5.3电磁振荡与电磁波

合集下载

电磁振荡与电磁波

电磁振荡与电磁波

电磁振荡与电磁波电磁振荡和电磁波是电磁学中两个非常重要的概念。

电磁振荡指的是电场和磁场在空间中周期性地变化,而电磁波则是由电磁振荡产生的能量传播的方式。

在本文中,我们将深入探讨电磁振荡和电磁波的原理、特性和应用。

一、电磁振荡的原理电磁振荡是由充满空间的电场和磁场的相互作用产生的。

当一个物体具有电荷量时,它就产生了电场,而当电荷在物体上运动时,会产生磁场。

电场和磁场相互关联,当它们相互作用时,会产生一个闭合的能量传播系统,即电磁振荡。

电磁振荡的基础理论可以由麦克斯韦方程组来描述。

麦克斯韦方程组是描述电磁场相互作用的基本规律,包括麦克斯韦-安培定律、法拉第电磁感应定律、库仑定律和高斯定律。

这些方程描述了电场和磁场的生成和变化规律,从而揭示了电磁振荡的基本原理。

二、电磁波的特性电磁场振荡产生的能量传播方式称为电磁波。

电磁波具有一些特性,包括频率、波长、速度和极化等。

1. 频率:电磁波的频率指的是电场和磁场振荡的次数。

频率的单位是赫兹(Hz),1 Hz表示每秒振荡一次。

频率与波长有关,它们之间的关系可以由光速公式c = λν来表示,其中c是光速,λ是波长,ν是频率。

2. 波长:电磁波的波长是指在一个完整的振荡周期内电磁波传播的距离。

波长的单位可以是米(m),也可以是其他长度单位。

波长和频率之间满足反比关系,即波长越长,频率越低。

3. 速度:电磁波的传播速度是一个常数,即光速。

光速在真空中的数值约为3×10^8米每秒。

这意味着无论频率和波长如何变化,电磁波的传播速度始终是光速。

4. 极化:电磁波可以存在不同的极化方式,包括线偏振、圆偏振和无偏振。

线偏振的电磁波的电场振荡方向始终保持在同一平面上;圆偏振的电磁波的电场振荡方向在平面内旋转;无偏振的电磁波的电场振荡方向随机变化。

三、电磁波的应用电磁波的应用非常广泛,涉及到许多领域。

以下是一些典型的应用:1. 通信:无线通信技术是电磁波的主要应用之一。

电磁振荡与电磁波知识点总结

电磁振荡与电磁波知识点总结

电磁振荡与电磁波知识点总结电磁振荡和电磁波是电磁学领域中的两个重要概念。

它们在现代通信、无线电技术、光学等方面具有广泛应用。

本文将对电磁振荡和电磁波的知识点进行总结,并探讨其相关性及应用。

一、电磁振荡的基本概念与特征电磁振荡是指电磁场的能量在空间中以波动形式传播的过程。

具体来说,电磁振荡是由电场和磁场相互作用而形成的,是电磁辐射的基础。

1. 电磁振荡的基本方程电磁振荡满足麦克斯韦方程组,其中电磁振荡的波动方程描述了电磁场的传播速度和特性。

这个方程是当电磁波在真空中传播时的基本方程。

2. 电磁振荡的特点电磁振荡具有频率、波长和速度等特点。

其中,频率指的是电磁波的振动次数,波长指的是电磁波的传播长度,而速度则是指电磁波在介质中传播的速度。

3. 电磁波的分类根据频率的不同,电磁波可以分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等不同类型。

二、电磁波的基本特性与传播方式电磁波是由电场和磁场相互作用而形成的能量传播过程。

具体来说,电磁波将电磁能量以波动方式传播,具有固定的速度和波长。

1. 电磁波的基本特性电磁波具有频率、波长、速度和幅度等基本特性。

其中频率和波长决定了电磁波的性质,速度则是电磁波在介质中传播的速度,幅度则表示了电磁波的强度。

2. 电磁波的传播方式电磁波可以通过空气、真空、介质等媒质进行传播。

其中,在真空中,电磁波的传播速度为光速,即约为3 × 10^8 m/s。

而在介质中,电磁波的传播速度则取决于该介质的折射率。

3. 电磁波的应用电磁波在通信、无线电技术、雷达、医学成像、激光加工等方面有着广泛的应用。

通过调节电磁波的频率和波长,人们可以实现无线通信、遥感探测、医学影像等各种功能。

三、电磁振荡与电磁波的关系与应用电磁振荡和电磁波是密切相关的两个概念。

电磁波是由电磁振荡产生的,而电磁振荡是电磁波传播的基础。

1. 电磁振荡与电磁波的关系电磁振荡是电磁波的产生过程,是电磁场的能量振荡传播。

电磁振荡与电磁波的产生

电磁振荡与电磁波的产生

电磁振荡与电磁波的产生电磁振荡和电磁波是电磁学领域中的重要概念,它们在现代科技和通信领域中扮演着重要的角色。

本文将详细介绍电磁振荡和电磁波的概念、产生机制以及应用。

一、电磁振荡的概念及产生机制电磁振荡指的是电荷在外加电场或磁场的作用下,受到力的驱使而发生的周期性振动。

它是电磁场与物质相互作用的基础。

电荷在受力作用下会发生加速度变化,而加速度变化就会伴随着辐射场的产生。

当电荷的振动频率与辐射场的频率一致时,电磁场就会发生共振现象,形成稳定的电磁振荡。

电磁振荡的产生机制可以通过电路中的LC振荡器来进行解释。

LC振荡器由电感和电容组成,当电容和电感达到一定的数值时,可以产生自身的振荡。

在振荡过程中,电荷会在电容器和电感之间周期性地流动,并辐射出电磁波。

二、电磁波的概念及产生机制电磁波是电磁振荡在空间中传播的结果,它是由电场和磁场相互耦合而形成的能量传播波动。

电磁波包含有电场和磁场的变化信息,可以在真空和介质中传播。

电磁波的产生机制可以用麦克斯韦方程组进行描述。

根据麦克斯韦方程组的推导可知,当电荷发生加速度变化时,就会激发电场和磁场的振荡,并形成电磁波。

这种电磁波的传播速度是一个恒定值,即光速。

三、电磁波的特性及应用1. 频率和波长:电磁波的频率与波长有着固定的关系,它们之间满足特定的物理常数。

不同频率的电磁波对应不同的波长,从无线电波到 gamma 射线,频率和波长的范围非常广泛。

2. 增强和衰减:电磁波的传播过程中,会与物质相互作用,引起能量的增强或衰减。

例如,无线电波在天线接收器处被增强,而在障碍物遇到较大时则会发生衰减。

3. 反射和折射:电磁波在介质之间传播时,会发生反射和折射现象。

反射是指电磁波遇到界面时,部分能量被反射回原来的介质;折射是指电磁波从一种介质传播到另一种介质时,改变传播方向和速度。

电磁波在科学研究和实际应用中有着广泛的应用。

它们被广泛运用在通信领域,包括无线电通信、微波通信和光纤通信等。

高中物理电磁振荡和电磁波公式总结

高中物理电磁振荡和电磁波公式总结

高中物理电磁振荡和电磁波公式总结电磁振荡和电磁波是高中物理课程中非常重要的概念。

通过了解相关的公式,可以更好地理解电磁学的基本原理和应用。

本文将总结高中物理中与电磁振荡和电磁波相关的公式,并对其进行简要解释。

一、电磁振荡公式1. 阻尼振荡的周期公式:T = 2π√(m/k)T表示振荡的周期,m表示振荡体的质量,k表示弹簧的劲度系数。

2. 无阻尼振荡的周期公式:T = 2π√(L/C)T表示振荡的周期,L表示电感的感值,C表示电容的容值。

3. 能量守恒公式:E = 1/2kx² + 1/2mv²E表示振荡体的总能量,k表示弹簧的劲度系数,x表示振荡体的位移,m表示振荡体的质量,v表示振荡体的速度。

二、电磁波公式1. 电磁波的速度公式:v = fλv表示电磁波的传播速度,f表示频率,λ表示波长。

2. 电磁波的频率和周期公式:f = 1/Tf表示频率,T表示周期。

3. 电磁波的波长和频率公式:λ = v/fλ表示波长,v表示电磁波的速度,f表示频率。

4. 电磁波的能量公式:E = hfE表示电磁波的能量,h表示普朗克常数,f表示频率。

5. 光的频率和波长与介质的折射率公式:n₁/λ₁ = n₂/λ₂n₁和n₂分别表示两个介质的折射率,λ₁和λ₂分别表示入射光和折射光的波长。

三、简要解释1. 电磁振荡公式解释:阻尼振荡的周期公式说明了弹簧振子的周期与振子本身的质量和弹簧的劲度系数有关。

无阻尼振荡的周期公式说明了LC振荡电路的周期与电感的感值和电容的容值有关。

能量守恒公式表示了振荡体在振荡过程中机械能和动能之间的转换。

2. 电磁波公式解释:电磁波的速度公式是电磁波的基本特性,表示电磁波在真空和空气中的速度为光速。

电磁波的频率和周期公式表示电磁波的周期与频率之间的关系,频率是指单位时间内波的周期数。

电磁波的波长和频率公式表示波长与频率之间的关系。

电磁波的能量公式表示了电磁波的能量与频率之间的关系。

电磁振荡与电磁波

电磁振荡与电磁波
( 2) + ( 3)
1 1 2 2 2 W总 = L ω q m = LI m 2 2 2 2 W总 = 1 L ω 2 q m = 1 1 q m
1 ω = LC 1 = Lω 2 C
2
磁能极大值(常数) 磁能极大值(常数) 电能极大值(常数) 电能极大值(常数)
Hale Waihona Puke 2 2C 注意: 随时间周期性变化 总能量守恒。 周期性变化, (1) We 、W m 随时间周期性变化,总能量守恒。 )
µ
E = B = uB
εµ
4.电磁波的频率,等于偶极子的振动频率。 电磁波的频率,等于偶极子的振动频率。 电磁波的频率 5.具有反射、折射、干涉、衍射、偏振等特性 具有反射、折射、干涉、衍射、 具有反射
电磁场的能量密度与能流密度表达式
1. 能量密度
1 2 电场 we = εE 2
无阻尼振荡电路:电路无电阻、无辐射、 无阻尼振荡电路:电路无电阻、无辐射、产生的电 磁振荡是无阻尼自由振荡. 磁振荡是无阻尼自由振荡 (1)振荡过程 振荡过程: 振荡过程
I=0
+ + q
− −
t =0
I = 0 , W e ⇒ max, W m ⇒ 0
, We , Wm
放电,自感作用, 放电,自感作用,I 逐渐 ,q
C
A
B
感应圈 发射
D
接收
频率
10 22
电磁波谱
γ 射线
X 射线
波长
10
13
0
10
1T HZ 10 1G HZ 10 1M HZ 10 1K HZ 10
15
紫外线
可见光
1A 9 10 1nm 10 10

【课件】第四章+电磁振荡与电磁波++课件高二下学期物理人教版(2019)选择性必修第二册

【课件】第四章+电磁振荡与电磁波++课件高二下学期物理人教版(2019)选择性必修第二册
(2)频率:1 s内完成周期性变化的次数,用“f”表示。

(3)周期和频率关系:T= 。

振荡电路里发生无阻尼振荡时的周期和频率分别叫做固有周期、固有频率。
2.LC的周期与频率
=
=
1

同步练习册72页例题
1.如图所示,LC振荡电路正在发生电磁振荡现象,某时刻线圈产生的磁场方向和
伟大的预言
1、变化的磁场产生电场
在变化的磁场中,闭合回路里将会产生感应电流。
①均匀变化的磁场产生稳定的电场
E
B
O
t
O
t
伟大的预言
1、变化的磁场产生电场
②振荡磁场产生振荡电场
B
O
振荡磁场
t
正弦曲线
E
O
振荡电场
t
E与B频率相同
伟大的预言
2、变化的电场产生磁场
①均匀变化的电场产生稳定的磁场
B
E
O
t
O
4.1
电磁振荡
高考导航

1.基本考察点: 振荡电路、振荡电流随时间变化的规律.

2.难点:
振荡电路中电场能和磁度场能的变化规律;

3.高考热点:
振荡电路,固有周期公式应用;

4 .题型及难度:以选择题为主,难度中等偏易。
一、电场振荡的产生
1.振荡电流和振荡电路
(1)振荡电流:大小和方向都做周期性变化的电流.
即 v真空 = c = 3.0×108 m/s。
光是一种电磁波
二、电磁波的产生机理
②电磁波是横波,在空间传播时任一位置上(或任一时刻)E、B、v三矢量相互垂直
且E和B随时间做正弦规律变化。

电磁振荡与电磁波的产生与传播

电磁振荡与电磁波的产生与传播

电磁振荡与电磁波的产生与传播电磁振荡与电磁波是物理学中重要的概念,它们在不同领域具有广泛的应用。

本文将介绍电磁振荡的原理以及电磁波的产生与传播方式。

一、电磁振荡的原理在介绍电磁波之前,我们先来了解电磁振荡的原理。

电磁振荡指的是电场和磁场之间的相互转换和交替变化。

在电磁振荡中,存在一个振荡源,这个振荡源可以是一个电流或者一个电压源。

当振荡源激励下,电荷会在电路中进行周期性的来回运动,从而引起电场和磁场的交替变化。

电磁振荡的产生需要一个能够存储电场和磁场能量的系统,我们称之为振荡回路或者谐振回路。

典型的振荡回路包括电容器和电感器的串联或并联。

通过调节电容器和电感器的数值,我们可以控制电磁振荡的频率。

二、电磁波的产生与传播当电磁振荡发生时,电场和磁场会以一定的频率进行交替变化。

这种交替变化会引起电磁波的产生与传播。

电磁波是由电场和磁场振动共同构成的。

它们以垂直于彼此和传播方向的方向传播,可以在真空中传播,也可以在介质中传播。

根据电磁波振动方向的不同,我们将其分为横波和纵波两种类型。

横波是指电场和磁场振动方向垂直于电磁波传播方向的波动模式。

横波的特点是电磁场的能量传播方向与波动方向垂直。

纵波是指电场和磁场振动方向与电磁波传播方向相同或相反的波动模式。

纵波的特点是电磁场的能量传播方向与波动方向平行或反平行。

无论是横波还是纵波,它们在传播过程中的速度是相等的,都等于真空中的光速。

电磁波的频率和波长之间存在着确定的关系,即频率乘以波长等于光速。

这个关系由于麦克斯韦方程组的求解得到,被称为麦克斯韦关系式。

电磁波的传播受到环境影响,不同材料对电磁波的吸收、散射和折射等都会产生影响。

这些现象是电磁波在传播过程中所遇到的一些重要问题。

三、电磁波的应用领域电磁波在现代社会中的应用非常广泛,涵盖了通讯、医学、能源等多个领域。

在通讯领域,电磁波被广泛应用于无线通信技术,如手机、卫星通信等。

通过电磁波的传播,人们可以进行远距离的语音和数据传输。

高考物理电磁振荡与电磁波的关系专题复习教案

高考物理电磁振荡与电磁波的关系专题复习教案

高考物理电磁振荡与电磁波的关系专题复习教案一、引言在高考物理中,电磁振荡和电磁波是重要的概念,它们之间存在着密切的联系。

本文将结合专题复习教案,深入探讨电磁振荡与电磁波的关系,帮助同学们加深对这一知识点的理解。

二、电磁振荡基础知识回顾1. 电磁振荡的概念电磁振荡是指电场和磁场在空间中以一定频率和幅度交替变化的现象。

它是由电容器和电感器组成的电路中,电荷按一定频率和幅度在电容器和电感器之间交换而形成的。

2. 电磁振荡的基本特征电磁振荡具有频率、周期、角频率、振幅等基本特征。

其中,频率表示单位时间内振荡的次数,周期表示振荡一次所需的时间,角频率表示单位时间内振荡的角度变化量,振幅表示电场或磁场的最大变化量。

3. 电磁振荡的数学描述电磁振荡可以通过谐振方程来描述,其一般形式为x(t) = A·cos(ωt + φ),其中x(t)表示电场或磁场的变化量,A表示振幅,ω表示角频率,t 表示时间,φ表示初相位。

三、电磁波基础知识回顾1. 电磁波的概念电磁波是指电场和磁场通过空间传播的波动现象。

它包括了可见光、微波、射线等多种波动形式,具有电场和磁场垂直且互相垂直的特点。

2. 电磁波的基本性质电磁波具有传播速度快、波长和频率之间存在固定关系等基本性质。

其中,传播速度为光速,即299792458m/s,波长(lambda)和频率(f)之间满足c = λf,其中c为光速。

3. 电磁波的分类电磁波根据频率的不同可以分为不同的波段,包括射线、紫外线、可见光、红外线、微波等。

其中,可见光波段是人眼能够感知的波段。

四、电磁振荡与电磁波的关系1. 电磁振荡与电磁波的产生电磁振荡是电荷在电路中交换能量的过程,当电磁振荡达到一定条件时,即可产生电磁波。

电磁波的产生是电磁振荡能量传播的结果。

2. 电磁振荡与电磁波的相互转化在电磁振荡中,电场和磁场相互作用,形成电磁波;而在电磁波传播过程中,电场和磁场相互转化,形成电磁振荡。

电磁振荡和电磁波

电磁振荡和电磁波

电磁振荡和电磁波一、电磁振荡1、振荡电流和振荡电路大小和方向都随时间做周期性变化的电流叫振荡电流。

能够产生振荡电流的电路叫振荡电路。

最简单的振荡电路是由电感线圈和电容器组成的,简称LC 回路。

LC 回路中产生振荡电流是由于电容器不断充电和放电,该振荡电流是按正弦规律变化的。

2、LC 回路振荡过程中的能量转化电容器放电线圈周围产生磁场并逐渐增强 线圈周围磁场逐渐减弱直至消失电容器反向充电,这种电场能磁场能发生周期性转化的现象叫做电磁振荡。

3、LC 电路中电磁振荡的产生过程如下:① 电容器充电未开始放电时,电容器电压U 最大,电场E 最强,电场能最大,电路电流i=0。

② 电容器开始放电后,由于自感L 的作用,电流逐渐增大,磁场能增强,电容器中的电荷减少,电场能减少。

在放电完毕瞬间,U=0,E=0,i 最大,电场能为零,磁场能最大。

③ 电容器放完电后,由于自感作用,电流i 保持原方向继续流动并逐渐减小,对电容器反向充电,随电流减小,电容两端电压升高,磁场能减少而电场能增大,到电流为零瞬间,U 最大,E 最大,i=0,电场能最大,磁场能为零。

④ 电容器开始放电,产生反向放电电流,磁场能增大电场能减小,到放电完了时U=0,E=0,i 最大,电场能为零,磁场能最大。

上述过程反复循环,电路产生振荡电流。

电磁振荡过程中各物理量随时间变化情况 时间 振荡情况 电量Q 电场强度E 电压U 电流 强度i 磁感应强度B 自感电动势 电场能磁场能 最大 最大 最大 零 零 最大 最大 零减小减小减小增大增大减小减小增大零零零最大最大零零最大反向增大反向增大反向增大减小减小增大增大减小最大最大最大零零最大最大零减小减小减小反向增大反向增大减小减小增大零零零最大最大零零最大增大增大增大减小减小增大增大减小例在LC振荡电路中,当电容器放电完毕瞬间,以下说法正确的是()。

A. 电容器极板间的电压为零,磁场能开始向电场能转化B. 电流达到最大值,线圈产生的磁场达到最大值C. 如果没有能量辐射损耗,这时线圈的磁场能等于电容器开始放电时电容器的电场能D. 线圈中产生的自感电动势最大分析与解答正确答案:A,B,C电容器放电完毕的瞬间,还有以下几种说法:电场能向磁场能转化完毕;磁场能开始电场能转化;电容器开始反向充电;电容器放电完毕的瞬间有如下特点:电容器电量Q=0,板间电压U=0,板间场强E=0,线圈电流I最大,磁感应强度B最大,电路磁场能最大,电场能为零。

电磁振荡与电磁波

电磁振荡与电磁波

第3讲电磁振荡与电磁波★考情直播2.考点整合考点1 电磁场理论1.麦克斯韦的电磁场理论:的磁场产生电场,的电场产生磁场.2.理论剖析:①均匀变化的磁场将产生的电场,周期性变化的磁场将产生同频率周期性变化的电场.②变化的电场将产生恒定的磁场,周期性变化的电场将产生同频率周期性变化的磁场.3.麦克斯韦预言了的存在,并指出是一种电磁波.而赫兹则证明了其正确性.[例1]关于麦克斯韦电磁场理论,以下说法正确的是()A.在赫兹发现电磁波的实验基础上,麦克斯韦提出了完整的电磁场理论;B.变化的磁场在周围的空间一定产生变化的电场;C.变化的电场可以在周围的空间产生磁场;D.麦克斯韦第一个预言了电磁波的存在,赫兹第一个用试验证明了电磁波的存在.[解析] 麦克斯韦首先预言了电磁波的存在,而后赫兹第一个用试验证明了电磁波的存在,故A错D对.根据麦克斯韦电磁场理论,均匀变化的磁场在周围空间产生稳定的电场,则B错C对.【答案】C、D[规律总结] 理解电磁场理论的要点,在于是否有变化、以及区分变化是否均匀.考点2 电磁振荡与电磁波1.振荡电路:大小和方向都随时间做周期性变化的电流叫做振荡电流,能够产生振荡电流的电路叫。

常见的振荡电路由一个电感线圈和一个电容器组成,简称回路.2.分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC回路中电场能E电和磁场能E磁在转化过程中的总和不变.⑵回路中电流越大时,L中的磁场能越大(磁通量越大).⑶极板上电荷量越大时,C中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大).可用图象11-3-2表示.3.LC回路的振荡周期和频率=T,=f4.电磁场在空间由近及远的传播形成.5.电磁波的特点:(1)电磁波是.(2)三个特征量的关系v=λ/T=λf(3)电磁波在真空中传播,向周围空间传播电磁能.(4)能发生反射,折射,干涉和衍射.6.有效发射电磁波的条件:①要有足够高.②振荡电路的电场和磁场必须分散到尽可能大的空间,采用电路.7.无线电波的发射:发射前将要传递的信号附加到高频等幅振荡电流上的过程叫,有两种方式:和.无线电波的传播:有方式三种,天波、地波、直线传播.其中直线传播往往要中继站.[例2] 如图所示是LC振荡电路及其中产生的振荡电流随时间变化的图象,电流的正方向规定为顺时针方向,则在t1到t2时间内,电容器C的极板上所带电量及其变化情况是()A.上极板带正电,且电量逐渐增加B.上极板带正电,且电量逐渐减小C.下极板带正电,且电量逐渐增加D.下极板带正电,且电量逐渐减小如图[解析] t1到t2时间内,电流为负且增大,即逆时针增大,说明负电荷正由下极板向上极板移动,由此可知上极板带正电,且其所带正电荷量逐渐减小。

2025年高考物理总复习专题38 电磁振荡与电磁波(附答案解析)

2025年高考物理总复习专题38 电磁振荡与电磁波(附答案解析)

第1页(共10页)
2025年高考物理总复习专题38电磁振
荡与电磁波
模型归纳
1.LC 振荡电路
振荡电路
电磁振荡能量关系周期和频率
电磁振荡:在LC 振荡电路中,电容器不断地充电和放电,就会使电容器极板上的电荷量q 、电路中的电流i 、电容器内的电场强度E 、线圈内的磁感应强度B 发生周期性的变化,这种现象就是电磁振荡.
(1)放电过程中电容器储存的电场能逐渐转化为线圈的磁场能.
(2)充电过程中线圈中的磁场能逐渐转化为电容器的电场能.
(3)在电磁振荡过程中,电场能和磁场能会发生周期性的转化.
(1)周期T =2πLC .(2)频率f =1
2πLC .2.电磁波电磁波谱
频率/Hz
真空中波长/m 特性应用
递变规律无线电波<3×10
11
>10
-3
波动性强,易发生衍射无线电技术衍射能力
减弱,直线
红外线1011~1015
10-7~10-3
热效应红外遥感可见光
1015
10-7
引起视觉
照明、摄影。

电磁振荡与电磁波

电磁振荡与电磁波
I = 0, We ⇒ max, Wm ⇒ 0
t =2T/4
I =0−−
++
反向放电, 电流与原方向相反, 反向放电 电流与原方向相反 因 自感作用 I 逐渐 , q , We , Wm
2
t =3T/4
I max
t =4T/4
I = max, We ⇒ 0, Wm ⇒ max 放电完毕, 电流本应终止, 放电完毕 电流本应终止 因Wm↓ 自感作用,产生与原来方向相同的 自感作用 产生与原来方向相同的 电流, 电容器重新充电. 电流 电容器重新充电
电磁振荡: 电路中电量q和电流 和电流I 电磁振荡 电路中电量 和电流 的周期性变化 振荡电路: 振荡电路 产生电磁振荡的回路 一、 无阻尼自由振荡过程 L C
无阻尼振荡电路: 无阻尼振荡电路: 电路无电阻、 电路无电阻、无辐射的振荡电路所产生的 电磁振荡是无阻尼自由振荡。 电磁振荡是无阻尼自由振荡。
q = qm cos(ωt + ϕ )
I = −ωqmsin(ωt+ϕ) ω = −Im sin( t + ϕ
1 2 q2 q m cos 2 (ω t + ϕ ) = We = 2C 2C
1 2 1 1 2 2 2 2 Wm = LI = Lω qm sin (ωt + ϕ ) = LI m sin 2 (ωt + ϕ ) 2 2 2
1
t=0
I=0 + + q
I = 0, We ⇒ max, Wm ⇒ 0
− −
放电, 放电 自感作用, I逐渐 , q 逐渐 We , Wm
I = max, We ⇒ 0, Wm ⇒ max
t =T/4
I max

《电磁振荡与电磁波》课件

《电磁振荡与电磁波》课件

例2、对振荡电路,下列说法正确的是( ) A.振荡电路中、电容器充电或放电一次所用的
时间为 LC B.振荡电路中,电场能与磁场能的转化周期为
2 LC
C.振荡过程中,电容器极板间电场强度的变化 周期为 2 LC
D.振荡过程中,线圈内磁感应强度的变化 周期为 2 LC
课堂小结
1、振荡电路、振荡电流、LC振荡电路;
3)检波:从接收到的高频振荡中“检”出所 携带的信号,叫做检波,它是调制的逆过程, 因此也叫解调。
Thank you!
一、电磁振荡的产生H:\电磁振荡.flv
1、振荡电流: 大小和方向都做周期性 变化的电流
2、振荡电路: 能够产生振荡电流的电 路 3、 LC振荡电路: 由线圈L和电容器C组成 的最简单的振荡电路。
A

C
S
思考 1、“振荡电流是充、放电电流”,对吗?
对。振荡电流实际上就是交变电流, 由于频率很高,习惯上称为振荡电
2、电磁振荡过程;
A LC
3、阻尼振荡、无阻尼振荡; S
4、LC振荡电路 T 2 LC
f 1
(*^__^*)
2 LC
复习
1、麦克斯韦的电磁场理论的两大观点 2、怎样变化的电场才能发射电磁波? 3、电磁波的频率和波长之间的关系
无线电波的波段分布 (根据:波长/频率)
无线电波的传播方式:
长波
短波
流。
A
L
C
S
思考
2、在振荡电路里产生振荡电流的过程中, 电容器 极板上的电荷q、通过线圈的电流i、电容器里的 电场强度E、线圈里的磁感应强度B和电场能E电、 磁场能E磁都是如何变化的?
时刻 0
放电 过程
T/4

电磁振荡与电磁波

电磁振荡与电磁波

电磁振荡与电磁波5.3.1、电磁振荡电路中电容器极板上的电荷和电路中的电流及它们相联系的电场和磁场作周期性变化的现象,叫做电磁振荡。

在电磁振荡过程中所产生的强度和方向周期性变化的电流称为振荡电流。

能产生振荡电流的电路叫振荡电路。

最简单的振荡电路,是由一个电感线圈和一个电容器组成的LC 电路,如图5-3-1所示。

在电磁振荡中,如果没有能量损失,振荡应该永远持续下去,电路中振荡电流的振幅应该永远保持不变,这种振荡叫做自由振荡或等幅振荡。

但是,由于任何电路都有电阻,有一部分能量要转变成热,还有一部分能量要辐射到周围空间中去,这样振荡电路中的能量要逐渐减小,直到最后停止下来。

这种振荡叫做阻尼振荡或减幅振荡。

电磁振荡完成一次周期性变化时需要的时间叫做周期。

一秒钟内完成的周期性变化的次数叫做频率。

振荡电路中发生电磁振荡时,如果没有能量损失,也不受其它外界的影响,即电路中发生自由振荡时的周期和频率,叫做振荡电路的固有周期和固有频率。

LC 回路的周期T 和频率f 跟自感系数L 和电容C 的关系是:LC f LC T ππ21,2==。

5.3.2、电磁场任何变化的电场都要在周围空间产生磁场,任何变化的磁场都要在周围空间产生电场。

变化的电场和磁场总是相互联系的,形成一个不可分割的统一的场,这就是电磁场。

麦克斯韦理论是描述电磁场运动规律的理论。

变化的磁场在周围空间激发的电场,其电场呈涡旋状,这种电场叫做涡旋电场。

涡旋电场与静电场一样对电荷有力的作用;但涡旋电场又与静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。

当导体作切割磁感线运动时,导体中的自由电子将受到洛仑兹力而在导体中定向移动,使这段导体两端分别积累正、负电荷,产生感应电动势,这种感应电动势又叫做动生电动势。

它的计算公式为θεsin Blv =当穿过导体回路的磁通量发生变化时(保持回路面积不变),变化的磁场周围空间产生涡旋电场,导体中的自由电子在该电场的电场力作用下定向移动形成电流,这样产生的感应电动势又叫感生电动势。

电磁振荡和电磁波

电磁振荡和电磁波

电磁振荡和电磁波
电磁振荡是指电磁场由于外界作用而发生的周期性变化。

在自由空
间或导体中,当带电粒子受到外力作用而振动时,就会产生电磁振荡。

电磁振荡的基本特征是频率和波长,它们分别决定了电磁振荡的性质
和传播方式。

而电磁波则是电场和磁场相互作用的结果,沿着空间传
播的波动形式。

电磁波包含了电场和磁场的振荡,是一种横波,其传
播速度等于光速。

电磁振荡和电磁波有着密切的联系,电磁振荡是电磁波产生的根源。

当电荷在电场中受到作用力时,会发生振荡,导致电磁场的变化,进
而产生电磁波。

电磁波的传播过程中,电场和磁场相互耦合,通过振
荡的方式传输能量和信息,是一种无线传输的重要方式。

电磁振荡和电磁波在现代通信、雷达、卫星导航等领域有着广泛的
应用。

通过调控电磁振荡的频率和振幅,可以实现信号的调制和解调,进而实现信息的传输。

而利用电磁波的传播特性,可以实现远距离的
通信和探测,为人类社会的发展提供了强大的支持。

总的来说,电磁振荡和电磁波是电磁学中的重要概念,对于我们理
解电磁现象和应用电磁技术具有重要意义。

通过深入研究电磁振荡和
电磁波的原理和特性,可以更好地应用于实际工程中,推动科技的进
步和社会的发展。

希望本文的介绍对您有所帮助,谢谢阅读!。

电磁振荡和电磁波

电磁振荡和电磁波

电磁振荡和电磁波电磁振荡和电磁波是电磁学中重要的概念和理论。

本文将介绍电磁振荡和电磁波的基本原理、性质和应用。

一、电磁振荡的原理和性质电磁振荡是指电磁场中电磁波的产生过程。

电磁振荡的起源可以追溯到19世纪中期,当时科学家发现,当电流通过导线时,会在周围产生一个电磁场。

进一步研究表明,这个电磁场会引起导线中的电荷或自由电子发生周期性的振动,形成电磁振荡。

电磁振荡的性质主要包括频率、周期、振幅和波长。

频率指的是单位时间内振荡的次数,用赫兹(Hz)表示;周期是振荡完成一个完整周期所需的时间;振幅表示振荡的最大偏移量;波长是波的长度,指的是相邻两个峰值之间的距离。

二、电磁波的产生和传播在电磁振荡的基础上,电磁波的产生即是电磁场的传播过程。

电磁波在空间中以波的形式传播,包括电场和磁场的振荡。

电磁波的传播速度是一个重要的物理常数,通常以光速表示,即每秒299,792,458米。

电磁波的速度与介质无关,只与真空中的性质有关。

根据电磁波的频率和波长,可以将电磁波分为不同的区域,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

不同区域的电磁波在应用和研究中具有不同的特性和用途。

三、电磁波的应用电磁波在现代科技和生活中有着广泛的应用。

下面将介绍几个常见领域的应用:1. 通信领域:无线电波、微波和可见光波等电磁波在通信领域中得到广泛应用。

无线电波被用于广播、电视和手机通信;微波被用于卫星通信和雷达系统;可见光波则是光纤通信的基础。

2. 医学领域:X射线、γ射线和红外线等电磁波在医学诊断和治疗中发挥着重要作用。

X射线用于骨骼和器官的成像;γ射线可用于放射治疗和癌症治疗;红外线在体温检测和眼科成像中有广泛应用。

3. 科学研究:电磁波在科学研究中也发挥着重要作用。

天文学家使用射电望远镜接收宇宙中的无线电波;地球物理学家使用地震波探测地下结构;化学家使用红外光谱技术研究分子结构等。

4. 能源和环境:太阳能是一种利用可见光波产生电能的环保能源;微波炉则是利用微波加热食物的实用家电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5、3电磁振荡与电磁波
5.3.1、电磁振荡
电路中电容器极板上的电荷和电路中的电流及它们相联系的电场和磁场作周期性变化的现象,叫做电磁振荡。

在电磁振荡过程中所产生的强度和方向周期性变化的电流称为振荡电流。

能产生振荡电流的电路叫振荡电路。

最简单的振荡电路,是由一个电感线圈和一个电容器组成的LC 电路,如图5-3-1所示。

在电磁振荡中,如果没有能量损失,振荡应该永远持续下去,电路中振荡电流的振幅应该永远保持不变,这种振荡
叫做自由振荡或等幅振荡。

但是,由于任何电路都有电阻,有一部分能量要转变成热,还有一部分能量要辐射到周围空间中去,这样振荡电路中的能量要逐渐减小,直到最后停止下来。

这种振荡叫做阻尼振荡或减幅振荡。

电磁振荡完成一次周期性变化时需要的时间叫做周期。

一秒钟内完成的周期性变化的次数叫做频率。

振荡电路中发生电磁振荡时,如果没有能量损失,也不受其它外界的影响,即电路中发生自由振荡时的周期和频率,叫做振荡电路的固有周期和固有频率。

LC 回路的周期T 和频率f 跟自感系数L 和电容C 的关系是:.
LC f LC T ππ21
,2==。

5.3.2、电磁场
任何变化的电场都要在周围空间产生磁场,任何变化的磁场都要在周围空间产生电场。

变化的电场和磁场总是相互联系的,形成一个不可分割的统一的场,这就是电磁场。

麦克斯韦理论是描述电磁场运动规律的理论。

L
图5-3-1
变化的磁场在周围空间激发的电场,其电场呈涡旋状,这种电场叫做涡旋电场。

涡旋电场与静电场一样对电荷有力的作用;但涡旋电场又与静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。

当导体作切割磁感线运动时,导体中的自由电子将受到洛仑兹力而在导体中定向移动,使这段导体两端分别积累正、负电荷,产生感应电动势,这种感应电动势又叫做动生电动势。

它的计算公式为
θεsin Blv =
当穿过导体回路的磁通量发生变化时(保持回路面积不变),变化的磁场周围空间产生涡旋电场,导体中的自由电子在该电场的电场力作用下定向移动形成电流,这样产生的感应电动势又叫感生电动势。

它的计算公式为
t B
S ∆∆=ε
5.3.3、电磁波
如果空间某处产生了振荡电场,在周围的空间就要产生振荡的磁场,这个振荡磁场又要在较远的空间产生新的振荡电场,接着又要在更远的空间产生新的振荡磁场,……,这样交替产生的电磁场由近及远地传播就是电磁波。

电磁波的电场和磁场的方向彼此垂直,并且跟传播方向垂直,所以电磁波是横波。

电磁波不同于机械波,机械波要靠介质传播,而电磁波它可以在真空中传播。

电磁波在真空中的传播速度等于光在真空个的传播速度8
1000.3⨯=C 米/秒。

电磁波在一个周期的时间内传播的距离叫电磁波的波长。

电磁波在真空中的波长为:.
f C
CT ==λ
电磁波可以脱离电荷独立存在,电磁波具有能量,它是物质的一种特殊形态。

相关文档
最新文档