡和二氧化碳。
然后通过水洗和烘干等步骤处理得到钛酸钡粉末。
这种方法易于操作,但需要高温条件,且制备的钛酸钡粉末大小不一。
总之,钛酸钡具有广泛的应用前景,制备方法也有多种,可以根据不同的需要选择合适的方法。
随着科技的不断发展,钛酸钡的制备方法也会不断更新和改进。
钛酸钡
钛酸钡A 制取方法在TiO2—Ba0体系中,通过控制不同的钛钡比可制取偏钛酸钡(BaTiO3)、正钛酸钡(Ba2TiO4)、二钛酸钡(BaTi2O5)和多钛酸钡(BaTi3O7、BaTi4O9等),其中以偏钛酸钡最有应用价值。
制取偏钛酸钡的方法很多,可归纳为固相法和液相法两类。
固相法一般是以TiO2和BaCO3按摩尔比1:1混合,并可适当压制成形,放入1300℃左右氧化气氛炉中焙烧,其反应式为:TiO2十BaCO3=BaTiO3十CO2↑ (2—196)反应产物经破碎磨细为产品。
作为电子陶瓷材料使用的偏钛酸钡,在其生产中不希望有其他几种钛酸钡生成,所以原料的配比必须准确和混合均匀,这是该法的难点之一。
固相法产品因受原料纯度和制备过程的污染,一般纯度较低,活性较差,且较难磨细成超细粉。
液相法是以精制的四氯化钛和氯化钡为原料,使它们与草酸反应生成草酸盐Ba(TiO)(C2O4)2·4H2O沉淀,经焙烧获得偏钛酸钡。
液相法可获得高纯度、高活性和超细的产品,产品中钛钡比可达到很精确的程度。
我国已能用这种方法生产质量较好的适合于功能陶瓷使用的钛酸钡,但有待进一步改进工艺设备以提高产品质量的稳定性。
B 性质偏钛酸钡有四种不同的晶型,各具有不同的性质。
高于122℃稳定的是立方晶型,它不是一种强性电解质。
122℃是偏钛酸钡的居里点。
5~l 20℃下稳定的是正方晶型,它是一种强性电解质。
+5~-90℃下稳定的是斜方晶型,它也是一种强性电解质。
低于-90℃下稳定的是斜方六面体,它会发生极化。
偏钛酸钡是白色晶体,密度6.08 g/cm3,熔点1618℃,不溶于水,在热浓酸中分解。
偏钛酸钡可与其同素异形体、铬锆酸盐、铪酸盐等形成连续固溶体,这些固溶体具有强性电解质性质。
C 应用由于偏钛酸钡具有极高的介电常数、耐压和绝缘性能优异,是制造陶瓷电容器和其他功能陶瓷的重要原料。
用偏钛酸钡制造的电子陶瓷元件已在无线电、电视和通信设备中大量使用,使设备的性能提高和小型化,成为高频电路元件中不可缺少的材料。
固相烧结法制备钛酸钡陶瓷材料
固相烧结法制备BaTiO3 (BTO陶瓷材料钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。
它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。
钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。
因此BaTiO3粉体粒度、形貌的研究一在此温度以下,1460C以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmn直是国内外关注的焦点之一。
1材料结构钛酸钡是一致性熔融化合物,其熔点为1618C。
点群。
此时,六方晶系是稳定的。
在1460~130C之间钛酸钡转变为立方钙钛矿型结构。
在此结构中Ti4+(钛离子)居于02-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。
此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。
随着温度下降,晶体的对称性下降。
当温度下降到130C时,钛酸钡发生顺电-铁电相变。
在130~5C的温区内,钛酸钡为四方晶系4mn点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。
钛酸钡从立方晶系转变为四方晶系时,结构变化较小。
从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。
当温度下降到5C以下,在5~-90C温区内,钛酸钡晶体转变成正交晶系mm庶群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。
为了方便起见, 通常采用单斜晶系的参数来描述正交晶系的单胞。
这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。
钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。
从晶胞来看, 相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。
钛酸钡的制备工艺以及制备方法样本
1 前言钛酸钡是电子陶瓷材料的基础原料, 被称为电子陶瓷业的支柱。
它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能, 被广泛的应用于制造陶瓷敏感元件, 特别是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。
钛酸钡具有钙钛矿晶体结构, 用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。
因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。
钛酸钡粉体制备方法有很多, 如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。
最近几年制备技术得到了快速发展, 本文综述了国内外具有代表性的钛酸钡粉体的合成方法, 并在此基础上提出了研究展望。
2 钛酸钡粉体的制备工艺2.1 固相合成法固相法是钛酸钡粉体的传统制备方法, 典型的工艺是将等量碳酸钡和二氧化钛混合, 在1 500℃温度下反应24h, 反应式为: BaCO3+TiO2→BaTiO3+CO2↑。
该法工艺简单, 设备可靠。
但由于是在高温下完成固相间的扩散传质, 故所得BaTiO3粉体粒径比较大(微米), 必须再次进行球磨。
高温煅烧能耗较大, 化学成分不均匀, 影响烧结陶瓷的性能, 团聚现象严重, 较难得到纯BaTiO3晶相, 粉体纯度低, 原料成本较高。
一般只用于制作技术性能要求较低的产品。
2.2化学沉淀法2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂, 控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。
如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中, 加水分解产物可得沉淀的BaTiO3粉体。
该法工艺简单, 在常压下进行, 不需高温, 反应条件温和, 易控制, 原料成本低, 但容易引入BaCO3、TiO2等杂质, 且粒度分布宽, 需进行后处理。
2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合, 在一定条件下以一定速度滴加到草酸溶液中, 同时加入表面活性剂, 不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。
钛酸钡制备实验报告
化学化工学院材料化学专业实验报告实验名称:压电陶瓷钛酸钡的制备年级:09级材料化学日期:2011-9-7 姓名:蔡鹏学号:222009316210096 同组人:邹磊一、预习部分电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。
由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。
钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。
主要制备方法1,固相法,即氧化物固相烧结法2,液相法,即溶胶---凝胶法,水热法和共沉淀法等固相法简介:以氢氧化钡和钛酸丁酯为原料,采用固相研磨和低温煅烧技术相结合的方法制得钛酸钡纳米材料粉体。
用XRD、TEM、IR和ICP对粉体进行表征结果表明,所得钛酸钡粉体的粒径约为15—20nm,粒子形状近似为球形,晶体结构为立方相,钛钡物质的量比约为1.0.样品制备:称取4.679Ba(OH)2・8H20于研钵中研细后,为668~892℃时,存在于晶格中的羟基被除去。
加人1ml无水乙醇,拌匀,使Ba(0H)2・8HzO被乙醇充分湿润,然后加入5.oml钛酸丁酯(使反应物中钡与钛的物质的量之比为1.01t1.o).混匀后,研磨30min,得白色糊状物,放置24h,变为白色粉末状体。
研细后,置于马弗炉中在不同温度下煅烧3h(将1马弗炉加热到所需温度后再放入样品),产物冷却后。
用50ml0.1mol/L的HAc溶液浸泡1h(洗去反应过程中Ba(OH)2吸收空气中的C02生成的BaC03),离心分离。
先用蒸馏水洗涤3次,再用蒸馏水和无水乙醇交替洗涤2次,置于恒温干燥箱中于80℃干燥6h,得BaTiO。
10.钛酸钡粉体制备方法(55)
三、水热合成法 (1)定义 水热合成法系指在密闭的高压釜 中,通过将反应体系水溶液加热至 临界温度,从而产生高压环境并进 行无机合成的一种方法。 (2)水热合成BaTi03的反应机理。
16
其机理有二:一为原位转变机理。它假 设钛的前驱物溶解度较小,在反应体系中 不能完全溶解;而钡的前驱物则溶解度较 大,能以Ba2+形式参与反应。反应开始时, Ba2+与未溶解的Ti02反应,在其表面形成一 BaTi03薄层。为使反应继续进行,其它的 Ba2+必须扩散穿过这一薄层,才能与Ti02反 应,直至Ti02全部耗尽。显然, Ba2+的扩 散,与Ba2+和Ti02的反应,是控制合成反应 速度的两大要素。
25
26
其他方法
纳米材料与粗晶材料相比在物理和 机械性能方面有极大的区别。由于纳米 材料尺寸减小而引起材料物理性能的变 化主要表现在:熔点降低、开始烧结温 度降低、荧光谱峰向低波长移动、铁电 和铁磁性能消失及电导增强等。
现代科技要求电子陶瓷原料粉体具 有高纯、超细、粒径分布窄等特性。
27
国内外关于亚微米晶钛酸钡的制备方法 主要是液相法,大致分为:化学沉淀法、水 热合成法和溶胶凝胶法。化学沉淀法是在 金属盐类的水溶液中控制适当的条件使沉 淀剂与金属离子反应,产生水合氧化物或 难溶化合物,使溶质转化为沉淀,然后经 分离、干燥或热分解而得到纳米超微粒。 化学沉淀法又有草酸共沉淀法,碳酸盐共沉 淀法,双氧水共沉淀法和醇盐水解法等。
36
六、醇盐水解法
该法利用金属醇盐遇水易分解成醇 和氧化物或其水合物而本身具有挥发 性等特点,制备粒径为几十纳米的钛 酸钡晶体。先将异丙醇钡 Ba(OC3H7)2 和叔戊醇钛 Ti(OC5H11)4溶于异丙醇或 苯中,加水分解,然后再煅烧,可得 到粒径为15150nm、纯度为99.99%的 钛酸钡超微粒。
压电陶瓷材料钛酸钡的制备
化学化工学院材料化学专业实验报告实验名称:压电陶瓷材料钛酸钡的制备年级:2010级材料化学日期:2012年9月20日姓名:学号:同组人:一、预习部分压电陶瓷材料是一种能够将机械能和电能互相转换的功能陶瓷材料。
属于无机非金属材料,是一种具有压电效应的材料。
所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。
在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。
用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。
压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。
地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。
压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。
这不能不说是压电陶瓷的一大奇功。
压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。
谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。
它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。
实验一固相法合成钛酸钡粉体
实验一固相法合成钛酸钡粉体
一、实验目的:通过钛酸钡的固相合成,掌握固相法合成陶瓷粉体的
一般原理与实验方法。
、实验原理:化学反应方程式BaCO3+TiO2二BaTiO3+CO2f 三、实验方法:
a)工艺流程
3h
GhjlOOtfC
--------- 3h
固相反应法制备钛酸钡工艺流程
b)原料
碳酸钡BaCO3,化学纯
二氧化钛TiO2,化学纯
去离子水出0
c)实验步骤
(1)取等摩尔的TiO2和BaCO3粉体混合均匀,TiO?粉末10g、BaCO3 粉末
24.62g,加入球磨罐。
加入水量约40克水,球磨2h (每隔0.5h 反转一
次)。
(2)用筛子将浆料同磨球分离,用洗瓶将浆料冲洗到托盘中。
(3)将装好浆料的托盘,放入烘箱中干燥,烘箱温度调整在110C
4)秤取15g 粉末,用研钵磨碎,装入坩埚内,放入电炉内进行预烧,温度1000C,保温时间6h。
(5)电炉冷却后,待炉温低于150C,方可取出样品。
用研钵研磨分散,装入样品袋中。
四、实验报告的要求
( 1 )简述固相法合成钛酸钡粉末的原理和过程。
(2)每位学生必须亲自操作,整理完整的实验数据,并将自己合成的粉末选择一种方法(XRD 、SEM 或光学显微镜)进行分析或观察,写出实验报告。
10.钛酸钡粉体制备方法(55)解析
39
七、双氧水共沉淀法
该法主要是以偏钛酸为钛原料,用 双氧水、氨水及硝酸钡为添加剂,经 转化共沉淀得到纳米晶或亚微米钛酸 钡前驱体,再经热分解制备纳米或亚 微米钛酸钡。
40
其反应方程式为:
H2TiO3+H2O2+2NH3→(NH4)2Ti4O4+H2O
(NH4)2Ti4O4+Ba(NO3)2→BaTiO4↓
34
工艺流程及原理为:将等摩尔 的氯化钡溶液及四氯化钛水溶液 混合后 , 与六摩尔当量的碳酸氢 铵反应 , 得到胶体二氧化钛和碳 酸钡沉淀相互包裹的沉淀 , 经分 离洗涤、烘干、煅烧后得到钛酸 钡粉体。
35
该方法工艺简单,但氯根很难洗 净,容易带入杂质,特别是钙离 子,纯度偏低。还有一问题是加 料速度过快,会产生大量的气泡, 反应难以于控制,同时前驱体的 过滤也较困难。
30
粉料中含少量碳酸钡。若制备过程在 惰性气氛中进行,则碳酸钡含量减少, 但不能完全消除。因为干燥过程中,粉 体与空气中的二氧化碳反应也能形成少 量碳酸钡,随煅烧温度的提高到 1000℃ 时,碳酸钡全部分解,粉体为纯的钛酸 钡相。 该方法的优缺点为:制备的颗粒团 聚较少,颗粒分散性好,粒径分布也较 均匀,但含少量碳酸钡。
18
水热合成法是把含有钡和钛的前体 (一般是氢氧化钡和水合氧化钛)水浆 体,置于较高的温度和压力下(相对于 常温、常压),使它们发生化学反应。 经过一定时间后,钛酸钡粉体就在这 种热水介质中直接生成。该法制备的 晶粒发育完整,粒度分布均匀,颗粒 之间很少团聚。
19
采用氢氧化钡和偏钛酸为原料合成钛 酸钡,在反应过程中会生成少量的BaCO3, 但在其后的煅烧阶段少量的碳酸钡会进一 步与偏钛酸反应,还有少量的碳酸钡用醋酸 洗涤,再水洗即可除掉;煅烧温度 600700℃,降低了煅烧温度;分析结果显 示,所得产品纯度高,粒径小,能满足电 子工业对高质量钛酸钡粉体的需求。
钛酸钡陶瓷制备工艺的总结
钛酸钡陶瓷制备工艺的总结摘要:钛酸钡陶瓷作为一种应用广泛的电子陶瓷原料,因其具有较高的介电常数,良好的性能,在制作电容器介质材料和多种压电器件方面有着重要地位。
本文总结了钛酸钡陶瓷制备工艺方法及优缺点,对未来钛酸钡陶瓷制备工艺进行了展望。
关键词:钛酸钡陶瓷、制备工艺、优缺点、展望钛酸钡陶瓷是以钛酸钡或其固溶体为主晶相的陶瓷材料,是目前国内外应用最广泛的电子陶瓷原料之一,由于其具有高的介电常数,良好的铁电、压电、耐压及绝缘性能,主要用于制作高电容电容器、多层基片、各种传感器、半导体材料等[1]。
钛酸钡陶瓷粉体是制备钛酸钡电子陶瓷的基础,制备工艺的不同,往往会影响钛酸钡的微观形貌以及组织结构,进而改变其介电性能、居里温度等性质,因此对钛酸钡陶瓷制备方法的总结十分必要。
近年来,随着科技发展,人们对钛酸钡电子陶瓷材料的要求逐步提升。
为此,本文从钛酸钡陶瓷的制备工艺及其优缺点方面,对钛酸钡陶瓷当前的制备工艺进行了综述和展望。
1.钛酸钡陶瓷制备工艺钛酸钡陶瓷的制备工艺,大致可分为固相法、液相法和气相法三大类,其中将溶胶-凝胶法单独拿出进行总结。
1.1.固相法1.1.1.机械力化学法机械化学合成法是将TiO2和BaCO3粉体经混合球磨,诱导合成BaTiO3粉体,再经造粒压片、固相烧结等制得陶瓷样品的方法,近年来发展迅速。
因其流程简单,合成粉体晶粒的尺寸小、分散较为均匀等优点,成为纳米粉末材料重要的制备方式,但长时间的机械处理,使得能量消耗大,研磨介质磨损易造成物料污染,从而影响产品纯度。
蒲永平等[2]用球磨法合成BaTiO3粉体时发现BaCO3和TiO2在球磨过程中会发生凝聚,且BaCO3是导致凝聚的主要原因,不均匀性导致BaTiO3介电性能恶化,且搅拌磨制得的BaTiO3粉体介电性能比滚筒磨制得的更好。
1.1.2.固相反应法固相法通常是粉末碳酸钡和二氧化钛为主要原料进行混合研磨,经煅烧发生固相反应合成BaTiO3粉体,进而制得钛酸钡陶瓷材料。
钛酸钡粉体制备
钛酸钡纳米粉体的制备方法摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。
关键词:钛酸钡;粉体;制备方法;1.引言钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。
制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。
所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直是各国科学家的研究重点。
钛酸钡的应用越来越广泛。
目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。
2.钛酸钡粉体的制备工艺2.1固相研磨-低温煅烧法传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。
朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃2.2水热法合成水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的自生压力下, 原始混合物进行反应的一种合成方法。
由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长基元, 进行成核结晶生成粉体或纳米晶[2]。
水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。
压电陶瓷材料钛酸钡的制备实验报告
化学化工学院材料化学专业实验报告实验实验名称:压电陶瓷材料钛酸钡的制备年级:2015级材料化学日期:2017/09/27姓名:汪钰博学号:222015316210016同组人:向泽灵一、预习部分钛酸钡(BaTiO3)是经典的铁电、压电陶瓷材料,由于其具有高的介电常数,良好的铁电、压电、耐压及绝缘性能,主要用于制作高电容电容器、多层基片、各种传感器、半导体材料和敏感元件;在电子陶瓷、化学化工、国防军事、航空航天等诸多领域中有着极为广泛的应用。
随着现代科学技术的飞速发展和电子元件的小型化、高度集成化,需要制备与合成符合发展要求的高质量的钛酸钡基陶瓷粉体。
目前钛酸钡的主要制备方法有固相法,即氧化物固相烧结法;液相法,即溶胶-凝胶法、水热法和共沉淀法等。
由于固相法无法对钛酸钡生产过程中粉体微观结构和性能进行物理、化学方法的有效控制,从8O年代开始,液相法逐渐成为各国普遍重视的方法。
水热法制备的粉体,由于特殊的反应条件,具有粒度小、分布均匀,团聚较少的优点,且其原料便宜,易得到符合化学计量比并具有完整晶形的产物;同时粉体无需高温煅烧处理,避免了晶粒长大、缺陷的形成和杂质的引入,具有较高的烧结活性等。
但这些工作或者合成的BaTiO3为亚稳态的立方相结构而非四方相,无法满足电子元件性能的需要;或者水热所需的温度高,时间长,从而导致设备成本过高;又或者水热合成需要使用有机钛为原料,从而导致生产成本过高。
这些原因导致无法实现四方相BaTiO3纳米粉末水热合成的规模化生产。
同时水热法在粉体中存在杂质,也限制了该法的应用,因此,尚未见该法在工业上应用的报道,基本上处于实验室探索的阶段。
溶胶---凝胶法多采用蒸馏或重结晶技术保证原料的纯度,工艺过程中不引入杂质粒子,所得粉体粒径小、纯度高、粒径分布窄。
但其原料价格昂贵、有机溶剂具有毒性以及高温热处理会使粉体快速团聚,并且其反应周期长,工艺条件不易控制,产量小,难以放大和工业化。
【CN109796042A】一种加胶制备固相法钛酸钡方法【专利】
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910179995.5(22)申请日 2019.03.11(71)申请人 湖北天瓷电子材料有限公司地址 448000 湖北省荆门市东宝工业园区安栈口路7号(72)发明人 资美勇 万亚锋 吴浩 (74)专利代理机构 武汉智嘉联合知识产权代理事务所(普通合伙) 42231代理人 周伟(51)Int.Cl.C01G 23/00(2006.01)(54)发明名称一种加胶制备固相法钛酸钡方法(57)摘要固相法是常见的钛酸钡制备方法,但是存在烧结分散不均问题,许多研究提出采用微波,喷雾等烘干技术,提高了粉体煅烧分散性能。
但是微波或喷雾技术相对蒸汽烘箱干燥技术,成本高,且无法解决高温煅烧团聚问题。
本发明通过加胶固化二氧化钛与钛酸钡的研磨粉末,后经烘干、煅烧,保证了在钛酸钡在煅烧成型过程中的均一性,避免了现有烘箱干燥偏析问题及高温团聚问题,从而提高钛酸钡产品Ba/Ti比不均匀及产品分散差问题。
权利要求书1页 说明书4页 附图1页CN 109796042 A 2019.05.24C N 109796042A1.一种加胶制备固相法钛酸钡的方法,其特征在于如下步骤:(1)溶剂配制:在搅拌状态下,将胶水与分散剂加到水中,制得溶液a;(2)搅拌砂磨:将二氧化钛与碳酸钡加到步骤1溶液a中,循环砂磨30-60min;(3)烘干:采用烘箱干燥(20—150℃),水分低于0.5%时手动研磨过40目筛网;(4)煅烧:温度1000℃-1100℃,升温速率3℃/min,保温2-3小时。
2.根据权利要求1所述一种加胶制备固相法钛酸钡的方法,其特征在于:步骤(1)中使用的胶水与水的比例为5:100。
3.根据权利要求2所述的一种加胶制备固相法钛酸钡的方法,其特征在于:步骤(1)中使用的胶水为聚乙烯醇pva1788和乙酸乙烯混合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固相法制备钛酸钡
来源:世界化工网()
固相法师将等物质的量的钡化合物(如BaCO3)和钛化合物(如TiO2)混合,研磨后,在如干个压力下挤压成型,然后与1200℃进行煅烧,煅烧物再粉碎,湿磨,压滤,干燥,研磨,即得钛酸钡粉体成品。
该工艺的流程稍长一些,通常固相法具有工艺、设备简单,原料易得的优点。
所用的钡原料主要是碳酸钡,也有用草酸钡、氧化钡或柠檬酸钡等;钛原料一般是二氧化钛。
原料BaCO3和TiO2的化学成分、纯度、晶型、粒径等是至关重要的因素。
BaCO3要注意分析碱金屑氧化物及SrO的含量。
如K+ ,Na + 多,则导致BaTiO3瓷烧结时粘壁和难以半导体化;SrO多则烧结困难,但能提高介电常数。
氯化法生产的TiO2可除去Nb2O5。
,而硫酸法生产的TiO2,要使Nb2O5含量低于0.2%是很困难的,而
Nb2O5的存在不利于半导体化。
影响固相法产品质量和能耗的其他重要因素分述如下:
(1)原料颗粒大小的影响在固相反应中,所用粉末较径越大,所需反应时间越长,温度越高。
即使粉末很细,若混合不好,备组分之
间结成块状,也会出现与使用大额粒粉末相同的现象。
一般情况
TiO2粒径越大,反应速度越僵,正钛酸钡副产物越多。
若用氯化
法所得了TiO2粉末时,在O2和CO2气氛中,反应可在低干1000℃下完成、得到精细的BaTiO3粉末,颗粒小于0.15μm,反应活
性明显地增加。
当颗粒大小基本一样,而聚集状态不同时,如用
高度分散的TiO2,BaTiO3是唯一的产物;而用聚集的TiO2,,
则生成Ba2TiO4,BaTi4O9副产物。
通过球磨破坏大的TiO2:
集体,可以减少副产物的量。
延长球磨时间,产品质量基本上一
致,同细TiO2情况一样。
BaTiO3的颗粒大小可由原料TiO2颗
粒大小来控制,而与BaCO3颗粒大小无关。
(2)研磨状态的影响研磨可以加快生成BaTiO3的反应速度,并可降低反应温度。
等物质的量混合研磨,可使颗粒明显的减小,在混
合研磨20h后,BaCO3与TIO2在715℃便开始反应并达到高峰,。
若分别研磨欲达到平均粒径10-3 ——10 -4 mm TiO2和平均长
度10-3 mm针状BaCO3是比较困难的,在真空下混合研磨48h,500℃便开始反应,生成BaTiO3,800℃反应完成,而不研磨750℃才开始反应,1100℃终止。
(3)原料TiO2结晶类型的影响在BaCO3和TiO2反应中,TiO2
在BaO表面的扩散速度是控制步骤,金红石型TiO2活化能是
4.14X105 J/mol,锐钛型TiO2的活化能为2.43 X105 J/mol。
因
此推荐用锐钛型TiO2制BaTiO3。
(4)添加剂的影响据报道用LiF作添加剂的试验:BaCO3和TiO2的混合物没有加入LiF时,BaCO3>600℃开始分解,并伴
有BaTiO3生成,加了LiF后,BaCO3按两步分解,第一步在
400~500℃开始,同时程程氟化钡锂和氟化钡,经第一步分解后,500~600℃生成少量的BaTiO3,大于700℃反应迅速进行。