第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

合集下载

中考数学常见几何模型专题11 最值模型-阿氏圆问题(解析版)

中考数学常见几何模型专题11 最值模型-阿氏圆问题(解析版)

专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。

在各类考试中都以高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。

【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。

【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。

故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。

如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。

例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,△ACB=90°,CB=7,AC=9,以C为圆心、3为半径作△C,P为△C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.PC CM例2.(2020·广西中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P 是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是_____..【分析】在AB上取一点T,使得AT=1,连接PT,P A,CT.证明,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【详解】解:在AB上取一点T,使得AT=1,连接PT,P A,CT.ABCEF12PAT BAP∽PTPBAPAB12 1212∵P A =2.AT =1,AB =4,∵P A 2=AT •AB ,∵=, ∵∵P AT =∵P AB ,∵,∵==,∵PT =PB ,∵PB +CP =CP +PT ,∵PC +PT ≥TC ,在Rt 中,∵∵CAT =90°,AT =1,AC =4, ∵CT,∵PB +PC,∵PB +PC.【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.例3.(2022·四川成都·模拟预测)如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC -的最大值为_______.23BM BP =4=PA ATABPA PAT BAP ∽PT PB AP AB 121212ACT 1212PBM ∠=2PC BP 22四边形Rt CDM 中,【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造例4.(2022·浙江·舟山九年级期末)如图,矩形ABCD 中,4,2AB AD ==,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP +的最小值为( )A B C D ,通过两组对应边成比例且夹角相等,证明BPG BAP ,得的长得到最小值.△BPG BAP ,△DP ,当P 、D 、G 4913=+=.故选:1例5.(2022·广东·广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (5,3),点P 是第一象限内一动点,且135APB ∠=︒,则4PD +2PC 的最小值为_______.为半径作O ,在优弧135APB =︒OP OA =,△2OP OC OT =,△OP OC1PT OP1例6.(2021·浙江金华·一模)问题提出:如图1,在等边△ABC中,AB=9,△C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又△△PCD=△△△△△13=PDBP△PD=13BP△AP+13BP=AP+PD△当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,△COD=120°,OC=4.OA=2,OB=3,点P是CD上一点,求2P A+PB的最小值,画出示意图并写出求解过程.证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,△A的半径为2,点P是△A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,△A=60°,△A的半径为2,点P是△A上的一个动点,求2PC−PB的最大值.例8.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点AB 、,则所有符合0(PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又,POD MOP POMDOP ∠=∠∴.任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC 中,90,4,3,ACB AC BC D ∠=︒==为ABC 内一动点,满足2CD=,利用()1中的结论,请直接写出23AD BD+的最小值.提示:AC m=【点睛】此题主要考查了新定义的理解与应用,快速准确的掌握新定义并能举一反三是解题的关键课后专项训练1.(2022·福建南平九年级期中)如图,在Rt△ABC中,△ACB=90°,CB=7,AC=9,以C为圆心、3为半径作△C,P为△C上一动点,连接AP、BP,则13AP+BP的最小值为()A.B.C.D.△PCE△△BP,当B1=△EB=2.(2022·江苏·无锡市九年级期中)如图,△O与y轴、x轴的正半轴分别相交于点M、点N,△O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为___.3.(2022·陕西·三模)如图,在四边形ABCD 中, AB =260AC BAC ACD =∠=∠=︒,,设•AD k BD =,则k 的最小值为 ___________.1##1-【分析】如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.由ABE MBD ∽,推出,使得ABE MBD ∽,取Rt ACJ 中,BM CD CJ ⊥,△ABE MBD ∽,△BE DB EF FB =,△12AF =4.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点A, B ,所有满足PAPB=k ( k 为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB = 4 ,AB= 2AC ,则△ABC 面积的最大值为_____.3333【点睛】此题考查的是相似三角形的判定及性质、确定点的运动轨迹和求三角形的面积,掌握相似三角形的判定及性质、圆的定义和三角形的面积公式是解决此题的关键.5.(2022·浙江·九年级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.6.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在CG的最小值为_____.边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+127.(2022·山西·九年级专题练习)如图,在ABC 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA 的最小值是___________.28.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,△B的半径为2,点P是△B上的一个PC的最大值为_____.动点,则PD﹣12BC PB BC2PB49.(2022·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为△O,P是△O A +PB的最小值为________.10.(2022·山东·九年级专题练习)如图,在Rt ABC 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.CP CD121CP CD111.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +23PC 的最小值为__,PD ﹣23PC 的最大值为__.(2)如图2,已知菱形ABCD 的边长为4,△B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+12PC 的最小值为__,PD ﹣12PC 的最大值为__.,先证明PBGCBP ,得到共线时取等号),从而计算出(当且仅当G 、P 、交于点F ,解法同(64PB BG =PBGCBP ∴,∴23PG PC ∴=,PD ∴PD PG DG +≥(当且仅当32PD PC +,32PD PC -23PD PC ∴-,故答案为:(2)如图上取一点G ,使得21PB BG =4BC PBG CBP ∴,∴PD PG DG +≥(当且仅当PD PG ∴+的最小值为在Rt CDF 中,DCF ∠在Rt GDF 中,DG 12PD PC -=【点睛】本题考查圆的综合题、正方形的性质、菱形的性质、相似三角形的判定与性质,解决问题的关键是学会构建相似三角形解决问题.12.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC 中,AB =12,△C 半径为6,P 为圆上一动点,连结AP ,BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =3,则有CDCP=CPCB=12,又△△PCD=△BCP,△△PCD△△BCP,△PDBP=12,△PD=12BP,△AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,13AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,△COD=120°,OC=4,OA=2,OB=3,点P是CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.13.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +4PC +的最小值,12PD PC -的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC +的最小值,23PD PC -的最大值,PC 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC+的最小值和12PD PC -的最大值.PC 的最小值241PB BC BG =PB BC PBG ∠=PG BG PC PB ∴=△DP+PG≥DG 12PD PC -当点P 在2,PBF ∠=三点共线时会有33694PB BC BG =PB BC ,PBG ∠=PG BG PC PB ∴=PC DP =+△DP+PG≥DG 23PD PC +的值最小,最小值为23PD PC -DG 的延长线上时,(3)如图,使得BG=1,作241PB BC BG =PB BC ,PBG ∠=PG BG PC PB ∴=12PC DP =△DP+PG≥DG 12PD PC+的值最小,最小值为在Rt△CDF △DF=CD•sin60°=14.(2022·山东聊城·二模)如图,抛物线2y x bx c =-++经过点()4,4A --,()0,4B ,直线AC 的解析式为162y x =--,且与y 轴相交于点C ,若点E 是直线AB 上的一个动点,过点E 作EF x ⊥轴交AC 于点F .(1)求抛物线2y x bx c =-++的解析式;(2)点H 是y 轴上一动点,连结EH ,HF ,当点E 运动到什么位置时,四边形EAFH 是矩形?求出此时点E ,H 的坐标;(3)在(2)的前提下,以点E 为圆心,EH 长为半径作圆,点M 为E 上以动点,求12AM CM +的最小值.交E 于点G ),24k +,E 或32k =-)6△PC =交E 于点M 51225=△12ME AE =△PM 【点睛】本题是二次函数的综合题,主要考查了待定系数法求函数解析式,平行四边形的性质,矩形的性式,利用中点坐标公式构建方程,以及构造相似三角形.15.(2022·江苏泰州·一模)如图,已知Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,E 是AB 上的一点,5BE =,点D 是线段BC 上的一个动点,沿AD 折叠ACD ∆,点C 与C '重合,连接BC '.(1)求证:AEC AC B ''∆∆∽;(2)若点F 是BC 上的一点,且BF =,①若BC F '∆与BC E '∆请用无刻度的直尺和圆规在图(2)中作出折叠后的AC D '∆(保留作图痕迹,不写作法);②求32BC FC ''+的最小值.BC F BC ES S''=△ABC ,连接【点睛】本题考查折叠问题,尺规作图:作角平分线,相似三角形的判定与性质,勾股定理,最短距离问题,本题综合性强,难度较大.16.(2022·广东·九年级专题练习)如图1,已知正方形ABCD ,AB =4,以顶点B 为直角顶点的等腰Rt△BEF 绕点B 旋转,BE =BFAE ,CF .(1)求证:△ABE △△CBF .(2)如图2,连接DE ,当DE =BE 时,求S △BCF 的值.(S △BCF 表示△BCF 的面积)(3)如图3,当Rt△BEF 旋转到正方形ABCD 外部,且线段AE 与线段CF 存在交点G 时,若M 是CD 的中点,P 是线段DGMP +PG 的值最小时,求MP 的值. 【答案】(1)见解析(2)2或【分析】(1)由“SAS ”可证△ABE △△CBF ;(2)由“SSS ”可证△ADE △△ABE ,可得△DAE =△BAE =45°,可证AH =EH ,由勾股定理可求BE 的长,即可求解;(3)先确定点P 的位置,过点B 作BQ △CF 于Q ,由勾股定理可求CE 的长,由平行线分线段成比例可求解.(1)证明:△四边形ABCD 是正方形,△AB =BC ,△ABC =90°, △△EBF =90°=△ABC ,△△ABE =△CBF , 又△BE =BF ,AB =BC ,在△ABE 和△CBF 中,AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△CBF (SAS ); (2)解:如图2,过点E 作EH △AB 于H ,17.(2022·河北·九年级专题练习)如图1,在RT△ABC中,△ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①12AP BP+,②2AP BP+,③13AP BP+,④3AP BP+的最小值..根据作图结合题意易证DCP PCB~,即可PD+最小,最小值即Rt ACD中,利用勾股定理求出1)2AP BP+,使23CE=,根据作图结合题意易证ECP PCA~,即可得出13EP AP=,EP BP+,说明当最小,最小值即为BE长.中,利用勾股定理求出BE的长即可;AD.1CD CP △DCP PCB ~, BP ,△12AP BP AP +=三点共线时,AP PD +最小,最小值即为Rt ACD 中,2226AC CD +=1)2AP BP BP +=+,△2AP BP +如图,在CA 321CE CP △ECP PCA ~,△EP AP 三点共线时,EP BP +最小,最小值即为224BC CE =+=)AP BP +,△3AP BP +【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.。

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习线段和差最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kP A+PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=.证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:FEDCBAABCDE如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kP B ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:例:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路. 法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23. 【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的! P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.已知PA 、圆确定PB已知PA 、PB 之比确定圆如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.练习题1.如图,在ABC∆中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.2.如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12 PD PC-的最大值为_______.3.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣12PC的最大值为.A BCDAB CDP4.如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.5.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+14PB的最小值为.7.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13P A+PB的最小值为.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是弧AB上一动点,则PC+12PD的最小值为.10.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+12AP的最小值是.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.12.如图,P为菱形ABCD内一点,且P到A、B两点的距离相等,若∠C=60°,CD=4,则PB+12PD的最小值为.13.如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 .14. 如图,已知抛物线y=ax 2+bx+c(a≠0)过A 、B 两点,OA=1,OB=5,抛物线与y 轴交于点C ,点C 的纵坐标与点B 的横坐标相同,抛物线的顶点为D.(1) 抛物线的解析式为_________________,顶点D 的坐标为__________.(2) 如图,已知⊙A 的半径为2,点M 是⊙A 上一动点,连接CM 、MB ,则13CM+BM 是否存在最小值?若存在,说明在何处取得最小值;若不存在,请说明理由.参考答案2.5 4.1635.6-6.2 8.5 9.13214.(1)y=x 2-6x+5 D(3,-4)(2)AH=13AM ,当H 、M 、B 13CM+BM 取最小值.。

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25 OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DPMPDCBA【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=37例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF ⊥BC 于F .∵PB 2=4,BE •BD =×4=4,∴BP 2=BE •BD ,∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴==,∴PE =PD ,∴PD +4PC =4(PD +PC )=4(PE +PC ),∵PE +PC ≥EC ,在Rt △EFC 中,EF =,FC =,∴EC =,∴PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCD P MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.[答案]:25.3. 如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.[答案]37.4. 如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C 的半径为2,点P 是C 上的一动点,则12AP PB+的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?[答案]426. 如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵P A2=9,AE•AD=×6=9,∴P A2=AE•AD,∴=,∵∠P AE=∠DAP,∴△P AE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

中考最值难点突破阿氏圆问题(解析版 )

中考最值难点突破阿氏圆问题(解析版 )

中考最值难点突破阿氏圆问题模块一典例剖析+针对训练【模型简介】在圆上找一点P使得PA+k·PB的值最小.类型一:求和最小求PA+k·PB的最小值,PA+k·PB=PA+PC≥AC,当A,P,C三点共线时,最小值为AC1.(2019秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+23BD的最小值.思路引领:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC =23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.总结提升:本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理,两点之间线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+12BP的最小值.思路引领:连接CP,在CB上取点D,使CD=1,连接DP、AD,则有CDCP=CPCB=12,以此可证明△PCD ∽△BCP ,即可得到PD BP=12,AP +12BP =AP +PD ,以此可推出当点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长,再根据勾股定理即可求解.解:连接CP ,在CB 上取点D ,使CD =1,连接DP 、AD ,则有CD CP =CP CB=12,∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,要使AP +12BP 最小,只要AP +PD 最小,当点A 、P 、D 在同一条直线上时,AP +PD 最小,即AP +12BP 的最小值为AD 的长,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37.∴AP +12BP 的最小值为37.总结提升:本题主要考查相似三角形的判定与性质、勾股定理,根据题意分析出点A 、P 、D 在同一条直线上时,AP +12BP 的最小值为AD 的长是解题关键.2.如图,在平面直角坐标系xOy 中,A (6,-1),M (4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO +2PA 的最小值为10.思路引领:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .证明△PMN ∽△OMP ,推出PN OP=MN MP =12,推出PN =12OP ,推出OP +2OA =212OP +PA =2(PN +PA ),再根据PN +PA ≥AN ,求出AN ,可得结论.解:连接OM ,在OM 上截取MN ,使得MN =2,连接PN ,AN .∵M(4,4),∴OM=42+42=42,∵PM=22,MN=2,∴PM2=MN•MO,∴PM MN =MO PM,∵∠PMN=∠OMP,∴△PMN∽△OMP,∴PN OP =MNMP=12,∴PN=12OP,∵N(3,3),A(6,-1),∴AN=32+42=5,∴OP+2OA=212OP+PA=2(PN+PA),∵PN+PA≥AN,∴PN+PA≥5,∴OP+2OA≥10,∴OP+2OA的最小值为10,故答案为:10.总结提升:本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+ 12PD的最小值;问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+35MD的最小值.思路引领:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求,再根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,在AD上截取AE,使得AE=32.首先证明△PAE∽△DAP,推出PE DP=PA AD =12,可得PE=12PD,推出PC+12PD=PC+PE,利用三角形的三边关系即可解决问题;(3)如图3中,如图2中,在AD上截取AE,使得AE=9.由△MAE∽△DAM,推出EMMD =MA AD =1525=35,可得ME=35MD,推出MC+35MD=MC+ME,利用三角形的三边关系即可解决问题;解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=32.∵PA2=9,AE•AD=32×6=9,∴PA2=AE•AD,∴PA AD =AEPA,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴PE DP =PAAD=12,∴PE=12PD,∴PC+12PD=PC+PE,∵PC+PE≥EC,∴PC+12PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=9 2,∴EC=62+92 2=152,∴PC+12PD的最小值为152.(3)如图3中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴MA AD =AE MA,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴EM MD =MAAD=1525=35,∴ME=35MD,∴MC+35MD=MC+ME,∵MC+ME≥EC,∴MC+35MD的最小值为EC的长,此时点M在线段EC上(如图M′).在Rt△CDE中,∠CDE=90°,CD=18,DE=16,∴EC=162+182=2145,∴MC+35MD的最小值为2145.总结提升:本题属于四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系,最短问题等知识,解题的关键是运用数形结合的思想解决问题,添加常用辅助线,构造相似三角形解决问题,用转化的思想思考问题,属于中考压轴题.类型二: 求差最大2.(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC的最大值为 237 .思路引领:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.利用相似三角形的性质证明PG=12PC,再根据PD-12PC=PD-PG≤DG,求出DG,可得结论.解:连接PB,在BC上取一点G,使得BG=2,连接PG,DG,过点D作DH⊥BC交BC的延长线于H.∵PB=4,BG=2,BC=8,∴PB2=BG•BC,∴PB BG =BC PB,∵∠PBG=∠CBP,∴△PBG∽△CBP,∴PG PC =PBBC=12,∴PG=12PC,∵四边形ABCD是菱形,∴AB∥CD,AB=CD=BC=8,∴∠DCH=∠ABC=60°,在Rt△CDH中,CH=CD•cos60°=4,DH=CD•sin60°=43,∴GH=CG+CH=6+4=10,∴DG=GH2+DH2=102+(43)2=237,∵PD-12PC=PD-PG≤DG,∴PD-12PC≤237,∴PD-12PC的最大值为237.总结提升:本题考查阿氏圆问题,菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.针对训练1.(2022•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD-12PC的最大值为5.思路引领:由PD-12PC=PD-PG≤DG,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=5.解:在BC上取一点G,使得BG=1,如图,∵PB BG =21=2,BCPB=42=2,∴PB BG =BC PB,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴PG PC =BGPB=12,∴PG=12PC,当点P在DG的延长线上时,PD-12PC的值最大,最大值为DG=42+32=5.故答案为:5总结提升:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=12 PC(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+ 12PC的最小值.(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD-12PC的最大值.思路引领:(1)通过相似三角形△BPN∽△BCP的性质证得结论;(2)如图2中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出PGPC =BGPB=12,推出PG=12PC,推出PD+12PC=DP+PG,由DP+PG≥DG,当D、G、P共线时,PD+12PC的值最小,最小值为DG=42+32=5.由PD-12PC=PD-PG≤DG;(3)如图3中,在BC上取一点G,使得BG=1,作DF⊥BC于F.解法类似(2);解:(1)证明:如图1,∵PB=2,BC=4,BN=1,∴PB2=4,BN•BC=4.∴PB2=BN•BC.∴BN BP =BP BC.又∵∠B=∠B,∴△BPN∽△BCP.∴PN PC =BNBP=12.∴PN=12PC;(2)如图2,在BC上取一点G,使得BG=1,∵PB BG =21=2,BCPB=42=2∴PB BG =BCPB,∠PBG=∠PBC∴△PBG∽△CBP∴PG PC =BGPB=12∴PG=12PC∴PD+12PC=DP+PG∵DP+PG≥DG∴当D、P、G共线时,PD+12PC的值最小,最小值为DG=42+32=5 (3)同(2)中证法,如图3,当点P在DG的延长线上时,PD-12PC的最大值,最大值为DG=37.总结提升:本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.类型三:综合应用3.((2020•成华区校级模拟)如图1,抛物线y=mx2-3mx+n(m≠0)与x轴交于点C( -1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2=3625时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α< 90°),连接E′A、E′B,求E'A+23E'B的最小值.思路引领:(1)令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式.(2)由△PNM ∽△ANE ,推出PN AN =65,列出方程即可解决问题.(3)在y 轴上取一点M 使得OM ′=43,构造相似三角形,可以证明AM ′就是E ′A +23E ′B 的最小值.解:(1)∵抛物线y =mx 2-3mx +n (m ≠0)与x 轴交于点C (-1,0)与y 轴交于点B (0,3),则有n =3m +3m +n =0 ,解得m =-34n =3,∴抛物线y =-34x 2+94x +3,令y =0,得到-34x 2+94x +3=0,解得:x =4或-1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx +b ,则b =34k +b =0,解得k =-34b =3 ,∴直线AB 解析式为y =-34x +3.(2)如图1中,设P m ,-34m 2+94m +3 ,则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,S 1S 2=3625,∴PN AN=65,∵NE∥OB,∴AN AB =AE OA,∴AN=54(4-m),∵抛物线解析式为y=-34x2+94x+3,∴PN=-34m2+94m+3--34m+3=-34m2+3m,∴-34m2+3m54(4-m)=65,解得m=2或4(舍弃),∴m=2,∴P2,92.(3)如图2中,在y轴上取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=43×3=4,∴OE′2=OM′•OB,∴OE' OM'=OB OE',∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴M'E'BE'=OE'OB=23,∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′=42+432=4103.总结提升:本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+23E′B的最小值,属于中考压轴题针对训练4.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+2A′C最小时,求S△A′BC.2思路引领:(1)通过作辅助线,构造直角三角形,借助解直角三角形求得线段的长度;(2)通过作辅助线,构造全等三角形,设AC=a,利用中位线定理,解直角三角形,用a的代数式表示CD和HG,即可得CD与HG的数量关系;(3)构造阿氏圆模型,利用两点之间线段最短,确定A'(4)的位置,继而求得相关三角形的面积.解:(1)过D作DG⊥BC,垂足是G,如图1:∵将BD绕点B顺时针旋转90°得到BE,∴∠EBD=90°,∵∠ABE=75°,∴∠ABD=15°,∵∠ABC=45°,∴∠DBC=30°,BD=2,BG=3DG=23,∴在直角△BDG中有DG=12∵∠ACB=45°,∴在直角△DCG中,CG=DG=2,∴BC=BG+CG=2+23,BC=2+6;∴AC=22(2)线段DC与线段HG的数量关系为:HG=3CD,4证明:延长CA,过E作EN垂直于CA的延长线,垂足是N,连接BN,ED,过G作GM⊥AB于M,如图:∴∠END=90°,由旋转可知∠EBD=90°,∴∠EDB=45°∴∠END =∠EBD =90°,∴E ,B ,D ,N 四点共圆,∴∠BNE =∠EDB =45°,∠NEB +∠BDN =180°∵∠BDC +∠BDN =180°,∠BCD =45°,∴∠BEN =∠BDC ,∴∠BNE =45°=∠BCD ,在△BEN 和△BDC 中,∠BNE =∠BCD∠BEN =∠BDC BE =BA,∴△BEN ≌△BDC (AAS ),∴BN =BC ,∵∠BAC =90°,在等腰△BNC 中,由三线合一可知BA 是CN 的中线,∵∠BAC =∠END =90°,∴EN ∥AB ,∵A 是CN 的中点,∴F 是EC 的中点,∵G 是BC 的中点,∴FG 是△BEC 的中位线,∴FG ∥BE ,FG =12BE ,∵BE ⊥BD ,∴FG ⊥BD ,∵∠ABD =30°,∴∠BFG =60°,∵∠ABC =45°,∴∠BGF =75°,设AC =a ,则AB =a ,在Rt △ABD 中,AD =33a ,BD =BE =233a ,∴FG =12BE ,∴FG =33a ,∵GM ⊥AB ,∴△BGM 是等腰三角形,∴MG =MB =22BG =22×12BC =22×12×2AC =12a ,在Rt △MFG 中,∠MFG =60°,∴3MF =MG ,∴MF =36a ,∴BF=BM+MF=3+36a,在Rt△BFH中,∠BFG=60°,∴FH=12BF=3+312a,∴HG=FG-FH=33a-3+312a=14(3-1)a,又∵CD=a-33a=33(3-1)a,∴CD HG =43,∴HG=34CD;(3)设AB=a,则BC=2a,取BC的中点N,连接A′D,A′C,A′N,连接DN,如图3,由旋转可知A′B=AB=a,∵A'BBN =a22a=2,BCA'B=2aa=2,∴A'BBN =BCA'B=2,又∠A'BN=∠CBA',∴△A′BN∽△CBA′,∴A'N A'C =A'BBC=22,∴A'N=22A'C,根据旋转和两点之间线段最短可知,A'D+22A'C最小,即是A'D+A'N最小,此时D、A'、N共线,即A'在线段DN上,设此时A'落在A''处,过A''作A''F⊥AB于F,连接AA'',如图4,∵D,N分别是AC,BC的中点,∴DN是△ABC的中位线,∴DN∥AB,∵AB⊥AC,∴DN⊥AC,∵∠A=∠A''FA=∠A''DA=90°,∴四边形A''FAD是矩形,∴AF=A''D,A''F=AD=2,∵又A''B=AB=4,设AF=x,在直角三角形A''FB中,A''B2=A''F2+BF2,∴42=22+(4-x)2,解得x=4-23.∴此时S△A''BC=S△ABC-S△AA''B-S△A''AC=12AB•AC-12AB•A''F-12AC•A''D=12×4×4-1 2×4×2-12×4×(4-23)=43-4.总结提升:此题主要考查全等三角形判定,等腰三角形的三线合一,解直角三角形,四点共圆,几何最值的阿氏圆模型等知识,综合性强,难度较大,属于压轴题,解得关键是作辅助线,构造全等三角形和相似三角形解决问题.5.(2022•高唐县二模)如图,抛物线y=-x2+bx+c经过点A(-4,-4),B(0,4),直线AC的解析式为y=-12x-6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点F.(1)求抛物线y=-x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+ CM的最小值.思路引领:(1)直接利用待定系数法求解即可;(2)先利用待定系数法求出直线AB的解析式,可判断出AB⊥AC,当四边形EAFH是平行四边形时,四边形EAFH是矩形,分别点E、H、F的坐标,再利用中点坐标公式求解即可;(3)先取EG的中点P,进而判断出△PEM∽△MEA,即可得出PM=12AM,连接CP交⊙E于点M,再求出点P坐标,即可得出结论.解:(1)将点A(-4,-4),B(0,4)代入y=-x2+bx+c得:-16-4b+c=-4c=4,解得:b=-2 c=4,∴抛物线解析式为:y =-x 2-2x +4;(2)如图,当点E 运动到(-2,0)时,四边形EAFH 是矩形,设直线AB 的解析式为y =kx +b ,将点A (-4,-4),B (0,4)代入得:-4k +b =-4b =4 ,解得:k =2b =4 ,∴线AB 的解析式为y =2x +4,∵直线AC 的解析式为y =-12x -6,∴AB ⊥AC ,∴当四边形EAFH 是平行四边形时,四边形EAFH 是矩形,此时,EF 与AH 互相平分,设E (m ,2m +4),H (0,t )则F m ,-12m -6 ,∵A (-4,-4),∴12(m +m )=12(-4+0)122m +4-12m -6 =12(-4+t ),解得:m =-2t =-1∴E (-2,0),H (0,-1);(3)如图,由(2)可知E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于点G ,取GE 的中点P ,则PE =52,设P (k ,2k +4),∵E (-2,0),∴PE 2=(k +2)2+(2k +4)2=522,∴k =-52或k =-32(舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,连接PC 交⊙E 于点M ,连接EM ,则EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PE ME =MEAE,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PM AM =MEAE=12,∴PM=12AM,∴12AM+CM=PM+CM,∴当P、M、C三点共线时,12AM+CM取得最小值即PC的长,∴1 2AM+CM最小值为552.总结提升:本题是二次函数的综合题,考查了待定系数法求函数关系式,平行四边形的性质,矩形的性质,相似三角形的判定与性质,中点坐标公式,极值的确定,熟练掌握待定系数法求函数解析式,利用中点坐标公式构建方程,以及构造相似三角形是解决问题的关键.模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12PB+PC的最小值等于()A.4B.32C.17D.15思路引领:在AB上截取AQ=1,连接AP,PQ,CQ,证明△APQ∽△ABP,可得PQ=1 2PB,则12PB+PC=PC+PQ,当C、Q、P三点共线时,PC+PQ的值最小,求出CQ即为所求.解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴AP AB =12,∵AP=2,AQ=1,∴AQAP=12,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=12PB,∴12PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB=AC2+AQ2=17,∴12PB+PC的最小值17,故选:C.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.2.(2022秋•永嘉县校级期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P 为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+ 2PN的取值范围为6-23≤PM+2PN≤6+23 .思路引领:PM+2PN=212PM+PN,作MH⊥PN,HP=12PM,确定HN的最大值和最小值.解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,PM+2PN=212PM+PN=2HN=6+23,如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,∴PM+2PN=212PM+PN=2HN=6-23,∴6-23≤PM+2PN≤6+23.总结提升:本题考查的是解直角三角形等知识,解决问题的关键是构造12 PM.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为 17 .思路引领:在AC上截取CQ=1,连接CP,PQ,BQ,证明△ACP∽△PCQ,可得PQ=13AP,当B、Q、P三点共线时,13PA+PB的值最小,求出BQ即为所求.解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴CP AC =13,∵CP=3,CQ=1,∴CQCP=13,∴△ACP∽△PCQ,∴PQ=13AP,∴13PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,13PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=17,∴13PA+PB的最小值17,故答案为:17.总结提升:本题考查阿氏圆求最短距离,熟练掌握胡不归求最短距离的方法,利用三角形相似将13PA转化为PQ是解题的关键.4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为 1452 .思路引领:如图,在CB上取一点F,使得CF=12,连接PF,AF.利用相似三角形的性质证明PF=14PB,根据PF+PA≥AF,利用勾股定理求出AF即可解决问题.解:如图,在CB上取一点F,使得CF=12,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵CF CP =14,CPCB=14,∴CF CP =CP CB,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴PF PB =CFCP=14,∴PF=14PB,∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=CF2+AC2=12 2+62=1452,∴PA+14PB≥1452,∴PA+14PB的最小值为1452,故答案为145 2.总结提升:本题考查阿氏圆问题,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O 半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为 85 .思路引领:在y轴上取点H(0,9),连接BH,通过证明△AOP∽△POH,可证HP=3AP,则3PA+PB=PH+PB,当点P在BH上时,3PA+PB有最小值为HB的长,即可求解.解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵OA OP =13=39=OPOH,∠AOP=∠POH,∴△AOP∽△POH,∴AP HP =OPOH=13,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH=OB2+OH2=4+81=85,故答案为:85.总结提升:本题考查了阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A ,B ,所有满足PA PB=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 163 .思路引领:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,证明△APC ∽△BPA ,由相似三角形的性质可得BP =2AP ,CP =12AP ,从而求出AP 、BP 和CP ,即可求出点A 的运动轨迹,再找出距离BC 最远的A 点的位置即可求解.解:以A 为顶点,AC 为边,在△ABC 外部作∠CAP =∠ABC ,AP 与BC 的延长线交于点P ,∵∠CAP =∠ABC ,∠BPA =∠APC ,AB =2AC ,∴△APC ∽△BPA ,AP BP =CP AP =AC AB =12,∴BP =2AP ,CP =12AP ,∵BP -CP =BC =4,∴2AP -12AP =4,解得:AP =83,∴BP =163,CP =43,即点P 为定点,∴点A 的轨迹为以点P 为圆心,83为半径的圆上,如图,过点P 作BC 的垂线,交圆P 与点A 1,此时点A 1到BC 的距离最大,即△ABC 的面积最大,S △ABC =12BC •A 1P =12×4×83=163.故答案为:163.总结提升:本题考查相似三角形的判定和性质,三角形的面积,确定点的运动轨迹,熟练掌握三角形的判定和性质以及三角形的面积公式是解题的关键.7.(2020•溧阳市一模)如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .思路引领:延长OB到T,使得BT=OB,连接MT,CT.利用相似三角形的性质证明MT= 2DM,求CM+2DM的最小值问题转化为求CM+MT的最小值.求出CT即可判断.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴OMOD =OT OM,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴DM MT =OMOT=12,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT=OC2+OT2=42+122=410,∴CM+2DM≥410,∴CM+2DM的最小值为410,∴答案为410.总结提升:本题考查相似三角形的判定和性质,阿氏圆问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为5.思路引领:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.证明△PBT∽△CBP,推出PTPC=PBCB=12,推出PT=12PC,由PD+12PC=PD+PT≥DT=5,由此可得结论.解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT=CD2+CT2=42+32=5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴PB BT =BC PB,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴PT PC =PBCB=12,∴PT=12PC,∵PD+12PC=PD+PT≥DT=5,∴PD+12PC的最小值为5,故答案为:5.总结提升:本题考查阿氏圆问题,正方形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为 132 .思路引领:如图,延长OA使AE=OB,连接EC,EP,OP,证明△OPE∽△OCP推出PCPE =OPOE=12,推出EP=2PC,推出PC+12PD=12(2PC+PD)=12(PD+PE),推出当点E,点P,点D三点共线时,PC+12PD的值最小.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴OP OE =OCOP=12,且∠COP=∠EOP∴△OPE ∽△OCP ∴PC PE =OP OE=12,∴EP =2PC ,∴PC +12PD =12(2PC +PD )=12(PD +PE ),∴当点E ,点P ,点D 三点共线时,PC +12PD 的值最小,∵DE =OD 2+OE 2=52+122=13,∴PD +PE ≥DE =13,∴PD +PE 的最小值为13,∴PC +12PD 的值最小值为132.故答案为:132.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.10.如图所示的平面直角坐标系中,A (0,4),B (4,0),P 是第一象限内一动点,OP =2,连接AP 、BP ,则BP +12AP 的最小值是 17 .思路引领:如图,取点T (0,1),连接PT ,BT .利用相似三角形的性质证明PT =12PB ,推出PB +12PA =PB +PT ≥BT ,求出BT ,可得结论.解:如图,取点T (0,1),连接PT ,BT .∵T (0,1),A (0,4),B (4,0),∴OT =1,OA =4,OB =4,∵OP =2,∴OP 2=OT •OA ,∴OP OT =OA OP,∵∠POT =∠AOP ,∴△POT ∽△AOP ,∴PT PA =OPOA=12,∴PT=12PA,∴PB+12PA=PB+PT,∵BT=12+42=17,∴PB+PT≥17,∴BP+12AP≥17∴BP+12PB的最小值为17.故答案为:17.总结提升:本题考查阿氏圆问题,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为25 .思路引领:2PA+PB=2PA+22PB,利用相似三角形构造22PB.解:设⊙O半径为r,OP=r=12BC=2,OB=2r=22,取OB的中点I,连接PI,∴OI=IB=2,∵OPOI =22=2,OB OP =222=2,∴OPOI =OB OP,∠O是公共角,∴△BOP∽△POI,∴PI PB =OIOP=22,∴PI=22PB,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.总结提升:本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.12.如图,在每个小正方形的边长为1的网格中,△OAB 的顶点O ,A ,B 均在格点上,点E 在OA 上,且点E 也在格点上.(I )OE OB的值为 23 ;(Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°)连接E 'A ,E 'B ,当E 'A +23E 'B 的值最小时,请用无刻度的直尺画出点E ′,并简要说明点E '的位置是如何找到的(不要求证明) 通过取格点K 、T ,使得OH :OD =2:3,构造相似三角形将23E ′B 转化为E ′H .思路引领:(1)求出OE ,OB 即可解决问题.(2)构造相似三角形把23E ′B 转化为E ′H ,利用两点之间线段最短即可解决问题.解:(1)由题意OE =2,OB =3,∴OE OB =23,故答案为:23.(2)如图,取格点K,T,连接KT交OB于H,连接AH交DE于E′,连接BE′,点E′即为所求.故答案为:通过取格点K、T,使得OH:OD=2:3,构造相似三角形将23E′B转化为E′H,利用两点之间线段最短即可解决问题.总结提升:本题是作图-旋转变换,主要考查了相似三角形的判定与性质,两点之间,线段最短等知识,找到点H是解题的关键.13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n-m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.思路引领:(1)根据正方形性质和三角形内角和定理即可证得结论;(2)如图1,过点O作OE⊥PA于E,先证明△APM∽△OAE,利用相似三角形性质可得出m=14n2,进而可得:n-m=n-14n2=-14(n-2)2+1,再运用二次函数性质即可得出答案;(3)如图2,连接AC、BD交于点D,连接PD,当D、P、M三点共线且DM⊥AB时,PD+ PM=DM最小,即2h+2m=2DM最小,根据正方形和等腰直角三角形的性质即可求得答案.解:(1)证明:∵四边形OABC是正方形,∴∠OAB=90°,∴∠OAP+∠PAM=90°,即2∠OAP+2∠PAM)=180°,∵OA=OP,∴∠OPA=∠OAP,∵∠OPA+∠OAP+∠POA=180°,∴2∠OAP+∠POA=180°,∴∠POA=2∠PAM;(2)解:如图1,过点O作OE⊥PA于E,∵OA=OP,OE⊥PA,∴AE=12PA,∠AOE=∠POE=12∠POA,∵∠POA=2∠PAM,∴∠PAM=12∠POA,∴∠PAM=∠AOE,∵PM⊥AB,∴∠AMP=90°=∠OEA,∴△APM∽△OAE,∴PMPA =AEOA,即mn=12n2,∴m=14n2,∴n-m=n-14n2=-14(n-2)2+1,∴当n=2时,n-m取得最大值,n-m最大值为1;(3)解:如图2,连接AC、OB交于点D,连接PD,∵四边形ABCO是正方形,∴AC⊥BD,OD=AD=BD,∴OD OA =OAOB=22,∵OP=OA,∴OD OP =OPOB=22,∵∠POD=∠BOP,∴△POD∽△BOP,∴PD PB =OPOB=22,∴PD=22PB,∵PB=h,PM=m,∴2h +2m =222h +m=222PB +PM =2(PD +PM ),∵当D 、P 、M 三点共线且DM ⊥AB 于M 时,PD +PM =DM 最小,∴当D 、P 、M 三点共线且DM ⊥AB 时,2h +2m =2(PD +PM )=2DM 最小,如图3,∵△ABD 是等腰直角三角形,DM ⊥AB ,∴DM =12AB =1,∴2DM =2,即2h +2m 的最小值为2.总结提升:本题是圆的综合题,考查了等腰直角三角形的性质,正方形的性质,三角形内角和定理,圆的性质,相似三角形的判定和性质,两点之间线段最短,点到直线的距离垂线段最短,二次函数最值的应用,利用相似三角形性质列出关于m 、n 的关系式恰当运用配方法是解题关键.14.(2022•从化区一模)已知,AB 是⊙O 的直径,AB =42,AC =BC .(1)求弦BC 的长;(2)若点D 是AB 下方⊙O 上的动点(不与点A ,B 重合),以CD 为边,作正方形CDEF ,如图1所示,若M 是DF 的中点,N 是BC 的中点,求证:线段MN 的长为定值;(3)如图2,点P 是动点,且AP =2,连接CP ,PB ,一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,到达点B 后停止运动,求点Q 的运动时间t 的最小值.思路引领:(1)AB 是⊙O 的直径,AC =BC 可得到△ABC 是等腰直角三角形,从而得道答案;(2)连接AD 、CM 、DB 、FB ,首先利用△ACD ≌△BCF ,∠CBF =∠CAD ,证明D 、B 、F 共线,再证明△CMB 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',先证明PM =PC 2,PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,再计算BM 的长度即可.解:(1)∵AB 是⊙O 的直径,∴∠ABC =90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC是等腰直角三角形,四边形CDEF是正方形,∴CD=CF,∠DCF=∠ACB=90°,∴∠ACD=90-∠DCB=∠BCF,又AC=BC,∴△ACD≌△BCF(SAS),∴∠CBF=∠CAD,∴∠CBF+∠ABC+∠ABD=∠CAD+∠ABC+∠ABD=∠DAB+∠CAB++∠ABC+∠ABD=∠DAB+45°+45°+∠ABD,而AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBF+∠ABC+∠ABD=180°,∴D、B、F共线,∵四边形CDEF是正方形,∴△DCF是等腰直角三角形,∵M是DF的中点,∴CM⊥DF,即△CMB是直角三角形,∵N是BC的中点,∴MN=12BC=2,即MN为定值;(3)以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB 于H,连接BM交⊙A于P',如图:一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,∴Q运动时间t=PC2+BP,∵AM=1,AP=2,AC=BC=4,∴AMAP =APAC=12,又∠MAP=∠PAC,∴△MAP∽△PAC,∴PMPC =AMAP=12,∴PM=PC2,。

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
当BPD三点共线且P点位于BD之间时,PB+PD最小,此
时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H


易求得DH= ,BH=3,∴BD= ,


C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上

2020中考专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏圆班级姓名.【模型解析】“阿氏圆”模型---“PB k PA ⋅+”型最值◆条件:A、B 为定点,P 为⊙O 上一个动点,k OB OP =(10<<k ).◆问题:求PB k PA ⋅+的最小值,并画出点P 的位置.◆方法:连接OP,OB.在OB 上取点C,使k OP OC =.易证得△POC∽△BOP,所以k OBOP PB CP ==,所以PB k CP ⋅=.所以AC CP PA PB k PA ≥+=⋅+,当P 为AC 与⊙O 的交点时,PB k PA ⋅+的最小值为AC.【例题分析】例1.在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,求AD+32BD 的最小值。

例2.问题提出:如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+12BP 的最小值.P尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=1,则有12CD CP CP CB ==,又∵∠PCD=∠BCP ,∴△PCD ≌△BCP ,12PD BP =,∴PD=12BP ,∴AP+12BP=AP+PD .请你完成余下的思考,并直接写出答案:AP+12BP 的最小值为.自主探索:在“问题提出”的条件不变的情况下,13AP+BP 的最小值为.拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求2PA+PB 的最小值.【巩固训练】1.如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 半径为2,点P 为圆上一动点,连接AP ,BP ,AP+21BP 最小值为。

图1图2图32.如图2,在Rt △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA+22PC 的最小值是。

第11讲阿氏圆最值模型(解析版)

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11 :阿氏圆最值模型名师点睛--------------------------------- 拨开云雾开门见山在前面的胡不归〞问题中,我们见识了“kPA+PB最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的阿氏圆〞问题.【模型来源】“阿氏圆〞又称为“阿波罗尼斯圆〞,如下列图,A、B两点,点P满足PA: PB=k ( k^l),那么满足条件的所有的点P的轨迹构成的图形为圆•这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆〞如图1所示,O O 的半径为R ,点A 、B 都在O O 夕卜,P 为O O 上一动点,2连接PA PB,那么当“ PA+—PB 〞的值最小时,P 点的位置如何确定?52 2 解决方法:如图2,在线段 OB 上截取OC 使OC= — R ,那么可说明△ BPO 与厶PCO 相似,那么有一 PB=PC 。

552故此题求“ PA+—PB 〞的最小值可以转化为 “PA+PC 〞的最小值,其中与A 与C 为定点,P 为动点,故当A 、5P 、C 三点共线时,“ PA+PC 〞值最小。

【技巧总结】计算PA kgPB 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点 P 使得PA kgPB 的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB2R=_ OB,5【模型建OP2. 计算出这两条线段的长度比 k OB OCPC 3. 在OB 上取一点C ,使得k ,即构造△ POM s\BOP ,贝yk , PC kgPBOPPB4. 那么PA kgPB=PA PC AC ,当A 、P 、C 三点共线时可得最小值— _ 一一 1【分析】这个问题最大的难点在于转化 -PA ,此处P 点轨迹是圆,注意到圆 C 半径为2, CA=4 ,2典题探究启迪思维 例题1.如图,在Rt ^ABC 中,/ C=90 , AC=4 ,BC=3,以点C 为圆心, 2为半径作圆C ,分别交探究重点AC 、BC于D 、E 两点,点P 是圆C 上一个动点,那么 1-PA PB 的最小值为 ______________ 2B连接CP ,构造包含线段 AP 的A CPA ,在CA 边上取点M 使得CM=2 , 连接 PM ,可得 A CPA s^ CMP ,故 PA : PM=2:1,即 PM= 1 PA2问题转化为PM+PB > BM 最小值,故当B , P , M 三点共线时得最小值,直接连BM 即可得13 .变式练习>>>1.如图 1,在 RT A ABC 中,/ ACB=90°1 1求①AP -BP ,②2AP BP ,③一 AP BP ,④AP 3BP 的最小值.3_ 1_ 2 ; 37 [答案]:①=寸37 ②=2空37 ,③= --------- ,④=2 丁37 ., 3解答'如图2,建接CP,因为纤也AC=^ 眩=4,简单推算得冬=£,拓二£ •而题 AC 3 CR 2 目中悬求角严丄站穴其中的壮二丄j 故舍弃在丄「上取点,应用“—所以在2 2 CB 2a?上取•点D 使CD=1,那么有得二着二詈无论P 如何移动,,△PCD 与MCP 始歿相似‘敌PD丄RP 始终成立・所\^AP^-fiP^AP^PD.扛中儿 Q 为定点.故A 、P 、2 2。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

最值模型之阿氏圆(解析版)

最值模型之阿氏圆(解析版)

最值模型之阿氏圆“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。

1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。

此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。

即点P在直线上运动和点P 在圆上运动。

点P在圆周上运动的类型称之为“阿氏圆”问题。

模型建立:PA+k∙PB的最小值。

阿氏圆钥匙:构造母子三角形相似阿氏圆口诀:两定一动阿氏圆,母子相似很简单。

第一步:确动点的运动轨迹(圆),以点0为圆心、r为半径画圆;(若圆已经画出则可省略这一步)第二步:连接动点至圆心0(将系数不为1的线段的固定端点与圆心相连接),即连接OP,OB。

第三步:计算这两条线段长度的比k;第四步:在0B上取点C,使得OC=k∙OP;OCOP=OPOB=k, ∠O=∠O,可得△POC∽△BOP可得:OCOP=PCPB=k, PC=k∙PB第五步:则PA+k∙PB≥PA+PC≥AC,即当A,P,C三点共线时可得最小值。

[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成1k,再构造△相似进行计算.]1如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的EF上任意一点,连接BP,CP,则12BP+CP的最小值是 17 .思路引领:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .证明△PAT ∽△BAP ,推出PT PB=AP AB=12,推出PT =12PB ,推出12PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题.答案详解:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .∵PA =2.AT =1,AB =4,∴PA 2=AT •AB ,∴PA AT =AB PA,∵∠PAT =∠PAB ,∴△PAT ∽△BAP ,∴PT PB =AP AB =12,∴PT =12PB ,∴12PB +CP =CP +PT ,∵PC +PT ≥TC ,在Rt △ACT 中,∵∠CAT =90°,AT =1,AC =4,∴CT =AT 2+AC 2=17,∴12PB +PC ≥17,∴12PB +PC 的最小值为17.故答案为17.一、选择题(共1小题)1如图,在△ABC 中,∠A =90°,AB =AC =4,点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,则12PB +PC 的最小值等于()A.4B.32C.17D.15试题分析:在AB 上截取AQ =1,连接AP ,PQ ,CQ ,证明△APQ ∽△ABP ,可得PQ =12PB ,则12PB +PC =PC +PQ ,当C 、Q 、P 三点共线时,PC +PQ 的值最小,求出CQ 即为所求.答案详解:解:在AB 上截取AQ =1,连接AP ,PQ ,CQ ,∵点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,∴AP AB=12,∵AP =2,AQ =1,∴AQ AP =12,∵∠PAQ =∠BAP ,∴△APQ ∽△ABP ,∴PQ =12PB ,∴12PB +PC =PC +PQ ≥CQ ,在Rt △ACQ 中,AC =4,AQ =1,∴QB =AC 2+AQ 2=17,∴12PB +PC 的最小值17,故选:C .二、填空题(共7小题)2如图,在Rt △ABC 中,∠C =90°,AC =9,BC =4,以点C 为圆心,3为半径做⊙C ,分别交AC ,BC 于D ,E 两点,点P 是⊙C 上一个动点,则13PA +PB 的最小值为 17 .试题分析:在AC 上截取CQ =1,连接CP ,PQ ,BQ ,证明△ACP ∽△PCQ ,可得PQ =13AP ,当B 、Q 、P 三点共线时,13PA +PB 的值最小,求出BQ 即为所求.答案详解:解:在AC 上截取CQ =1,连接CP ,PQ ,BQ ,∵AC =9,CP =3,∴CP AC=13,∵CP =3,CQ =1,∴CQ CP=13,∴△ACP ∽△PCQ ,∴PQ =13AP ,∴13PA +PB =PQ +PB ≥BQ ,∴当B 、Q 、P 三点共线时,13PA +PB 的值最小,在Rt △BCQ 中,BC =4,CQ =1,∴QB =17,∴13PA +PB 的最小值17,故答案为:17.3如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 、E 分别是边BC 、AC 上的两个动点,且DE =4,P 是DE 的中点,连接PA ,PB ,则PA +14PB 的最小值为 1452 .试题分析:如图,在CB 上取一点F ,使得CF =12,连接PF ,AF .利用相似三角形的性质证明PF =14PB ,根据PF +PA ≥AF ,利用勾股定理求出AF 即可解决问题.答案详解:解:如图,在CB 上取一点F ,使得CF =12,连接PF ,AF .∵∠DCE =90°,DE =4,DP =PE ,∴PC =12DE =2,∵CF CP =14,CP CB =14,∴CF CP =CP CB,∵∠PCF =∠BCP ,∴△PCF ∽△BCP ,∴PF PB =CF CP =14,∴PF =14PB ,∴PA +14PB =PA +PF ,∵PA +PF ≥AF ,AF =CF 2+AC 2=12 2+62=1452,∴PA +14PB ≥1452,∴PA +14PB 的最小值为1452,故答案为1452.4如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .试题分析:延长OB 到T ,使得BT =OB ,连接MT ,CT .利用相似三角形的性质证明MT =2DM ,求CM +2DM 的最小值问题转化为求CM +MT 的最小值.求出CT 即可判断.答案详解:解:延长OB 到T ,使得BT =OB ,连接MT ,CT .∵OM =6,OD =DB =3,OT =12,∴OM 2=OD •OT ,∴OMOD =OT OM,∵∠MOD =∠TOM ,∴△MOD ∽△TOM ,∴DM MT =OM OT=12,∴MT =2DM ,∵CM +2DM =CM +MT ≥CT ,又∵在Rt △OCT 中,∠COT =90°,OC =4,OT =12,∴CT =OC 2+OT 2=42+122=410,∴CM +2DM ≥410,∴CM +2DM 的最小值为410,∴答案为410.5如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB .P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为6-23≤PM +2PN ≤6+23 .试题分析:PM +2PN =212PM +PN ,作MH ⊥PN ,HP =12PM ,确定HN 的最大值和最小值.答案详解:解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,=2HN=6+23,PM+2PN=212PM+PN如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,=2HN=6-23,∴PM+2PN=212PM+PN∴6-23≤PM+2PN≤6+23.6如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC 的最大值为237 .试题分析:连接PB ,在BC 上取一点G ,使得BG =2,连接PG ,DG ,过点D 作DH ⊥BC 交BC 的延长线于H .利用相似三角形的性质证明PG =12PC ,再根据PD -12PC =PD -PG ≤DG ,求出DG ,可得结论.答案详解:解:连接PB ,在BC 上取一点G ,使得BG =2,连接PG ,DG ,过点D 作DH ⊥BC 交BC 的延长线于H .∵PB =4,BG =2,BC =8,∴PB 2=BG •BC ,∴PB BG=BC PB ,∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG PC =PB BC =12,∴PG =12PC ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =CD =BC =8,∴∠DCH =∠ABC =60°,在Rt △CDH 中,CH =CD •cos60°=4,DH =CD •sin60°=43,∴GH =CG +CH =6+4=10,∴DG =GH 2+DH 2=102+(43)2=237,∵PD -12PC =PD -PG ≤DG ,∴PD -12PC ≤237,∴PD -12PC 的最大值为237.7如图,在△ABC 中,BC =6,∠BAC =60°,则2AB +AC 的最大值为421 .试题分析:由2AB +AC =2AB +12AC 得12AC =AE ,再将AB +AE 转化成一条线段BP ,可证出∠P 是定角,从而点P 在△PBC 的外接圆上运动,当BP 为直径时,BP 最大解决问题.答案详解:解:∵2AB +AC =2AB +12AC ,∴求2AB +AC 的最大值就是求2AB +12AC 的最大值,过C 作CE ⊥AB 于E ,延长EA 到P ,使得AP =AE ,∵∠BAC =60°,∴EA =12AC =AP ,∴AB +12AC =AB +AP ,∵EC =3AE ,PE =2AE ,由勾股定理得:PC =7AE ,∴sin P =CE CP =3AE 7AE=217,∴∠P 为定值,∵BC =6是定值,∴点P 在△CBP 的外接圆上,∵AB +AP =BP ,∴当BP 为直径时,AB +AP 最大,即BP ',∴sin P '=sin P =BC BP '=217,解得BP '=221,∴AB +AP =221,∴2AB +AC =2(AB +AP )=421,故答案为:421.8如图,边长为4的正方形,内切圆记为圆O ,P 为圆O 上一动点,则2PA +PB 的最小值为25 .试题分析:2PA +PB =2PA +22PB ,利用相似三角形构造22PB .答案详解:解:设⊙O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,∴OI =IB =2,∵OP OI =22=2,OB OP =222=2,∴OP OI =OB OP,∠O 是公共角,∴△BOP ∽△POI ,∴PI PB =OI OP=22,∴PI =22PB ,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.三、解答题(共8小题)1如图,在6×6的正方形网格中,A 、B 、C 、D 均为小正方形的顶点,请仅用无刻度的直尺作图,保留作图痕迹.(1)在图1中作出AC 边上的点E ,使得AE =3CE ;(2)在图2中作出BC 边上的点F (不与点B 重合),使得BD =DF ;(3)在图3中作出AB 边上的点G ,使得tan ∠ACG =12.试题分析:(1)如图1中,取格点M ,N ,连接MN 交AC 于点E ,点E 即为所求.(2)如图2中,取格点T ,连接AT 交BC 于点F ,连接DF ,点F 即为所求.(3)如图3中,取格点R ,连接AR ,得到AR 的中点J ,连接CJ 交AB 于点G ,点G 即为所求.答案详解:解:(1)如图1中,点E即为所求.(2)如图2中,点F即为所求.(3)如图3中,点G即为所求.2已知,AB是⊙O的直径,AB=42,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M 是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q 的运动时间t的最小值.试题分析:(1)AB是⊙O的直径,AC=BC可得到△ABC是等腰直角三角形,从而得道答案;(2)连接AD、CM、DB、FB,首先利用△ACD≌△BCF,∠CBF=∠CAD,证明D、B、F共线,再证明△CMB是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB于H,连接BM交⊙A于P',先证明PM=PC2,PC2+BP最小,即是PM+BP最小,此时P、B、M共线,再计算BM的长度即可.答案详解:解:(1)∵AB是⊙O的直径,∴∠ABC=90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC 是等腰直角三角形,四边形CDEF 是正方形,∴CD =CF ,∠DCF =∠ACB =90°,∴∠ACD =90-∠DCB =∠BCF ,又AC =BC ,∴△ACD ≌△BCF (SAS ),∴∠CBF =∠CAD ,∴∠CBF +∠ABC +∠ABD =∠CAD +∠ABC +∠ABD=∠DAB +∠CAB ++∠ABC +∠ABD=∠DAB +45°+45°+∠ABD ,而AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠ABD =90°,∴∠CBF +∠ABC +∠ABD =180°,∴D 、B 、F 共线,∵四边形CDEF 是正方形,∴△DCF 是等腰直角三角形,∵M 是DF 的中点,∴CM ⊥DF ,即△CMB 是直角三角形,∵N 是BC 的中点,∴MN =12BC =2,即MN 为定值;(3)以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',如图:一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,∴Q 运动时间t =PC 2+BP ,∵AM =1,AP =2,AC =BC =4,∴AM AP =AP AC=12,又∠MAP =∠PAC ,∴△MAP ∽△PAC ,∴PM PC =AM AP =12,∴PM =PC 2,∴PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,即P 与P '重合,t =PC 2+BP 最小值即是BM 的长度,在Rt △AMH 中,∠MAH =45°,AM =1,∴AH =MH =22,∵AB =42,∴BH=AB-AH=722,Rt△BMH中,BM=BH2+MH2=5,∴点Q的运动时间t的最小值为5.3阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+23BD的最小值.试题分析:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.答案详解:解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC=23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.4如图1,⊙O的半径为r(r>0),若点P'在射线OP上,满足OP'⋅OP=r2,则称点P'是点P关于⊙O的“反演点”.(1)若点A关于⊙O的“反演点”是本身,那么点A与⊙O的位置关系为B.A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外(2)如图1,若⊙O的半径为4,点P'是点P关于⊙O的“反演点”,且PP'=6,过点P的直线与⊙O相切于点Q,求PQ长.(3)如图2,若⊙O的半径为4,点Q在⊙O上,点A在⊙O内,且OA=2,点Q'、A'分别是点Q、A关于⊙O的“反演点”,过点A'作A'B⊥A'O且A'B=A'O,连接BQ',Q'A',求BQ'+12Q'A'的最小值.试题分析:(1)因为OA2=r2,所以OA=r,从而得出点A在圆上;(2)连接OQ,根据OP′•OP=r2得出OP′的值,洁儿根据勾股定理求得PQ;(3)可证得△AOQ′∽△Q′OA′,从而得出AQ′=12A'Q',进而得出当B、Q′、A共线时,BQ′+12A'Q'最小,进一步求得结果.答案详解:解:(1)由题意得:OA2=r2,∴OA=r,∴点A在⊙O上,故答案为:B;(2)如图1,连接OQ,∵点P'是点P关于⊙O的“反演点”,∴OP′•OP=r2,∴OP′•(OP′+6)=16,∴OP′=2,∴OP=8,∵PQ是⊙O的切线,∴OQ⊥PQ,∴∠PQO =90°,∴PQ =OP 2-OQ 2=82-42=43;如图2,∵点Q '、A '分别是点Q 、A 关于⊙O 的“反演点”,∴点Q 在⊙O 上,OQ 2=OA •OA ′,∴OQ OA '=OA OQ ,OA ′=8,∴∠O 为公共角,A ′B =8,AA ′=6,∴△AOQ ′∽△Q ′OA ′,∴AQ 'A 'Q '=OA OQ =12,∴AQ ′=12A 'Q ',∴BQ ′+12A 'Q '=AQ ′+BQ ′,∴当B 、Q ′、A 共线时,BQ ′+12A 'Q '最小,最小为AB ,∵AB =A 'A 2+A 'B 2=10,∴BQ ′+12Q 'A ' 最小=10.5【根底巩固】(1)如图,在△ABC 中,D 为AB 上一点,∠ACD =∠B .求证:AC 2=AD •AB .【尝试应用】(2)如图2,在菱形ABCD 中,E ,F 分别为BC ,DC 上的点,且∠EAF =12∠BAD ,射线AE 交DC 的延长线于点M ,射线AF 交BC 的延长线于点N .若AF =4,CF =2,AM =10.求:①CM 的长;②FN 的长.【拓展进步】(3)如图3,在菱形ABCD 中,AB =6,∠B =60°,以点B 为圆心作半径为3的圆,其中点P 是圆上的动点,请直接写出PD +12PC 的最小值.试题分析:(1)证明△ADC ∽△ACB ,得出AD AC =AC AB ,则可得出结论;(2)①连接AC ,证明△FAC ∽△FMA ,从而得出AF CF =FM AF =AM AC ,进一步求得结果;②可证明△NAC ∽△AMC ,从而AC CM =AN AM ,进而求得结果;(3)在BC 上截取BE =32,可证得△PBE ∽△CBP ,进而得出PE =12PC ,从而PD +12PC =PD +PE ,当D 、P 、E 共线时,PD +PE 最小=DE ,此时P 在P ′处,然后解斜三角形CDE ,进一步求得结果.答案详解:(1)证明:如图1,∵∠ACD =∠B ,∠A =∠A ,∴△ADC ∽△ACB ,∴AD AC =AC AB ,∴AC 2=AD •AB .(2)①解:如图2,连接AC ,∵四边形ABCD 是菱形,∴AB ∥CD ,∠BAC =∠CAD =12∠BAD ,∵∠EAF =12∠BAD ,∴∠BAC =∠EAF ,即∠BAM +∠MAC =∠MAC +∠CAF ,∴∠BAM =∠CAF ,∵AB ∥CD ,∴∠BAM =∠M ,∴∠CAF =∠M ,∵∠AFC =∠MFA ,∴△FAC ∽△FMA ,∴AF CF =FM AF =AM AC ,∵AF =4,CF =2,AM =10,∴42=FM 4=10AC ,∴FM =8,AC =5,∴CM =FM -CF =8-2=6,②∵四边形ABCD 是菱形,∴ADB ∥BC ,∠BAC =∠CAD =12∠BAD ,∵∠EAF =12∠BAD ,∴∠CAD =∠EAF ,即∠DAN +∠NAC =∠NAC +∠CAM ,∴∠DAN =∠CAM ,∵AD ∥BC ,∴∠DAN =∠N ,∴∠CAM =∠N ,由①知:∠CAF =∠M ,∴△NAC ∽△AMC ,∴AC CM =AN AM ,即56=AN 10,∴AN =253,∴FN =AN -AF =253-4=133;(3)如图3,在BC 上截取BE =32,∵BE BP =BP BC=12,∠PBE =∠CBE ,∴△PBE ∽△CBP ,∴PE PC =PB BC =12,∴PE =12PC ,∴PD +12PC =PD +PE ,∴当D 、P 、E 共线时,PD +PE 最小=DE ,此时P 在P ′处,作DF ⊥BC ,交BC 的延长线于F ,在Rt △CDF 中,CD =BC =6,∠DCF =60°,∴CF =6•cos60°=3,DF =6•sin60°=33,在Rt △DEF 中,DF =33,EF =CE +CF =6-32+3=152,∴DE =(33)2+152 2=3372,∵PD +12PC 最小=3372.6如图,在平面直角坐标系中,抛物线y =14x 2-32x -4与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)如图1,连接BC ,点D 是抛物线上一点,若∠DCB =∠ABC ,求点D 的坐标;(3)如图2,若点P 在以点O 为圆心,OA 长为半径作的圆上,连接BP 、CP ,请你直接写出12CP +BP 的最小值.试题分析:(1)分别令x =0和y =0解方程可得结论;(2)分两种情况:①当点D 在x 轴的上方时,根据等角对等边可得CE =BE ,设OE =a ,根据勾股定理列方程可得a 的值,确定CE 的解析式,联立直线CE 和抛物线的解析式列方程解出可得点D 的坐标;②当点D 在x 轴的下方时,根据内错角相等可得CD 与x 轴平行,C 和D 是对称点,可得点D 的坐标;(3)如图3,根据12PC +BP =PM +PB ,确定当B 、P 、M 三点共线时,12CP +BP 的值最小,根据勾股定理可得BM 的长,可得结论.答案详解:解:(1)当x =0时,y =-4,当y =0时,14x 2-32x -4=0,解得:x 1=8,x 2=-2,∴A (-2,0),B (8,0),C (0,-4);(2)分两种情况:①当点D 在x 轴上方时,如图1,CD 交x 轴于点E ,∵∠DCB =∠ABC ,∴CE =BE ,设OE =a ,则BE =8-a ,Rt △OCE 中,由勾股定理得:a 2+42=(8-a )2,解得:a =3,∴E (3,0),∵C (0,4),设CE 的解析式为:y =kx +b ,则3k +b =0b =-4 ,解得:k =43b =-4 ,∴CE 的解析式为:y =43x -4,∵14x 2-32x -4=43x -4,解得:x 1=0,x 2=343,∴D 343,1009 ;②当点D 在x 轴的下方时,如图2,∵∠DCB =∠ABC ,∴CD ∥x 轴,∴C 和D关于抛物线的对称轴对称,∴D (6,-4);综上,点D 的坐标为343,1009 或(6,-4);(3)如图3,连接OP ,PM ,在y 轴截取OM ,使OM OP =OP OC =12,∵∠POM =∠POC ,∴△POM ∽△COP ,∴PM PC =12,∴PM =12PC ,∴12PC +BP =PM +PB ,当B 、P 、M 三点共线时,12CP +BP 的值最小,在Rt △BOM 中,BM =OB 2+OM 2=82+12=65,即12CP +BP 的最小值是65.7如图,抛物线y =-x 2+bx +c 与直线AB 交于A (-4,-4),B (0,4)两点,直线AC :y =-12x -6交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF ⊥x 轴交AC 于点F ,交抛物线于点G .(1)求抛物线y =-x 2+bx +c 的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为⊙E 上一动点,求12AM +CM 它的最小值.试题分析:(1)利用待定系数法求出抛物线解析式;(2)先利用待定系数法求出直线AB 的解析式,进而利用平行四边形的对边相等建立方程求解即可;(3)①先判断出要以点A ,E ,F ,H 为顶点的四边形是矩形,只有EF 为对角线,利用中点坐标公式建立方程即可;②先取EG 的中点P 进而判断出△PEM ∽△MEA 即可得出PM =12AM ,连接CP 交圆E 于M ,再求出点P 的坐标即可得出结论.答案详解:解:(1)∵点A (-4,-4),B (0,4)在抛物线y =-x 2+bx +c 上,∴-16-4b +c =-4c =4,∴b =-2c =4 ,∴抛物线的解析式为y =-x 2-2x +4;(2)设直线AB 的解析式为y =kx +n 过点A ,B ,∴n =4-4k +n =-4 ,∴k =2n =4 ,∴直线AB 的解析式为y =2x +4,设E (m ,2m +4),∴G (m ,-m 2-2m +4),∵四边形GEOB 是平行四边形,∴EG =OB =4,∴-m 2-2m +4-2m -4=4,∴m =-2∴G (-2,4).(3)①如图1,由(2)知,直线AB 的解析式为y =2x +4,∴设E (a ,2a +4),∵直线AC :y =-12x -6,∴F a ,-12a -6 ,设H (0,p ),∵以点A ,E ,F ,H 为顶点的四边形是矩形,∵直线AB 的解析式为y =2x +4,直线AC :y =-12x -6,∴AB ⊥AC ,∴EF 为对角线,∴EF 与AH 互相平分,∴12(-4+0)=12(a +a ),12(-4+p )=122a +4-12a -6 ,∴a =-2,P =-1,∴E (-2,0).H (0,-1);②如图2,由①知,E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于G ,取EG 的中点P ,∴PE =52,连接PC 交⊙E 于M ,连接EM ,∴EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PEME =ME AE =12,∵∠PEM =∠MEA ,∴△PEM ∽△MEA ,∴PM AM =ME AE =12,∴PM =12AM ,∴12AM +CM 的最小值=PC ,设点P (p ,2p +4),∵E (-2,0),∴PE 2=(p +2)2+(2p +4)2=5(p +2)2,∵PE =52,∴5(p +2)2=54,∴p =-52或p =-32(由于E (-2,0),所以舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,即:12AM +CM 的最小值为552.8问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP 、BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有CD CP =CP CB =12,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +12BP 的最小值为 37 .(2)自主探索:在“问题提出”的条件不变的情况下,13AP +BP 的最小值为 2337 .(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是CD 上一点,求2PA +PB 的最小值.试题分析:(1)利用勾股定理即可求出,最小值为AD =37;(2)连接CP ,在CA 上取点D ,使CD =23,则有CD CP =CP CA =13,可证△PCD ∽△ACP ,得到PD =13AP ,即:13AP +BP =BP +PD ,从而13AP +BP 的最小值为BD ;21(3)延长OA 到点E ,使CE =6,连接PE 、OP ,可证△OAP ∽△OPE ,得到EP =2PA ,得到2PA +PB =EP +PB ,当E 、P 、B 三点共线时,得到最小值.答案详解:解:(1)如图1,连接AD ,∵AP +12BP =AP +PD ,要使AP +12BP 最小,∴AP +AD 最小,当点A ,P ,D 在同一条直线时,AP +AD 最小,即:AP +12BP 最小值为AD ,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37,AP +12BP 的最小值为37,故答案为:37;(2)如图2,连接CP ,在CA 上取点D ,使CD =23,∴CD CP =CP CA =13,∵∠PCD =∠ACP ,∴△PCD ∽△ACP ,∴PD AP =13,∴PD =13AP ,∴13AP +BP =BP +PD ,∴同(1)的方法得出13AP +BP 的最小值为BD =BC 2+CD 2=2337.故答案为:2337;(3)如图3,延长OA 到点E ,使CE =6,∴OE=OC +CE =12,连接PE 、OP ,∵OA =3,∴OA OP =OP OE =12,∵∠AOP =∠AOP ,∴△OAP ∽△OPE ,∴AP EP =12,∴EP =2PA ,∴2PA +PB =EP +PB ,∴当E 、P 、B 三点共线时,取得最小值为:BE =OB 2+OE 2=13.。

专题11最值模型之阿氏圆(原卷版)

专题11最值模型之阿氏圆(原卷版)

B专题11 最值模型之阿氏圆“PA+k ·PB ”型的最值问题是近几年中考考查的热点更是难点。

1.当k 值为1时,即可转化为“PA+PB ”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;2.当k 取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。

此类问题的处理通常以动点P 所在图像的不同来分类,一般分为2类研究。

即点P 在直线上运动和点P 在圆上运动。

点P 在圆周上运动的类型称之为“阿氏圆”问题。

模型建立: PA+k ∙PB 的最小值。

阿氏圆钥匙: 构造母子三角形相似 阿氏圆口诀:两定一动阿氏圆,母子相似很简单。

第一步:确动点的运动轨迹(圆), 以点0为圆心、r 为半径画圆; (若圆已经画出则可省略这一步) 第二步:连接动点至圆心0(将系数不为1的线段的固定端点 与圆心相连接),即连接OP ,OB 。

第三步:计算这两条线段长度的比k;第五步:在0B 上取点C,使得OC= k∙OP ; OCOP =OPOB =k, ∠O= ∠O , 可得△ POC ∽ △ BOP 可得: OCOP =PCPB =k, PC=k ∙PB第六步:则PA+k ∙PB ≥PA+PC ≥AC,即当A ,P ,C 三点共线时可得最小值。

[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k 提到 括号外边,将其中一条线段的系数化成1k ,再构造△相似进行计算.]Rt △ABC 中,AB =AC =4,点E ,F 分别是AB ,AC 的中点,点P 是扇形AEF的EF ̂上任意一点,连接BP ,CP,则12BP +CP 的最小值是 √17 .思路引领:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .证明△PAT ∽△BAP ,推出PTPB =APAB =12,推出PT =12PB ,推出12PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题. 答案详解:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .∵PA =2.AT =1,AB =4,∴PA 2=AT •AB , ∴PA AT=AB PA,∵∠PAT =∠PAB , ∴△PAT ∽△BAP , ∴PTPB =APAB =12, ∴PT =12PB , ∴12PB +CP =CP +PT ,∵PC +PT ≥TC ,在Rt △ACT 中,∵∠CAT =90°,AT =1,AC =4, ∴CT =√AT 2+AC 2=√17, ∴12PB +PC ≥√17,∴12PB +PC 的最小值为√17. 故答案为√17.一.选择题(共1小题)1.如图,在△ABC 中,∠A =90°,AB =AC =4,点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,则12PB +PC 的最小值等于( )实战训练A.4B.3√2C.√17D.√15二.填空题(共7小题)2.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13P A+PB的最小值为√.3.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+14PB的最小值为.4.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为√10.5.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为√≤√.6.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD−12PC的最大值为√.7.如图,在△ABC中,BC=6,∠BAC=60°,则2AB+AC的最大值为√.8.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则√2P A+PB的最小值为√.三.解答题(共8小题)9.如图,在6×6的正方形网格中,A、B、C、D均为小正方形的顶点,请仅用无刻度的直尺作图,保留作图痕迹.(1)在图1中作出AC边上的点E,使得AE=3CE;(2)在图2中作出BC边上的点F(不与点B重合),使得BD=DF;(3)在图3中作出AB边上的点G,使得tan∠ACG=12.10.已知,AB是⊙O的直径,AB=4√2,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t的最小值.11.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+23BD的最小值.12.如图1,⊙O的半径为r(r>0),若点P'在射线OP上,满足OP'⋅OP=r2,则称点P'是点P关于⊙O的“反演点”.(1)若点A关于⊙O的“反演点”是本身,那么点A与⊙O的位置关系为.A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外(2)如图1,若⊙O的半径为4,点P'是点P关于⊙O的“反演点”,且PP'=6,过点P的直线与⊙O相切于点Q,求PQ长.(3)如图2,若⊙O的半径为4,点Q在⊙O上,点A在⊙O内,且OA=2,点Q'、A'分别是点Q、A关于⊙O的“反演点”,过点A'作A'B⊥A'O且A'B=A'O,连接BQ',Q'A',求BQ′+12Q′A′的最小值.13.【根底巩固】(1)如图,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在菱形ABCD中,E,F分别为BC,DC上的点,且∠EAF=12∠BAD,射线AE交DC的延长线于点M,射线AF交BC的延长线于点N.若AF=4,CF=2,AM=10.求:①CM的长;②FN的长.【拓展进步】(3)如图3,在菱形ABCD中,AB=6,∠B=60°,以点B为圆心作半径为3的圆,其中点P是圆上的动点,请直接写出PD+12PC的最小值.14.如图,在平面直角坐标系中,抛物线y =14x 2−32x ﹣4与x 轴交于A 、B 两点,与y 轴交于点C . (1)求点A 、B 、C 的坐标;(2)如图1,连接BC ,点D 是抛物线上一点,若∠DCB =∠ABC ,求点D 的坐标;(3)如图2,若点P 在以点O 为圆心,OA 长为半径作的圆上,连接BP 、CP ,请你直接写出12CP +BP的最小值.15.如图,抛物线y =﹣x 2+bx +c 与直线AB 交于A (﹣4,﹣4),B (0,4)两点,直线AC :y =−12x ﹣6交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF ⊥x 轴交AC 于点F ,交抛物线于点G . (1)求抛物线y =﹣x 2+bx +c 的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为⊙E 上一动点,求12AM +CM 它的最小值.16.问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP 、BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有CD CP=CP CB=12,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴PD BP=12,∴PD =12BP ,∴AP +12BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +12BP 的最小值为 √ .(2)自主探索:在“问题提出”的条件不变的情况下,13AP +BP 的最小值为 √37 .(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是CD ̂上一点,求2P A +PB 的最小值.。

(完整版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

(完整版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m(≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP+BP =AP+PD .请你完成余下的思考,并直接写出答案:AP+BP 的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP 的最小值为.(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A+PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cosC,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC?BCsinC=2msinC=2m,由余弦定理可得cosC=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点 D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】210例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=PA,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE?BC=4,∴PB2=BE?BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE?BD=×4=4,∴BP2=BE?BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD?CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD?CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD?sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′?OB=×3=4,∴OE′2=OM′?OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

2020中考数学专题10——最值问题之阿氏圆

2020中考数学专题10——最值问题之阿氏圆

IA2020中考专题10——最值问题之阿氏班级________姓名____________ . 【模型解析】“阿氏圆”樓型——u PA + k PB M型最值♦条件:A、B为定点,P为ΘO±一个动A, —= k (0<i<l). OB♦问題:求PA^k PB的最小血并预出点P的位置・CP ∙k PB•所以PA + k PB∙PAYP≥AC,当P为AC与GlO的交点时■ PA^kPB的最小置为AC・【例題分析】2例 1.⅛ Rt∆ABC 中P ZACB=90β , AC=4, BC=3,点 D 为AABC 内一动点■满足CD=2,求AD÷ jBD 的最小值•例2•问题提出:如图h在RtΔ^5C中.ZACB=90°. CB=A, CA≈69 CDC半径为2, P为SI上一动点,连结肿、BP9求AP丄BP的最小值.2图2图3√2 2尝试解决,为了解决这个问題,下面给出一种耘題思路:如图2,连按CP,在CB 上取点D,使CDCP1PD 1 1CD=I,则有一=—=-,Xv ZPCD=ZBCP, ΛΔPCDS≤ΔJCP, — = -, APD=-BP, CPCB2 BP 2 2:.AP--BP^AP^PD.2请你芫成余下的思考,芥直按写出答案,AP +I BP 的最小值为 ______________ .2自主探索:在“问题提出"的条件不变的情况下,^AP^BP 的最:、值为 ______________ . 拓展延伸:己知扇形CoD 中,ZCOD=90°, OC=6, 0Λ=3f 0B≡5f 点P 是弧CD 上一点,求的最小值.【巩固训练】2•如BB 2,在Rt∆ABC 中∙ ZB=90t ∙ AB=CB=2,以点B 为圆心作HIB 与AC 相切.点P 为OaB 上任3•如图3,己知点P 是边长为6的正方形ABCD 内SC —动点・PA=3■求PC÷- PD 的量小值为.—动点.则PA∙PC 的最小值是 __________1 •如图 1,在 Rt∆ABC 中,ZACB=90∙ , CB=4, CA=6, HIC 半径为 2,点 P 为21上一动点,连按 AP,国45•如图5,己知点A (4, 0), B (4, 4力点P 在半径为2的圆0上运动•试求丄AP+BP 的最小值• 26•如旳6,己知点A (-3^ 0) ,B (03), C C1, 0),若点P 为ElCJz 的一気 试求, CI)1AP ÷BP ^^5 ⑵的最小值.7.如图 7,扼物线y=-χ2+bx-^c 与直线 AB 交于 A(-4,-4), B(0, 4)两点,直线 AC : V = -^X-6 交y 轴于点C,点E 是直线AB ±的动点,过点E 作EF 丄X 轴交AC 于点F,交拋物线于点G(I) 求牠物线y = -x 2+bx + C 的表达式;4•如EB 4,己知[S O 半径为1, AC. BD 为切线,AC=1, BD=2, P 为弧AB 上一动点试求√2 2PC÷PD留5国6(2) 连按GB, EO,当四边形GEOB 是平行四边形时, 求点G 的坐标:(3) ①在y 轴上存在一点H,连按EH, HF,当点E 运动到什么住置时,以A. E l F, H 为顶点的四边形是矩形?求出此时点匕H 的坐标: ②在①的前提下,以点E 为El 心,EH 长为半径作Eh 点M 为EIE 上一动点,求ZAM 十CM 的最小值.2图72020中考专题10——最值问題之阿氏圆 参考答案CD 2 例1・分析:由C 为定点D 为动点可知CD 的运动轨迹为以C 为图心半径为2的匮。

2020中考数学复习微专题:最值(阿氏圆问题)突破与提升策略

2020中考数学复习微专题:最值(阿氏圆问题)突破与提升策略

2020中考数学复习微专题:最值(阿氏圆问题)突破与提升策略所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DB AC DC=.ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点; 作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB最小值,直接连BM即可.【问题剖析】(1)这里为什么是12PA?答:因为圆C半径为2,CA=4,比值是1:2,所以构造的是12PA,也只能构造12PA.(2)如果问题设计为PA+kPB最小值,k应为多少?答:根据圆C半径与CB之比为2:3,k应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P点轨迹是圆,A是定点,我们需要找出另一个定点M使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显. 当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=2,根据题意要求构造12PC ,在BC 上取M 使得此时PM=1,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值.。

2020年中考数学线段最值问题之阿波罗尼斯圆问题

2020年中考数学线段最值问题之阿波罗尼斯圆问题

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定义】阿氏圆是指:平面上的一个动点P到两个定点A,B 的距离的比值等于k,且k≠1的点P的轨迹称之为阿氏圆。

即:PAPBk(k 1),如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文:知识点1:内角平分线定理及逆定理若AD是∠BAC的角平分线,则有:AB BDAC CD。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即AB BDAC CD,则有:AD是∠BAC的角平分线。

知识点2:外角平分线定理及其逆定理若AD是△ABC外角∠EAC的角平分线,则有AB BDAC CD。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即AB BDAC CD,则有:AD是外角∠EAC的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义:当P点位于图中P点位置时有:PA NAk,当P点位于图中N点位置时有:k,PB NB所以有:PA NAPB NB,所以PN是∠APB的角平分线,∴∠1=∠2.当P点位于图中M点位置时有:MA PAkMB PB,所以有:PA MNPB MB,所以PM是∠EPA的角平分线,∴∠3=∠4.又∵∠1+∠2+∠3+∠4=180°∴2∠1+2∠3=180°∴∠1+∠3=90°故∠MPN=90°,所以动点P是在以MN为直线的圆上。

专题11 圆的最值问题(隐圆模型)(解析版)(人教版)

专题11 圆的最值问题(隐圆模型)(解析版)(人教版)

专题11圆的最值问题(隐圆模型)【知识点梳理】隐圆模型汇总固定线段AB所对同侧动角∠P=∠C,则A、B、C、P四点共圆若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径固定线段AB所对动角∠C恒为90°,则A、B、C三点共圆,AB为直径A.1B.作正方形ABCD关于直线BC对称的正方形则点D的对应点是F,连接FO交BC于P,交半圆O于根据对称性有:PD PF=,则有:PE PD PE PF+=+,则线段EF的长即为PE PD+的长度最小值,【答案】634-【分析】取AD 的中点O ,连接OF BC ⊥于F ,交CD 于G 取AD 的中点O ,连接OM ,过点于F ,交CD 于G ,则OM ME + AB CD ,60DAB ∠= ,AD ∴120ADC ∠=︒,AD CD =,【答案】3∴BD=2,∴11 2BD=.D运动的一个动点,联结EF,将AEF沿EF折叠,点A落在点G处,在运动的过程中,点G运动的路径长为()A.23πB C.3πD.1【答案】A【详解】解:∵点E 为AB 中点,点F 为AD 边上从A 到D 运动的一个动点,联结EF ,将AEF 沿EF 折叠,∴AE EB EG ==,∴G 点在以E 为圆心,AE 长为半径的圆上运动.当F 与D 点重合时,如图,则G 点运动的路径为 AG .∵AB =2,点E 为AB 中点,∴112AE AB ==,∵矩形ABCD ,∴90EAD ∠=︒,∵1AE =,AD =,90EAD ∠=︒,∴tan AD AED AE ∠==60AED ∠=︒.∵将AEF 沿EF 折叠,∴60DEG AED ∠=∠=︒,∴120AEG ∠=︒,∵1AE =,∴ 120223603AG AE π=⨯⨯=.故选:A .3.如图,在Rt ABC 中,90ACB ∠=︒,5AC =,12BC =,D 是以点A 为圆心,3为半径的圆上一点,连接BD ,M 是BD 的中点,则线段CM 长度的最小值为()A .3B .4C .5D .6【答案】C 【详解】作AB 的中点E ,连接EM 、CE 、AD ,则有AD =3,∵∠ACB =90°,即在Rt ABC 中,13AB ==,∵E 是Rt ABC 斜边AB 上的中点,∴11322CE AB ==,∵M 是BD 的中点,E 是AB 的中点,∴1322ME AD ==,∴在CEM 中,1331332222CM -+<<,即58CM <<;当C 、M 、E 三点共线时有133822CM +==或者133522CM -==;即58CM ≤≤,∴CM 最小值为5,故选:C .【答案】21022-【分析】由题意可知,AGB ∠圆周角45APB ∠=︒的圆上,(要使。

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)几何探究型问题(针对第25题)“阿氏圆”问题【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k取任意不为1的正数时,此类问题的处理通常以动点P的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O的半径为r,点A,B都在⊙O外,P 为⊙O上一动点,已知r=k·OB,连接PA,PB,则当PA+k·PB的值最小时,点P的位置如何确定?如图2,在线段OB上截取OC,使OC=k·r,则可证明△BPO与△PCO相似,即k·PB=PC.故求PA+k·PB的最小值可以转化为PA+PC的最小值,其中A,C为定点,P为动点,当点P,A,C共线时,PA+PC的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O (一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OPOB=k ;第三步:在OB 上取点C ,使得OC OP =OPOB ;第四步:连接AC ,与⊙O 的交点即为点P . 例题1.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +1 2BP 的最小值.解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,∴要使AP +12BP 最小,则AP +PD 最小,当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长.在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37.2.问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3. 问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC 的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12.∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12,∴OA OP =OPOF,且∠AOP =∠POF ,∴△OAP ∽△OPF . ②求BP +2AP 的最小值.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12,∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13. 问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计) 解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°. ∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米),∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业练习类型三“阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,PA =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD ,在△BAD 和△CAE 中,AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP ,∴PE DP =P A DA =12,∴PE =12PD ,∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AE MA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM ,∴EM MD =MA DA =1525=35,∴ME =35MD ,∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求.在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16,∴EC =162+182=2145,∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -1 2PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG . ∵PB BG =CBPB=2,∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =12,∴PG =12PC ,∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =23,∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =12,∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4,∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -1 2PC 的值最大,最大值为37.。

专题11 圆的最值问题(隐圆模型)(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题11 圆的最值问题(隐圆模型)(解析版)-2024年常考压轴题攻略(9年级上册人教版)

专题11圆的最值问题(隐圆模型)【知识点梳理】隐圆模型汇总固定线段AB所对同侧动角∠P=∠C,则A、B、C、P四点共圆若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径固定线段AB所对动角∠C恒为90°,则A、B、C三点共圆,AB为直径A.1B.作正方形ABCD关于直线BC对称的正方形则点D的对应点是F,连接FO交BC于P,交半圆O于=,根据对称性有:PD PF+=+,则有:PE PD PE PF+的长度最小值,则线段EF的长即为PE PD【答案】634-【分析】取AD 的中点O ,连接OF BC ⊥于F ,交CD 于G 取AD 的中点O ,连接OM ,过点于F ,交CD 于G ,则OM ME + AB CD ,60DAB ∠= ,AD ∴120ADC ∠=︒,AD CD =,【答案】3∴BD=2,∴11 2BD=.D运动的一个动点,联结EF,将AEF沿EF折叠,点A落在点G处,在运动的过程中,点G运动的路径长为()A.23πB C.3πD.1【答案】A【详解】解:∵点E 为AB 中点,点F 为AD 边上从A 到D 运动的一个动点,联结EF ,将AEF 沿EF 折叠,∴AE EB EG ==,∴G 点在以E 为圆心,AE 长为半径的圆上运动.当F 与D 点重合时,如图,则G 点运动的路径为 AG .∵AB =2,点E 为AB 中点,∴112AE AB ==,∵矩形ABCD ,∴90EAD ∠=︒,∵1AE =,AD =90EAD ∠=︒,∴tan AD AED AE∠==60AED ∠=︒.∵将AEF 沿EF 折叠,∴60DEG AED ∠=∠=︒,∴120AEG ∠=︒,∵1AE =,∴120223603AG AE ππ=⨯⨯=.故选:A .3.如图,在Rt ABC 中,90ACB ∠=︒,5AC =,12BC =,D 是以点A 为圆心,3为半径的圆上一点,连接BD ,M 是BD 的中点,则线段CM 长度的最小值为()A .3B .4C .5D .6【答案】C 【详解】作AB 的中点E ,连接EM 、CE 、AD ,则有AD =3,∵∠ACB =90°,即在Rt ABC 中,13AB ==,∵E 是Rt ABC 斜边AB 上的中点,∴11322CE AB ==,∵M 是BD 的中点,E 是AB 的中点,∴1322ME AD ==,∴在CEM 中,1331332222CM -+<<,即58CM <<;当C 、M 、E 三点共线时有133822CM +==或者133522CM -==;即58CM ≤≤,∴CM 最小值为5,故选:C .【答案】21022-【分析】由题意可知,AGB ∠圆周角45APB ∠=︒的圆上,(要使。

专题05几何最值之阿氏圆模型解析版

专题05几何最值之阿氏圆模型解析版

专题05 几何最值之阿氏圆模型模型建立:当点P 在一个以O 为圆心,r 为半径的圆上运动时,如图所示:易证:△BOP ∽△POA ,,∴对于圆上任意一点P 都有.对于任意一个圆,任意一个k 的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A 、B 点,【技巧总结】计算PA k PB + 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB + 的值最小,解决步骤具体如下:①如图,将系数不为1的线段两端点与圆心相连即OP ,OB ②计算出这两条线段的长度比OP k OB=③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB = ④则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值例1.(2021·四川乐山·三模)如图,在直角梯形ABCD 中,∠ABC =∠DAB =90°,AB =BC =4,AD =2,点P 是以AB 为直径的半圆O 上一点,连接PC 、PD ,则PC PD 的最小值为____.例2.(2019·四川成都·一模)在△ABC中,∠ACB=90°,BC=8,AC=6,以点C为圆心,4为半径的圆上有BD+AD的最小值是_____.一动点D,连接AD,BD,CD,则12例3.(2022·四川成都·模拟预测)如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则12PD PC-的最大值为_______.V中,AB=AC=4,点E,F分别是AB,AC的【变式训练1】(2022·四川成都·模拟预测)如图,在Rt ABC中点,点P是扇形AEF的 E F上任意一点,连接BP,CP,则12BP+CP的最小值是_____.【变式训练2】(2022·四川·成都嘉祥外国语学校八年级期中)如图,在长方形ABCD 中,2AB =,AD =E 在BC 上,连接DE .当BE DE =时,CE 的长为___________;在点E 的运动过程中,BE 的最小值为___________.2+【详解】解:∵四边形ABCD 是矩形,2AB =,AD =∴90DCE Ð=°,2CD AB ==,BC AD ==∴BE CE =-,当BE DE =时,则DE CE =,∵222+=CE CD DE ,∴()222+2=CE CE -,∴CE 在线段BC 下方作=45CBM а,过点E 作EF BM ^于点F ,连接DF ,∴EF =,DE EF DE DF +=+≥,当D 、E 、F ++DE EF DE DF ==的值最小,此时45DEC BEF Ð=Ð=°,∴2CE CD ==,∴2BE =,DE ==∴EF ==DE +的最小值为:+EF DE∴BE 的最小值为2BE DE ö=+=+÷÷ø2+【变式训练3】(2020·全国·九年级专题练习)如图,O e 2,90PO MO POM ==Ð=°,Q为O e 上一动点,则PQ 的最小值____________.MQ PQ 的最小值_______【详解】解:连接OQ ,在OM 上取一点H ,使OH =1,连接QH 、PH ,2OQ OM ==Q ,OH OQ \==OQ OM =,OH OQ OQ OM \=QOM QOM Ð=ÐQ ,OHQ OQM \:△△,QH OH QM OQ \==QH \=90POM Ð=°Q ,PH \=Q Q 是O e \根据两点之间,线段最短得到当Q 在PH 上时,PQ +QH 最小即PQ 最小,最小值是PH .连接OQ ,在OP 上取一点A ,使OA QA 、MAOA =Q OA OQ \==OQ OP ==OA OQ OQ OP \=又QOP QOP Ð=ÐQ ,OAQ \:△△AQ \=90POM Ð=°Q ,MA \=Q Q 是O e 上一动点,\根据两点之间,线段最短得到当Q 在MA 上时,QM +QA 最小+QM 最小,最小值是MA 课后训练1.(2021·全国·九年级专题练习)如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O +PB 的最小值为________.OP =r =12BC =2,OB =2.(2022·全国·九年级专题练习)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是________.3.(2021·全国·九年级专题练习)ABC 中,90,2B AB CB Ð=°==,以点B 为圆心作圆B 与AC相切,点P 为圆B 上任一动点,则PA +的最小值是___________.24.(2021·全国·九年级专题练习)如图1,在RT △ABC 中,∠ACB =90°,CB =4,CA =6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP ,求:①12AP BP +,②2AP BP +,③13AP BP +,④3AP BP +的最小值.∵1CD =,2CP =,4CB =∵23CE =,2CP =,CA =∴13CE CP CP CA ==.又∵ECP PCA Ð=Ð,∴ECP PCA ~V V ,∴13EP AP =,即13EP AP =,5.(2021·全国·九年级专题练习)如图,点A、B在Oe上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在Oe上.求2PC+PD的最小值.∵C是OA的中点,∴1122 OC OA OP ==在Rt OED △中,DE 6.(2022·广东惠州·一模)如图1,抛物线24y ax bx =+-与x 轴交于AB 、两点,与y 轴交于点C ,其中点A 的坐标为()1,0-,抛物线的对称轴是直线32x =.(1)求抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一个动点,是否存在点P 使四边形ABPC 的面积为16,若存在,求出点P 的坐标若不存在,请说明理由;(3)如图2作BF BC ^交抛物线的对称轴于点F ,以点C 为圆心,2为半径作C e ,点Q 为C e 上的FQ +的最小值.则(),4Q m m -,ABC BCPABPC S S S =+V V 四边形()()22114144344281022m m m m m =´+´+--++´=-++,Q 四边形ABPC 的面积为16,32x =Q 是抛物线的对称轴,35422F y =-=35,F æö\ç÷7.(2021·全国·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD,连接AF,BD(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD AD的值;(3)直接写出正方形CDEF旋转过程中,BD AD的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25 OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB+的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得PA k PB+的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=237.例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55+的最小值为________.[答案]:5.变式练习>>>2为半径画圆,O为原点,P是⊙2.如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,2M上一动点,则PO+2PA的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCD P MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +的最小值为,PD ﹣的最大值为.(2)如图2,已知菱形ABCD 的边长为4,∠B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD +的最小值为,PD ﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC 上取一点G ,使得BG =4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A ,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m , ∴=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . ∵OE ′=2,OM ′•OB =×3=4,∴OE ′2=OM ′•OB , ∴=,∵∠BOE ′=∠M ′OE ′,∴△M ′OE ′∽△E ′OB , ∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小(两点间线段最短,A 、M ′、E ′共线时),最小值=AM ′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22 的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:25.3. 如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:37 2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?[答案]426. 如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C 为顶点的正方形CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD =,连接AF ,BD(1)求证:△BDC ≌△AFC ;(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD +AD 的值; (3)直接写出正方形CDEF 旋转过程中,BD +AD 的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵P A2=9,AE•AD=×6=9,∴P A2=AE•AD,∴=,∵∠P AE=∠DAP,∴△P AE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

相关文档
最新文档