南京市2017届高三年级三模数学卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市2017届高三年级第三次模拟考试

数 学 2017.05

注意事项:

1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.

2.答题前,请务必将自己的、学校写在答题卡上.试题的答案写在答题卡...

上对应题目的答案空格.考试结束后,交回答题卡. 参考公式:

方差s 2=1n

[(x 1-x )2+(x 2-x )2+…+(x n -x )2

],其中x 为x 1,x 2,…,x n 的平均数.

柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 锥体的体积公式:V =1

3

Sh ,其中S 为锥体的底面积,h 为锥体的高.

一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......

上. 1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁

U (A ∪B )= ▲ .

2.甲盒子中有编号分别为1,2的2个乒乓球,乙盒子中有编号分别为3,4,5,6的4个乒乓球.现分别从两个盒子中随机地各取出1个乒乓球,则取出的乒乓球的编号之和大于6的概率为 ▲ . 3.若复数z 满足z +2-

z =3+2i ,其中i 为虚数单位,-

z 为 复数z 的共轭复数,则复数z 的模为 ▲ .

4.执行如图所示的伪代码,若输出y 的值为1, 则输入x 的值为 ▲ .

5.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 ▲ .

6.在同一直角坐标系中,函数y =sin(x +π3) (x ∈[0,2π])的图象和直线y =1

2

的交点的个数是

7 7 9 0 8 9

4 8 1 0

3 5 甲 乙 (第5题图)

(第4题图)

▲ .

7.在平面直角坐标系xOy 中,双曲线x 22m 2-y 2

3m

=1的焦距为6,则所有满足条件的实数m 构成的集合是

▲ .

8.已知函数f (x )是定义在R 上且周期为4的偶函数.当x ∈[2,4]时,f (x )=|log 4(x -3

2)|,

则f (1

2

)的值为 ▲ .

9.若等比数列{a n }的各项均为正数,且a 3-a 1=2,则a 5的最小值为 ▲ . 10.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D

为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为 ▲ .

11.(2017三模)若函数f (x )=e x

(-x 2

+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为 ▲ .

12.(2017三模)在凸四边形ABCD 中, BD =2,且AC →·BD →=0,(AB →+→DC )•(→BC +→AD )=5,则四边形ABCD 的面积为 ▲ .

13.(2017三模) 在平面直角坐标系xOy 中,圆O :x 2

+y 2

=1,圆M :(x +a +3)2

+(y -2a )2

=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30,则a 的取值围为 ▲ . 14.(2017三模)已知a ,b ,c 为正实数,且a +2b ≤8c ,2a +3b ≤2c ,则3a +8b c

的取值围为 ▲ .

二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......

作答,解答时应写出文字说明、证明

过程或演算步骤.

15.(2017三模)(本小题满分14分)如图,在三棱锥A -BCD 中,E ,F 分别为棱BC ,CD 上的点, 且BD ∥平面AEF .

(1)求证:EF ∥平面ABD ;

(2)若BD ⊥CD ,AE ⊥平面BCD ,求证:平面AEF ⊥平面ACD .

16.(2017三模)(本小题满分14分)已知向量a =(2cos α,sin 2

α),b =(2sin α,t ),α∈(0,π

2).

(1)若a -b =(25,0),求t 的值;(2)若t =1,且a • b =1,求tan(2α+π

4

)的值.

17.(2017三模)(本小题满分14分)在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB ,AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中,CD =10米;三角形水域ABC

A

C

B

A 1

B 1

C 1

D

(第10题图)

A

B

C

F

E D

(第15题图)

的面积为4003平方米.设∠BAC =θ. (1)求BC 的长(用含θ的式子表示);

(2)若表演台每平方米的造价为0.3万元,求表演台的最低造价.

18.(2017三模)(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b

2=1(a >b >0)的右顶

点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM →·AB →

=-32b 2.

(1)求椭圆的离心率;

(2)已知a =2,四边形ABCD 接于椭圆,AB ∥DC .记直线AD ,BC 的 斜率分别为k 1,k 2,求证:k 1·k 2为定值.

19.(2017三模)(本小题满分16分)已知常数p >0,数列{a n }满足a n +1=|p -a n |+2 a n +p ,n ∈N *

(1)若a 1=-1,p =1,①求a 4的值;②求数列{a n }的前n 项和S n .

(2)若数列{a n }中存在三项a r ,a s ,a t (r ,s ,t ∈N *

,r <s <t )依次成等差数列,求a 1

p

的取值围. 20.(2017三模)(本小题满分16分)已知λ∈R ,函数f (x )=e x

-e x -λ(x ln x -x +1)的导函数为g (x ). (1)求曲线y =f (x )在x =1处的切线方程; (2)若函数g (x )存在极值,求λ的取值围; (3)若x ≥1时,f (x )≥0恒成立,求λ的最大值.

市2017届高三第三次模拟考试

数学参考答案及评分标准

一、填空题(本大题共14小题,每小题5分,计70分.)

1.{2} 2.3

8

3.

5 4.-1 5.6.8 6.2

7.{32} 8.12 9.8 10.13 11.-1+52 12.3

13.[-6

5

,0] 14.[27,30]

二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤) 15.(本小题满分14分)

证明:(1)因为BD ∥平面AEF ,BD 平面BCD ,平面AEF ∩平面BCD =EF , 所以 BD ∥EF . …………………… 3分 因为BD 平面ABD ,EF 平面ABD ,所以 EF ∥平面ABD . …………………… 6分 (2)因为AE ⊥平面BCD ,CD

平面BCD ,所以 AE ⊥CD . …………………… 8分

x y O

C

B

D

M

A (第18题图)

相关文档
最新文档