高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

合集下载

高考数学(人教a版,理科)题库:数学归纳法(含答案)

高考数学(人教a版,理科)题库:数学归纳法(含答案)

第3讲数学归纳法一、选择题1. 利用数学归纳法证明“1+a+a2+,+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D3.用数学归纳法证明1-12+13-14+,+12n-1-12n=1n+1+1n+2+,+12n,则当n=k+1时,左端应在n=k的基础上加上().A.12k+2B.-12k+2C.12k+1-12k+2D.12k+1+12k+2解析∵当n=k时,左侧=1-12+13-14+,+12k-1-12k,当n=k+1时,左侧=1-12+13-14+,+12k-1-12k+12k+1-12k+2.答案 C4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,k+12+k+1=k2+3k+2<k2+3k+2+k+2=k+22=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案 D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+,+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=12,b=c=14B.a=b=c=14C.a=0,b=c=14D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即1=3a -b +c ,1+2×3=322a -b +c ,1+2×3+3×32=333a -b +c ,整理得3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14.答案A二、填空题7.用数学归纳法证明不等式1n +1+1n +2+,+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.解析不等式的左边增加的式子是12k +1+12k +2-1k +1=12k +12k +2,故填12k +12k +2.答案12k +12k +28. 用数学归纳法证明:121×3+223×5+,+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是.解析当n =k +1时,121×3+223×5+,+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案k(k+1)2(2k+1)+(k+1)2(2k+1)(2k+3)=(k+1)(k+2)2(2k+3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),,,则第60个数对是________.解析本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;,;一个整数n所拥有数对为(n-1)对.设1+2+3+,+(n-1)=60,∴n-1n2=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案(5,7)10.在数列{a n}中,a1=13且S n=n(2n-1)a n,通过计算a2,a3,a4,猜想a n的表达式是________.解析当n=2时,a1+a2=6a2,即a2=15a1=115;当n=3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n=4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想a n=1n-n+.答案a n=1n-n+三、解答题11.已知S n =1+12+13+,+1n (n>1,n ∈N *),求证:S 2n >1+n 2(n ≥2,n ∈N *).证明(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k(k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+,+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+,+12k +12k +1+,+12k +1>1+k 2+12k +1+12k +2+,+12k +1>1+k 2+2k2k +2k =1+k 2+12=1+k +12,故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+,+b n a n .(1)若a 1+a 2+a 3+,+a 12=64,求r 的值;(2)求证:T 12n =-4n(n ∈N *).(1)解a 1+a 2+a 3+,+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r. ∵48+4r =64,∴r =4. (2)证明用数学归纳法证明:当n ∈N *时,T 12n =-4n.①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立.②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r)+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.根据①和②可以断定:当n ∈N *时,T 12n =-4n.13.设数列{a n }满足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,,(1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n成立的最小正整数n ,并给出证明.解(1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n=n3+2n+12=n2+2n,使得S n<2n成立的最小正整数n=6.下证:n≥6(n∈N*)时都有2n>n2+2n.①n=6时,26>62+2×6,即64>48成立;②假设n=k(k≥6,k∈N*)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;由①、②可得,对于所有的n≥6(n∈N*)都有2n>n2+2n成立.14.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.(1)证明先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)解①假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1- c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c-x n≤(1-c)n-1(c-x1)<(1-c)n-1,x n<1-c和c-x n<(1-c)n-1两式相加,知2c-1<(1-c)n-1对任意n≥1成立.根据指数函数y=(1-c)n的性质,得2c-1≤0,c≤14,故0<c≤14.②若0<c≤14,要证数列{x n}为递增数列,即x n+1-x n=-x2n+c>0,即证x n<c对任意n≥1成立.下面用数学归纳法证明当0<c≤14时,x n<c对任意n≥1成立.(i)当n=1时,x1=0<c≤12,结论成立.(ii)假设当n=k(k∈N*)时,结论成立,即x n< c.因为函数f(x)=-x2+x+c在区间-∞,12内单调递增,所以x k+1=f(x k)<f(c)=c,这就是说当n=k+1时,结论也成立.故x n<c对任意n≥1成立.因此,x n+1=x n-x2n+c>x n,即{x n}是递增数列.由①②知,使得数列{x n}单调递增的c的范围是0,1 4.。

(完整版)数学归纳法练习题.doc

(完整版)数学归纳法练习题.doc

2.3 数学归纳法第 1 课时 数学归纳法1.用数学 法 明“ 2n>n 2+1 于 n ≥n 0 的自然数 n 都成立” ,第一步明中的起始 n 0 取().A .2B . 3C . 5D .6解析 当 n 取 1、2、3、4 2n2+1 不成立,当 = ,5=2+ =>nn 5 232>5 126,第一个能使 2n>n 2+1 的 n5,故 C.答案 Cn + 3 n +42.用数学 法 明等式1+ 2+ 3+⋯+ (n + 3)=(n ∈ N + ), n2= 1 ,左 取的 是().A .1B . 1+ 2C .1+2+3D . 1+ 2+ 3+ 4解析 等式左 的数是从 1 加到 n +3.当 n =1 , n +3=4,故此 左 的数 从 1 加到 4. 答案 D1 11 (n ∈N + ),那么 f(n +1)- f(n)等于3. f(n)=1+2+3+⋯+-3n1().111A.3n +2B.3n + 3n +1C. 1 + 11 1 + 1 + + 2D.3n + + +2 3n 1 3n3n1 3n11 1 解析∵f(n)=1+2+3+⋯+,3n -11 11 111∵f(n + 1)=1+2+3+⋯++3n ++,3n -13n + 1 3n +2∴f(n + 1)-f(n)= 1 1 1+ +.3n 3n + 1 3n +2答案D4.用数学 法 明关于 n 的恒等式,当n =k ,表达式1×4+2×7+⋯+ k(3k +1)= k(k + 1)2, 当 n =k +1 ,表达式 ________.答案 1×4+2×7+⋯+ k(3k +1)+ (k +1)(3k +4)= (k +1)(k +2)2 5. 凸 k 形的内角和f(k), 凸 k + 1 形的内角和 f(k + 1)=f(k)+________.解析由凸 k 形 凸 k +1 形 ,增加了一个三角形 形,故f(k + 1)= f(k)+ π.答案 π 6.用数学 法 明:1 + 1+⋯+1=1+1+⋯+11×2 3×42n -1 ·2n n +1n +2n +n.明(1)当 n =1 ,左 =1=1,右 =1,等式成立.1×222 (2)假 当 n =k(k ∈N * ) ,等式成立,即111 111× + ×+⋯+-=+ k + +⋯+ 2k .1 2 3 4 2k 1·2k k + 1 2当 n =k +1 ,1 + 1+⋯+1 +1 1×2 3×42k - 1 ·2k 2k +1 2k +2=1+1+⋯+ 1 + 1k +1 k +2 2k2k + 1 2k + 2 = 1 + 1 1 + 1 1 1+⋯+ 2k + 1- 2k +2 +k +2 k +3 1 k=1+1+⋯+ 1 + 1 + 1k +2 k +32k2k +1+ 22k 1 111.即当 n =k +1=k +1 +1+k + 1 +2+⋯+k +1 +k+k + 1 + k +1 ,等式成立.根据 (1)(2)可知, 一切 n ∈N * ,等式成立.7.若命 A(n)(n ∈N * )在 n =k(k ∈N * ) 命 成立, 有 n =k + 1 命 成立.知命 n= n0(n0∈ N* )命成立,有().A.命所有正整数都成立B.命小于 n0的正整数不成立,大于或等于n0的正整数都成立C.命小于 n0的正整数成立与否不能确定,大于或等于n0的正整数都成立D.以上法都不正确解析由已知得 n=n0 0∈*) 命成立,有n=0+1命成立;在n(n N n= n0+1 命成立的前提下,又可推得n= (n0+1)+1 命也成立,依此推,可知 C.答案 C8.用数学法明 (n+1)(n+ 2)(n+3)⋯(n+n)=2n·1·3·⋯·(2n-1)(n∈N* ),从n=k 到 n = k+ 1,左增加的代数式( ).A.2k+1 B.2(2k+ 1)2k+1 2k+ 3C. k+ 1D. k+1解析n= k ,左= (k+ 1)(k+ 2)⋯(2k); n=k+1 ,左= (k+2)(k+3)⋯ (2k+ 2)=2(k+1)(k+2)⋯(2k)(2k+1),故 B.答案 B9.分析下述明 2+4+⋯+ 2n= n2+n+1(n∈N+ )的程中的:明假当 n=k(k∈N+ )等式成立,即2+ 4+⋯+ 2k=k2+k+1,那么 2 +4+⋯+ 2k+ 2(k+ 1)=k2+ k+1+2(k+1)=(k+1)2+(k+1)+1,即当 n=k +1 等式也成立.因此于任何 n∈N+等式都成立. __________________.答案缺少步奠基,上当n= 1 等式不成立10.用数学法明 (1+ 1)(2+2)(3+ 3)⋯(n+n)=2n-1·(n2+n),从 n=k 到 n = k+1 左需要添加的因式是________.解析当 n= k ,左端: (1+1)(2+2)⋯(k+k),当 n=k+ 1 ,左端: (1+1)(2+2) ⋯(k+k)(k+ 1+k+1),由 k 到 k+1 需添加的因式: (2k+2).答案2k+ 211.用数学法明2+22+⋯+n2=n n+12n+1 ∈*).16 (n N 明(1)当 n=1 ,左= 12=1,右=1× 1+ 1 × 2×1+16 = 1,等式成立.(2)假当 n=k(k∈N* )等式成立,即12+22+⋯+k2=k k+12k+16那么,12+ 22+⋯+ k2+(k+1)2=k k+1 2k+1+(k+1)26k k+ 1 2k+ 1 +6 k+1 2=6k+1 2k2+7k+6=6=k+1 k+2 2k+36=k+1 [ k+ 1 +1][2 k+ 1 +1],6即当 n=k+1 等式也成立.根据 (1)和 (2),可知等式任何n∈N*都成立.12.(新拓展 )已知正数数列n * n nn1n,用{a }( n∈ N )中,前 n 和 S ,且 2S = a +a数学法明: a n=--n n 1. 明 (1)当 n=1 .1 1a1= S1=2 a1+a1,2∴ a1=1(a n>0),∴ a1=1,又1-0=1,∴ n= 1 时,结论成立.(2)假设 n= k(k∈ N* )时,结论成立,即a k= k- k-1.当 n=k+ 1 时,a k+1= S k+1-S k=1a k+1+ 1 -1a k+1a a2 2k+ 1 k=1 k+1 1 1 k- k-1+ 12a +a k+1-2 k- k-1 1 1=2 a k+1+a k+1- k2∴ a k+1+2 ka k+1- 1= 0,解得 a k+1= k+1-k(a n>0),∴ n= k+1 时,结论成立.由 (1)(2)可知,对 n∈N*都有 a n=n-n-1.。

(完整版)高中数学高考总复习数学归纳法习题及详解

(完整版)高中数学高考总复习数学归纳法习题及详解

高考总复习高中数学高考总复习数学归纳法习题及详解一、选择题1. a n=1,数列 { a n} 的前 n项和为S n,已计算得 S1= 2-1,S2= 3- 1,n+1+ nS3=1,由此可猜想 S n=( )A. n-1B. n+1-1C. n+1-2D. n+2-2[答案 ] B1 2. S k=+k+ 11+k+21+⋯+k+312k( k=1,2,3,⋯ ),那么Sk+1等于 ( )A.S k+1 2( k+1)B.S k+1-2k+11k+1C.S k+1-2k+112k+2D.S k+1+2k+112k+2[答案 ] C[解析 ] S k+1=1+(k+1)+11(k+1)+2+⋯+1=2(k+1)1+k+21 1+⋯+=k+3 2k+ 21+k+11+⋯+k+2 1+2k1 1+-2k+1 2k+21 1=S k+-k+1 2k+11.2k+22+n≤ n+1(n∈N* ),某人的证明过程以下:3.对于不等式 n2+1≤ 1+1,不等式成立 .1°当 n=1时, 12°假设n=k( k∈N * )时不等式成立,即 k2+k< k+1,那么n=k+1时, (k+1)2+ (k+ 1)=2+3k+2< (k2+3k+2)+k+2= (k+2)2=(k+1)+1. k ∴当 n=k+ 1时,不等式成立 .上述证法 ( )A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从 n=k到 n=k+1 的推理不正确[答案 ] D含详解答案高考总复习[解析 ] 没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16⋯⋯那么在表中数字 2021 出现在 ( )A.第 44 行第 75 列B.第 45 行第 75 列C.第 44 行第 74 列D.第 45 行第 74 列[答案 ] D[解析 ] 第 n 行有 2n-1 个数字,前 n 行的数字个数为1+3+5+⋯+(2 n- 1)=n2.∵442=1936,452=2025,且 1936<2021,2025>2021,∴ 2021 在第 45 行.又 2025-2021=15,且第 45 行有 2× 45-1= 89 个数字,∴2021 在第 89-15=74 列,选D.2 建马上,总可推出 f(k5.设f(x)是定义在正整数集上的函数,且 f(x)满足:“当 f (k)≥ k+1)≥ (k+ 1)2 成立〞.那么,以下命题总成立的是 ( )A.假设 f(3) ≥ 9 成立,那么当 k≥ 1时,均有 f(k)≥ k2 成立2 成立B.假设 f(5) ≥ 25 成立,那么当 k≤ 5时,均有 f(k)≥kC.假设 f(7)<49 成立,那么当 k≥ 8时,均有 f(k)> k2 成立2 成立D.假设 f(4) =25 成立,那么当 k≥ 4时,均有 f(k)≥k[答案 ] D[解析 ]对于 A ,f (3)≥ 9,加上题设可推出当 k≥ 3时,均有 f(k)≥ k2 成立,故 A错误.对于 B,要求逆推到比 5 小的正整数,与题设不符,故 B错误.对于 C,没有确立局部,即没有 f(8)≥ 82,故 C错误.对于 D,f(4)=25≥ 42,由题设的递推关系,可知结论成立,应选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将节余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);这样连续下去⋯⋯那么第 n 个图共挖去小正方形 ( )含详解答案高考总复习n-1)个A.(8n+1)个B.(81n-1)个C.7(81n+1)个D. (87[答案 ] C2个⋯⋯第[解析 ] 第 1 个图挖去 1 个,第 2 个图挖去 1+8 个,第 3 个图挖去 1+8+8n-182+⋯+8n-1=个.n 个图挖去 1+8+ 877.观察下式:1+ 3=2221+3+5=31+3+5+7=4221+3+5+7+9=5⋯⋯据此你可归纳猜想出的一般结论为( )A.1+3+5+⋯+ (2n-1)=n2(n∈N*)B.1+3+5+⋯+ (2n+1)=n2(n∈N*)C.1+3+5+⋯+ (2n-1)=(n+1)2( n∈N*)D.1+3+5+⋯+ (2n+1)=(n+1)2( n∈N* )[答案 ] D[解析 ]观察可见第 n 行左边有 n+1 个奇数,右边是 ( n+1)2,应选D.x,f n(x)=f n-1[ f(x)]( n≥ 2,n∈N*),那么f(1) 8.(2021 ·天津滨海新区五校 )假设 f(x)=f1(x)=1+x+f (2)+⋯+ f(n)+f1(1)+ f2(1) +⋯+ f n(1)=( )A.n9B.n+1nC.n+1 D.1[答案 ] A12,f(2)=[解析 ] 易知 f (1)=2 3,f(3)=,⋯,f( n)=3 4n x;由 f n(x)=f n-1(f (x))得,f2(x)=,n+ 1 1+2xx x 1,⋯,f n(x)=,从而 f1(1)=,f2(1)=1+3x 1+ nx 2f3(x)=1 1 1,f3(1)=,⋯,f n(1)=,,3 4 n+1含详解答案高考总复习因此 f(n)+f n (1)=1,故 f(1)+f(2)+⋯ +f(n)+f 1(1)+f 2(1)+⋯ +f n (1)=n.9.(2021 曲· 阜一中 )设f( x)是定义在 R 上恒不为零的函数,且对任意的实数 x ,y ∈R ,1都有 f( x) ·f( y)=f(x +y),假设 a 1= ,a n =f(n)( n ∈N *),那么数列 { a n } 的前 n 项和 S n 的取值范围是2 ( )1 ,2) A .[2B .[1 ,2] 2C .[1 ,1] 21 ,1) D .[2 [答案] D[解析] 由可得a 1=f(1)=1 2 ,a 2=f(2)=f 2(1)=1 2 2,a 3=f(3)=f(2) f ·(1)=f 3(1)=123,⋯ ,a n =f(n)=fn(1)=1 2 n,∴S n =1 + + 2 1 2 2+ 1 2 3+⋯+ 1 2 n = 1 12] 2[1-(2) =1-(1 n, n ,) 1 21-2∵n ∈N *,∴1 2≤ S n <1.10.如图,一条螺旋线是用以下方法画成的: △ABC 是边长为1 的正三角形, 曲线CA 1、 A 1A 2,A 2A 3 是分别以 A 、B 、C 为圆心, AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3 称为 螺旋线旋转一圈.尔后又以 A 为圆心, AA 3为半径画圆弧⋯ ⋯这样画到第 n 圈,那么所得螺旋 线的长度 l n 为( )2+n) π A .(3n2-n +1) π B .(3 n (3 n 2+n)πC.22-n+1)π (3nD.2[答案] A[解析] 由条件知 CA1 , A1A2 , A2A3 ,⋯,A n-1A n对应的中心角都是2π,且半径依32π次为1,2,3,4,⋯,故弧长依次为,3 2π×2,32π 2π×3⋯,据题意,第一圈长度为(1+2+3),3 32π 2π 2π第二圈长度为3 (4+5+6),第 n 圈长度为3 [(3 n-2)+(3n-1)+3n],故 L 3 (1+2+3+⋯n=+3n)=2π3n(1+3n)=(3n2+n) π.·3 2含详解答案高考总复习二、填空题2 3 11. (2021 ·浙江金华十校模考 ) 2+ = 2 2 3, 3+3 8 = 33 8, 4+4 15= 44 a ,⋯ ,假设 6+ =6 15 t a t ,( a ,t 均为正实数 ),类比以上等式,可推测a , t 的值,那么a +t =________.[答案 ] 41[解析 ] 注意分数的分子、分母与整数的变化规律, 2→分子 2,分母 3=22-1,3→分子2-1,4→分子 4,分母 15=42-1,故猜想 a =6,t =62-1= 35,再考据 6+3,分母 8=3 6 35=66成立, ∴a +t = 41. 35n[议论] 一般地, n += n 2-13n=nn 2-1 n,( n ∈N *)成立. n 2- 1a比方,假设 15+ =15ta t成立,那么t +a =239.23+53>22·5+2·5212.观察以下一组不等式:4 4 3 3 +5>2 5 2 5 · + · 25 5 1 1+5 2·5+222 2>2·52 2 2将上述不等式在左右两端仍为两项和的情况下加以实行,使以上的不等式成为实行不等式的特例,那么实行的不等式为 ________________________ .m+ n+b m +n>a m b n +a n b m(a ,b>0,a ≠b , m , n>0) [答案 ] a13.(2021 浙· 江杭州质检)观察以低等式: (x 2+x + 1)0=1; 2+x + 1)1=x 2+x +1; (x(x 2+x + 1)2=x 4+2x 3+3x 2+2x +1;2+x + 1)3=x 6+3x 5+6x 4+7x 3+6x 2+ 3x +1; (x可以推测(x 2+ x +1)4的张开式中,系数最大的项是 ________. [答案 ] 19x 4[解析 ]观察其系数变化规律:2+x+ 1)1为1,1,1(x(x2+x+ 1)2为1,2,3,2,12+x+ 1)3为1,3,6,7,6,3,1 (x故由此可推测(x2+x+ 1)4 系数中最大的为6+7+6= 19,故系数最大项是 19x4. 14.(2021 南·京调研 )五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数含详解答案高考总复习为2,第二位同学首次报出的数为3,此后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,那么第 2021 个被报出的数为________.[答案 ] 4[解析 ] 依照规那么,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3 外,从第三位同学开始报出的数依次按 6,8,8,4,2,8 循环,那么第 2021 个被报出的数为4.[议论] 数字 2021 比较大,不可以能一个一个列出数到第 2021 个数,故隐含了探望其规律性 (周期 )的要求,因此可经过列出局部数,观察可否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15.点列 A n(x n,0), n∈N*,其中 x1=0,x2=a(a>0),A3 是线段 A1A2 的中点, A4 是线段 A2A3的中点,⋯ A n 是线段 A n-2A n-1的中点,⋯,(1)写出 x n 与 x n-1、x n-2之间的关系式 (n≥ 3);(2)设a n=x n+1- x n,计算 a1,a2,a3,由此推测数列 { a n} 的通项公式,并加以证明.x n-1+x n-2[解析 ] (1)当 n≥ 3时, x n=2 .(2)a1=x2-x1=a,a2=x3-x2=x2+x1-x2=-212(x2-x1)=-12a,a3=x4-x3=x3+x2-x3=-212(x3-x2)=14a,由此推测a n= (-1n-1a(n∈N*).2)证法 1:由于a1= a>0,且x n+x n x n-1-x n-1-x n=a n=x n+1-x n==-2 2 12(x n-x n-1)=-12a n-1( n≥2),1n-1a.因此 a n=(-)2证法 2:用数学归纳法证明:1(1)当 n=1时, a1=x2-x1=a=(-2)0a,公式成立.1k-1a 成立.那么当 n=k+1时,(2)假设当 n=k时,公式成立,即 a k=(- )2a k+1= x k+2- x k+1=x k+1+ x k- x k+1=-212( x k+1- x k)=-12a k=-12(-1k-1a=(-2)1(k+1)-1a,公2)式仍成立,依照 (1)和(2)可知,对任意 n∈N*,公式 a n=(-1n-1a 成立.)2含详解答案高考总复习16.设数列 { a n }的前 n 项和为S n ,对所有 n ∈N S n *,点 n , n 都在函数 f(x)=x + a n的图象 2x上.(1)求 a 1,a 2, a 3 的值,猜想 a n 的表达式,并用数学归纳法证明;(2)将数列 { a n } 依次按 1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7, a 8,a 9, a 10);( a 11),(a 12, a 13),(a 14,a 15,a 16),(a 17, a 18,a 19, a 20);( a 21),⋯ ,分别计算 各个括号内各数之和,设由这些和按原来括号的前后序次组成的数列为{ b n } ,求 b 5+b 100 的 值.S n [解析 ] (1)将点 n , n a n的坐标代入函数 f(x)=x +中,经过整理获取 S n 与 a n 的关系,2x那么a 1,a 2,a 3 可求;(2)经过观察发现b 100 是第 25组中第 4 个括号内各数之和,各组第 4 个括号中各数之和 组成首项为68、公差为80 的等差数列,利用等差数列求和公式可求 b 100.S n n [解析 ] (1)∵点 n , 在函数 f( x)= x +a n 的图象上, 2x∴ S n =n + n a n 1 ,∴S n =n 2+ 2n2a n .1令 n =1 得, a 1=1+ a 1,∴ a 1=2;21令 n =2 得, a 1+a 2=4+2a2, ∴a 2=4;令 n =3 得, a 1+a 2+a 3=9+1 2a 3, ∴a 3=6.由此猜想: a n =2n. 用数学归纳法证明以下:①当 n =1时,由上面的求解知,猜想成立. ②假设n =k(k ≥ 1)时猜想成立,即 a k =2k 成立,那么当 n =k + 1时,注意到 S n = n 2+1n( n ∈N *), 2a故 S k +1=(k +1)2+1 1 a k a k .+1,S k =k2++1,S k =k2+2 21 1两式相减得, a k+1= 2k+1+k,因此 a k+1=4k+2-a k.2a k+1-2a由归纳假设得, a k=2k,故 a k+1=4k+2-a k=4k+2-2k=2(k+1).这说明 n=k+1时,猜想也成立.由①②知,对所有 n∈N*,a n=2n 成立.(2)由于a n= 2n(n∈N*),因此数列 { a n} 依次按 1项、2项、3项、4项循环地分为(2),(4,6),含详解答案高考总复习(8,10,12) ,(14,16,18,20); (22),(24,26), (28,30,32),(34,36,38,40) ;(42),⋯ .每一次循环记 为一组.由于每一个循环含有 4 个括号,故 b 100 是第 25组中第 4 个括号内各数之和.由分 组规律知,各组第 4 个括号中所有第 1 个数组成的数列是等差数列,且公差为20.同理,由 各组第 4 个括号中所有第 2 个数、所有第 3 个数、 所有第 4 个数分别组成的数列也都是等差 数列,且公差均为20.故各组第 4 个括号中各数之和组成等差数列, 且公差为80.注意到第一 组中第 4 个括号内各数之和是 68,因此 b 100=68+24× 80=1988, 又 b 5=22,因此 b 5+b 100=2021.[议论] 由求出数列的前几项,做出猜想,尔后利用数学归纳法证明,是不完满归 纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的要点是依照已 知条件和假设搜寻 a k 与 a k+1或 S k 与 S k +1间的关系,使命题得证.n= a 0+ a 1(x -1)+a 2(x -1)2+ a 3(x -1)3+⋯ + a n (x - 17. (2021 南· 京调研 ): (x + 1) 1) n (n ≥ 2,n ∈N *).(1)当 n =5时,求 a 0+a 1+a 2+a 3+a 4+a 5 的值.(2)设b n =a 2n -3, T n = b 2+ b 3+ b 4+⋯ + b n .试用数学归纳法证明:当 n ≥ 2时, T n = 2n(n +1)( n -1).3[解析 ] (1)当 n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+ a 3(x - 1)3+a 4(x -1)4+ a 5(x -1)5令 x =2 得 a 0+a 1+a 2+a 3+a 4+ a 5=35=243.-2n=[2+(x -1)]n ,因此 a 2=C n 2·2n(2)由于(x +1)b n = a 2n -3=2C n2=n(n -1)(n ≥ 2)2①当 n =2时.左边= T 2=b 2=2, 2(2+1)(2-1)右边= =2,左边=右边,等式成立.3 ②假设当 n =k(k ≥ 2,k ∈N *)时,等式成立,即 T k =k (k +1)(k -1)成立3 那么,当 n =k +1时,k(k +1)( k -1) 左边= T k +b k +1=3k(k +1)(k -1) +(k +1)[( k +1)-1]= +k(k +1)3=k( k +1)k -1 +1 = 3k (k +1)(k +2)3=(k +1)[( k +1)+1][( k +1)-1] =右边.3含详解答案高考总复习故当 n=k+1 时,等式成立.n( n+1)( n-1)综上①②,当 n≥2 时,T n=3 .含详解答案。

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。

2021-2022年高考数学总复习必做05数学归纳法试题含解析

2021-2022年高考数学总复习必做05数学归纳法试题含解析

2021年高考数学总复习必做05数学归纳法试题含解析【三年高考】1.【xx 江苏高考,23】 已知集合,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=,令表示集合所含元素的个数. (1)写出的值;(2)当时,写出的表达式,并用数学归纳法证明. 【解析】(1).(2)当时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩().下面用数学归纳法证明:3)若,则,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立;4)若,则,此时有()()2122223k k f k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立;5)若,则,此时有()()1122223k kf k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;6)若,则,此时有()()1112123k k f k f k k -+=+=++++()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足的自然数均成立. 2. 【xx 江苏,理23】已知函数,设为的导数, (1)求的值;(2)证明:对任意,等式12()()4442n n nf f πππ-+=都成立. 【答案】(1);(2)证明见解析. 【解析】(1)由已知102sin cos sin ()'()()'x x xf x f x x x x===-,21223cos sin sin 2cos 2sin ()'()()'x x x x xf x f x x x x x x ==-=--+, 所以,, 故.(1)时命题已经成立,(2)假设时,命题成立,即1()()sin()2k k k kf x xf x x π-+=+, 对此式两边求导可得1'()()'()cos()2k k k k kf x f x xf x x π-++=+,即11(1)()()sin()2k k k k f x xf x x π++++=+,因此时命题也成立.综合(1)(2)等式1()()sin()2n n n nf x xf x x π-+=+对一切都成立.令,得11()()sin()44442n n n nf f πππππ-++=+,所以12()()4442n n nf f πππ-+=. 3.【xx 山东文12】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 【答案】【解析】通过观察这一系列等式可以发现,等式右边最前面的数都是,接下来是和项数有关的两项的乘积,经归纳推理可知是,所以第个等式右边是. 4.【xx 高考山东,理11】观察下列各式:……照此规律,当nN 时,012121212121n n n n n C C C C -----++++= .【答案】【xx 年高考命题预测】纵观近几年各地高考试题,江苏高考对数学归纳法的考查主要在方法的运用的考查.其应用几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透;预计xx 年高考也将会有题目用到推理证明的方法。

(完整版)数学归纳法测试题及答案

(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。

高三数学人教版A版数学(理)高考一轮复习试题:6.7数学归纳法Word版含答案

高三数学人教版A版数学(理)高考一轮复习试题:6.7数学归纳法Word版含答案

数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.知识点 数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立.(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 易误提醒 运用数学归纳法应注意:(1)第一步验证n =n 0时,n 0不一定为1,要根据题目要求选择合适的起始值.(2)由n =k 时命题成立,证明n =k +1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.[自测练习]1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:从n 到n 2共有n 2-n +1个数,所以f (n )中共有n 2-n +1项,且f (2)=12+13+14,故选D.答案:D2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .k +1B .k +2C .2k +2D .2(k +2)解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B考点一 用数学归纳法证明等式|求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立.(2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立.用数学归纳法证明等式应注意的问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.1.用数学归纳法证明下面的等式:12-22+32-42+…+(-1)n -1·n 2=(-1)n-1n (n +1)2. 证明:(1)当n =1时,左边=12=1, 右边=(-1)0·1×(1+1)2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k -1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k(k +1)(k +2)2.∴n =k +1时,等式也成立, 由(1)(2)知对任意n ∈N *,有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2.考点二 用数学归纳法证明不等式|设数列{a n }各项均为正数,且满足a n +1=a n -a 2n . 求证:对一切n ≥2,都有a n ≤1n +2. [证明] ∵数列{a n }各项均为正数,且满足a n +1=a n -a 2n , ∴a 2=a 1-a 21>0,解得0<a 1<1.当n =2时,a 3=a 2-a 22=14-⎝⎛⎭⎫a 2-122≤14,不等式成立, 假设当n =k (k ≥2)时,不等式成立,即a k ≤1k +2,则当n =k +1时,a k +1=a k -a 2k =14-⎝⎛⎭⎫a k -122≤14-⎝ ⎛⎭⎪⎫1k +2-122=k +1(k +2)2<k +1(k +1)(k +3)=1(k +1)+2,∴当n =k +1时,不等式也成立,由数学归纳法知,对一切n ≥2,都有a n ≤1n +2.应用数学归纳法证明不等式注意的两个问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.2.(2016·大连双基)数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.解:(1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n =2n -1,∴S n =n (1+2n -1)2=n 2.证明:法一:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.法二:(数学归纳法)当n=1时,1S1=1,nn+1=12,不等式成立.假设当n=k时,不等式成立,即1S1+1S2+…+1S k>kk+1.则当n=k+1时,1S1+1S2+…+1S k+1S k+1>kk+1+1(k+1)2,又k(k+1)+1(k+1)2-k+1k+2=1-1k+1+1 (k+1)2-1+1k+2=1k+2-k(k+1)2=1(k+2)(k+1)2>0,∴1S1+1S2+…+1S k+1S k+1>k+1k+2,∴原不等式成立.考点三归纳—猜想—证明问题|将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S1+S3+S5+…+S2n-1的结果,并用数学归纳法证明.S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…[解]由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44.猜想:S1+S3+S5+…+S2n-1=n4.下面用数学归纳法证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N*)时等式成立,即S1+S3+S5+…+S2k-1=k4,那么,当n =k +1时,S 1+S 3+S 5+…+S 2k -1+S 2k +1=k 4+[(2k 2+k +1)+(2k 2+k +2)+…+(2k 2+k +2k +1)]=k 4+(2k +1)(2k 2+2k +1)=k 4+4k 3+6k 2+4k +1=(k +1)4,这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知对于任意的n ∈N *,S 1+S 3+S 5+…+S 2n -1=n 4都成立.归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.3.设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ), n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.解:(1)∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a 3+a .猜想a n =a(n -1)+a(n ∈N *).(2)证明:①易知n =1时,猜想正确. ②假设n =k 时猜想正确,即a k =a(k -1)+a,则a k +1=f (a k )=a ·a ka +a k =a ·a (k -1)+aa +a (k -1)+a=a(k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确.由①②知,对于任意的n ∈N *,都有a n =a(n -1)+a成立.14.数学归纳法在证明不等式中的易误点【典例】 设函数f (x )=x -sin x ,数列{a n }满足a n +1=f (a n ). (1)若a 1=2,试比较a 2与a 3的大小;(2)若0<a 1<1,求证:对任意n ∈N *,0<a n <1恒成立.[解] (1)当a 1=2时,a 2=f (2)=2-sin 2∈(0,2),所以sin a 2>0,又a 3=f (a 2)=a 2-sin a 2, 所以a 3-a 2=-sin a 2<0,所以a 2>a 3.(2)证明:用数学归纳法证明当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立. ①当n =1时,0<a 1<1,结论成立;②假设当n =k (k ≥1,k ∈N *)时,0<a k <1,所以sin a k >0,则当n =k +1时,a k +1-a k =-sin a k <0, 所以a k +1<a k <1.因为f (x )=x -sin x , 当x ∈(0,1)时,f ′(x )=1-cos x >0, 所以f (x )是(0,1)上的单调递增函数, 所以a k +1=f (a k )>f (0)=0,即0<a k +1<1, 故当n =k +1时,结论成立.综上可得,当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立.[易误点评] (1)不会作差比较a 2与a 3大小,同时忽视了sin 2的值大小. (2)证明n =k +1成立时用不归纳做证n =k 成立条件导致失误.[防范措施] (1)用数学归纳证明不等式的关键是由n =k 时命题成立,证明n =k +1时命题成立.(2)在归纳假设使用后,注意最后结论证明方法的选择.[跟踪练习] 若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3.证明:(1)当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3).∴直线PQ 1的方程为y =4x -11, 令y =0,得x 2=114,因此,2≤x 1<x 2<3,即n =1时结论成立.(2)假设当n =k 时,结论成立,即2≤x k <x k +1<3. ∴直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4).又f (x k +1)=x 2k +1-2x k +1-3,代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1,由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3;x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由(1),(2)知对任;意的正整数n,2≤x n <x n +1<3.A 组 考点能力演练1.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N +,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1命题成立.由(1),(2)知原不等式在n ∈N +,n ≥2时均成立.2.已知数列{a n }的前n 项和为S n ,通项公式为a n =1n f (n )=⎩⎪⎨⎪⎧S 2n ,n =1,S 2n -S n -1,n ≥2,(1)计算f (1),f (2),f (3)的值;(2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 证明:(1)由已知f (1)=S 2=1+12=32,f (2)=S 4-S 1=12+13+14=1312,f (3)=S 6-S 2=13+14+15+16=1920;(2)由(1)知f (1)>1,f (2)>1;下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1;②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +1k +1+…+12k <1,那么f (k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=⎝ ⎛⎭⎪⎫1k +1k +1+1k +2+…+12k +12k +1+12k +2-1k <1+⎝ ⎛⎭⎪⎫12k +1-12k +⎝ ⎛⎭⎪⎫12k +2-12k =1+2k -(2k +1)2k (2k +1)+2k -(2k +2)2k (2k +2)=1-12k (2k +1)-1k (2k +2)<1,所以当n =k +1时,f (n )<1也成立.由①和②知,当n ≥3时,f (n )<1.所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1.3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *). (1)求证:对任意n ∈N *,a n >2;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43.解:(1)证明:用数学归纳法证明a n >2(n ∈N *); ①当n =1时,a 1=a >2,结论成立;②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.故由①②及数学归纳法原理,知对一切的n ∈N *,都有a n >2成立. (2){a n }是单调递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2, 所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是单调递减的数列.(3)证明:由a n +1=a n +2,得a 2n +1=a n +2,所以a 2n +1-4=a n -2.根据(1)知a n >2(n ∈N *),所以a n +1-2a n -2=1a n +1+2<14,所以a n +1-2<14(a n -2)<⎝⎛⎭⎫142·(a n -1-2)<…<⎝⎛⎭⎫14n(a 1-2).所以,当a =3时,a n +1-2<⎝⎛⎭⎫14n,即a n+1<⎝⎛⎭⎫14n +2. 当n =1时,S 1=3<2+43.当n ≥2时,S n =3+a 2+a 3+…+a n <3+⎝⎛⎭⎫14+2+⎣⎡⎦⎤⎝⎛⎭⎫142+2+…+⎣⎡⎦⎤⎝⎛⎭⎫14n -1+2 =3+2(n -1)+141-14⎣⎡⎦⎤1-⎝⎛⎭⎫14n -1 =2n +1+13⎣⎡⎦⎤1-⎝⎛⎭⎫14n -1<2n +43. 综上,当a =3时,S n <2n +43(n ∈N *).B 组 高考题型专练1.(2014·高考江苏卷)已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值; (2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=22都成立. 解:(1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f ′1(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3, 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2,类似可得 2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′ =sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2. 因此当n =k +1时,等式也成立.综合①②可知等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4 =sin ⎝⎛⎭⎫π4+n π2(n ∈N *) 所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22(n ∈N *). 2.(2014·高考安徽卷)设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px .(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c pa 1-p n . 证明:a n >a n +1>c 1p. 证明:(1)用数学归纳法证明:①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以p =k +1时,原不等式也成立.综合①②可得,当x >-1且x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)先用数学归纳法证明a n >c 1p. ①当n =1时,由题设a 1>c 1p 知a n >c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p =⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p >1+p ·1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p. 所以n =k +1时,不等式a n >c 1p也成立. 综合①②可得,对一切正整数n ,不等式a n >c 1p均成立. 再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n<1,即a n +1<a n . 综上所述,a n >a n +1>c 1p,n ∈N *.。

2020高考数学(理)总复习训练(42)数学归纳法含解析

2020高考数学(理)总复习训练(42)数学归纳法含解析

课时跟踪练(四十二)A组基础巩固1.用数学归纳法证明:“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”,在验证n=1时,左端计算所得的项为()A.1 B.1+aC.1+a+a2D.1+a+a2+a3解析:当n=1时,把n=1代入左端,计算得1+a+a1+1=1+a +a2.故正确答案为C.答案:C2.一个关于自然数n的命题,如果验证当n=1时命题成立,并在假设当n=k(k≥1且k∈N*)时命题成立的基础上,证明了当n=k+2时命题成立,那么综合上述,对于()A.一切正整数命题成立B.一切正奇数命题成立C.一切正偶数命题成立D.以上都不对解析:本题证的是对n=1,3,5,7,…命题成立,即命题对一切正奇数成立.答案:B3.在数列{a n}中,a1=13,且S n=n(2n-1)a n,通过求a2,a3,a4,猜想a n的表达式为()A.1(n-1)(n+1)B.12n(2n+1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).答案:C4.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式k 2+k <k +1成立,当n =k +1时,(k +1)2+k +1=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1. 所以当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:当n =k +1时,没有应用当n =k 时的假设,不是数学归纳法.答案:D5.(2019·岳阳模拟)用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( ) A .7B .8C .9D .10解析:左边求和可得1+12+14+…+12n -1=1-12n 1-12=2-12n -1,右边=12764=2-164,故2-12n -1>2-164, 即12n -1<164=126,所以2n -1>26,解得n >7.所以初始值至少应取8. 答案:B6.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)27.数列{a n }中,已知a 1=2,a n +1=a n3a n +1(n ∈N *),依次计算出a 2,a 3,a 4,猜想a n =________.解析:a 1=2,a 2=23×2+1=27,a 3=273×27+1=213,a 4=2133×213+1=219.由此猜想a n 是以分子为2,分母是以首项为1,公差为6的等差数列,所以a n=26n-5.答案:2 6n-58.凸n多边形有f(n)条对角线.则凸(n+1)边形的对角线的条数f(n+1)与f(n)的递推关系式为________.解析:f(n+1)=f(n)+(n-2)+1=f(n)+n-1.答案:f(n+1)=f(n)+n-19.用数学归纳法证明:1+122+132+…+1n2<2-1n(n∈N*,n≥2).证明:(1)当n=2时,1+122=54<2-12=32,命题成立.(2)假设当n=k时命题成立,即1+122+132+…+1k2<2-1k.当n=k+1时,1+122+132+…+1k2+1(k+1)2<2-1k+1(k+1)2<2-1k+1k(k+1)=2-1k+1k-1k+1=2-1k+1,命题成立.由(1)(2)知,原不等式在n∈N*,n≥2时均成立.10.已知点P n(a n,b n)满足a n+1=a n·b n+1,b n+1=b n1-4a2n(n∈N*),且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点P n都在(1)中的直线l 上.(1)解:由题意得a1=1,b1=-1,b2=-11-4×1=13,a2=1×13=13,所以P 2⎝ ⎛⎭⎪⎫13,13.所以直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设当n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k·(2a k +1)=b k1-2a k =1-2a k 1-2a k=1, 所以当n =k +1时,2a k +1+b k +1=1也成立. 由①②知,对于n ∈N *,都有2a n +b n =1, 即点P n 在直线l 上.B 组 素养提升11.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( )A .n +1B .2n C.n 2+n +22D .n 2+n +1解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.答案:C12.已知f (n )=(2n +7)·3n +9,存在正整数m ,使得对任意n ∈N *,f (n )都能被m 整除,则m 的最大值为( )A .18B .36C .48D .54解析:由于f (1)=36,f (2)=108,f (3)=360都能被36整除,猜想f (n )能被36整除,即m 的最大值为36.当n =1时,可知猜想成立.假设当n =k (k ≥1,k ∈N *)时,猜想成立,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,f (k +1)=(2k +9)·3k +1+9=(2k +7)·3k +9+36(k +5)·3k -2,因此f (k +1)也能被36整除,故所求m 的最大值为36.故选B.答案:B13.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).解析:f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2)(n ≥3).答案:5 12(n +1)(n -2)(n ≥3)14.(2019·广州模拟)已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1. (1)解:由题意,知f (x )=ax -32x 2=-32⎝ ⎛⎭⎪⎫x -a 32+a 26.又f (x )max ≤16,所以f (x )max =f ⎝ ⎛⎭⎪⎫a 3=a 26≤16.所以a 2≤1.又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12≥18,f ⎝ ⎛⎭⎪⎫14≥18,即⎩⎪⎨⎪⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1.(2)证明:用数学归纳法证明如下: ①当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝ ⎛⎭⎪⎫0,12时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故当n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立.由(1)知a =1,f (x )=x -32x 2,因为f (x )=x -32x 2的对称轴为直线x =13,所以当x ∈⎝⎛⎦⎥⎤0,13时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f ⎝ ⎛⎭⎪⎫1k +1.于是,0<a k+1=f(a k)<1k+1-32·1(k+1)2+1k+2-1k+2=1k+2-k+42(k+1)2(k+2)<1k+2.所以当n=k+1时,原不等式也成立.由①②知,对任意n∈N*,不等式a n<1n+1成立.。

2021届新人教A版高中数学数学归纳法 Word版含解析

2021届新人教A版高中数学数学归纳法 Word版含解析

第二章 推理与证明2.3 数学归纳法[A 级 基础巩固]一、选择题1.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6解析:当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5. 答案:C2.用数学归纳法证明某命题时,左式为12+cos α+cos 3α+…+cos (2n -1)α(α≠k π,k ∈Z ,n ∈N *),在验证n =1时,左边所得的代数式为( )A.12B.12+cos αC.12+cos α+cos 3 α D.12+cos α+cos 3 α+cos 5 α 解析:令n =1,左式=12+cos α. 答案:B3.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( )A.π2 B .π C.3π2 D .2π解析:由凸k 边形变成凸k +1边形时,增加了一个三角形,故f (k +1)=f (k )+π.答案:B4.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,第二步归纳递推应写成( )A .假设n =2k +1(k ∈N *)时正确,再推n =2k +3时正确B .假设n =2k -1(k ∈N *)时正确,再推n =2k +1时正确C .假设n =k (k ∈N *)时正确,再推n =k +1时正确D .假设n =k (k ∈N *)时正确,再推n =k +2时正确解析:因为n 为正奇数,所以在证明时,归纳递推应写成:假设n =2k -1(k ∈N *)时正确,再推出n =2k +1时正确.故选B.答案:B5.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立,现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确解析:由已知可得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立,在n =n 0+1时命题成立的前提下,可推得n =(n 0+1)+1时命题也成立.以此类推可知命题对大于或等于n 0的正整数都成立,但命题对小于x 0的正整数成立与否不能确定.答案:C 二、填空题6.用数学归纳法证明“1+12+13+…+12n=p(n)”从n=k推导n=k+1时原等式的左边应增加的项数是________.解析:观察不等式左边的分母可知,由n=k到n=k+1左边多出了12k+1+12k+2+…+12k+1共2k+1-2k项.答案:2k+1-2k7.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:(1)当n=1时,左边=1,右边=21-1=1,等式成立.(2)假设当n=k(k∈N*)时等式成立,即1+2+22+…+2k-1=2k-1,则当n=k+1时,1+2+22+…+2k-1+2k=1-2k+11-2=2k+1-1.所以当n=k+1时等式也成立.由此可知对于任何n∈N*,等式都成立.上述证明的错误是________.解析:本题在由n=k成立,证n=k+1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.答案:未用归纳假设8.用数学归纳法证明34n+2+52n+1能被14整除的过程中,当n=k +1时,34(k+1)+2+52(k+1)+1应变形为________.解析:当n=k+1时,34(k+1)+2+52(k+1)+1=81·34k+2+25·52k+1=25(34k +2+52k+1)+56·34k+2.答案:25(34k+2+52k+1)+56·34k+2三、解答题9.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)= n 4(n +1). 证明: (1)当n =1时,左边=12×4=18,右边=18等式成立. (2)假设n =k 时,等式成立,即12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1)成立. 当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+1(2k +2)(2k +4)=k 4(k +1)+1(2k +2)(2k +4)=k (k +2)+14(k +1)(k +2)= (k +1)24(k +1)(k +2)=k +14(k +2)=k +14[(k +1)+1]. 所以n =k +1时,等式成立.由(1)、(2)可得对一切n ∈N *,等式成立.10.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *). 证明:(1)当n =2时,左边=13+14+15+16=1920>56,不等式成立. (2)假设当n =k (n ≥2,n ∈N *)时命题成立,即1k +1+1k +2+…+13k >56. 那么当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+ ⎝ ⎛⎭⎪⎫13k +3+13k +3+13k +3-1k +1=56. 所以当n =k +1时,不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *都成立.B 级 能力提升1.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+14对一切n ∈N *都成立,那么a ,b 的值为( )A .a =12,b =14B .a =b =14C .a =0,b =14D .a =14,b =12解析:因为1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+14对一切n ∈N *都成立,所以当n =1,2时有⎩⎪⎨⎪⎧1=3(a -b )+14,1+2×3=32(2a -b )+14,即⎩⎪⎨⎪⎧1=3a -3b +14,7=18a -9b +14, 解得⎩⎪⎨⎪⎧a =12,b =14.答案:A2.用数学归纳法证明“当n ∈N *时,求证:1+2+22+23+…+25n-1是31的倍数”时,当n=1时,原式为____________,从n=k 到n=k+1时需增添的项是____________.解析:当n=1时,原式应加到25×1-1=24,所以原式为1+2+22+23+24,从n=k到n=k+1时需添25k+25k+1+…+25(k+1)-1.答案:1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+43.设数列{a n}的前n项和为S n,且方程x2-a n x-a n=0有一根为S n-1(n∈N*).(1)求a1,a2;(2)猜想数列{S n}的通项公式,并给出证明.解:(1)当n=1时,方程x2-a1x-a1=0有一根S1-1=a1-1,所以(a1-1)2-a1(a1-1)-a1=0,解得a1=1 2,当n=2时,方程x2-a2x-a2=0有一根为S2-1=a1+a2-1=a2-12,所以⎝⎛⎭⎪⎫a2-122-a2⎝⎛⎭⎪⎫a2-12-a2=0,解得a2=16.(2)由题意知(S n-1)2-a n(S n-1)-a n=0,当n≥2时,a n=S n-S n-1,代入整理得S n S n-1-2S n+1=0. 解得S n=12-S n-1.由(1)得S1=a1=12,S2=a1+a2=12+16=23.猜想S n=nn+1(n∈N*).下面用数学归纳法证明这个结论.①当n=1时,结论成立.②假设n=k(k∈N*)时结论成立,即S k=kk+1,当n=k+1时,S k+1=12-S k=12-kk+1=k+1k+2=k+1(k+1)+1.所以当n=k+1时,结论也成立.由①②可知,{S n}的通项公式为S n=nn+1(n∈N*).。

数学归纳法 高考数学真题解析 高考数学总复习48页文档

数学归纳法 高考数学真题解析 高考数学总复习48页文档
数学归纳法 高考数学真题解析 高考数学 总复习

ቤተ መጻሕፍቲ ባይዱ
46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

[教学]高考数学总复习经典测试题解析版134数学归纳法.docx

[教学]高考数学总复习经典测试题解析版134数学归纳法.docx

9 ?用数学归纳法证明:
2
2
2
1X3 + 3X5+ "' +(2n-l) (2n+1) =2(2n+1);当推证当 n = k+1 等式也成“
时,用上归纳假设后需要证明的等式是
解析当 n = k+l 时,
___________?
I 2 22
1?
(k+lF
IX3 十 3X5 十…十 ( 2k—1) (2k+l) 十 ( 2k+l) (2k + 3)
用姒子厂 I 才 j 低也力 2 3 4
2/?-1 2 刀 n+1 71+2
—, 则
2n 人」
1
A ---------------
2A+2
C ——- ————— - —— 2k+1 2k+2
2k+2
[) ——- ——+——- —— 2k+ r 2A+2
解析 I?当 n=k 时,左侧 =1—*+£—* ----------- 2 k —[~2^ 9 当 n=k~^~ 】时,
的基础上加上 ().
A. #+1 B. (A+1) 2
仏 +1)" + 仇+1)2

2
D. (#+1) + ( 才+2) + ( 才 +3) + …+幺+1)2[来洙学科网]
解析 ???当 n=k 时,左侧 =1+2+3 +??? +护 ,
当 n— 时,
左侧 =1 + 2+3+??? + #+(#+1)+??? +(&+1)2,

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)

高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
二、数学归纳法的证明步骤
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】

高考数学章节总复习:《数列与数学归纳法》(含解析)

高考数学章节总复习:《数列与数学归纳法》(含解析)

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0.解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n+a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式.解:因为a n =2a n -1-2, 所以a n -2=2(a n -1-2).所以数列{a n-2}是以a1-2=-1为首项,2为公比的等比数列.所以a n-2=(-1)×2n-1,即a n=2-2n-1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n(n∈N*);(2)a1=1,2na n+1=(n+1)a n(n∈N*);(3)a1=1,a n=3a n-1+4(n≥2).解:(1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)由2na n+1=(n+1)a n,得a n+1a n=n+12n.所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=n2(n-1)·n-12(n-2)·n-22(n-3)·…·22×1×1=n2n-1.(3)因为a n=3a n-1+4(n≥2),所以a n+2=3(a n-1+2).因为a1+2=3,所以{a n+2}是首项与公比都为3的等比数列.所以a n+2=3n,即a n=3n-2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n}的通项公式为a n=n2+n,则a5=() A.25B.30C.10 D.12解析:选B因为a n=n2+n,所以a5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2 解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n-1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( )A.1n +1B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n=n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________.解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n+a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________.解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n =2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______. 答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( )A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1),所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n , ∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1. ∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114B.32C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d =d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4. 答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q=8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162.答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2, 所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( )A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( )A .10B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.(2019·金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( ) A.19 B.12763 C.43D.1312解析:选C 由题意知,A n B n=12n +1,令A n =k (2n -1),k ≠0,则B n =A n ·(2n +1)=k (2n-1)(2n +1)=k (4n -1).所以a 7=A 7-A 6=k (27-1)-k (26-1)=64k ,b 3=B 3-B 2=k (43-1)-k (42-1)=48k ,所以a 7b 3=64k 48k =43.6.(2018·超级全能生模拟)等比数列{a n }的前n 项和为S n ,已知a 1=1,a 1,S 2,5成等差数列,则数列{a n }的公比q =________,S n =_________.解析:由题可得,2S 2=2(1+q )=1+5=6,所以q =2,所以S n =1-2n 1-2=2n -1.答案:2 2n -17.(2018·慈溪中学)在正项等比数列{a n }中,若a 1=1,a 1+a 3+a 5=21,则q =________;a 3+a 5+a 7的值为________.。

高考数学总复习 11-4数学归纳法 理 新人教B版

高考数学总复习 11-4数学归纳法 理 新人教B版

11-4数学归纳法(理)基础巩固强化1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13,故选B.2.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立[答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断.3.(2012·深圳市明德外语实验学校测试)用数学归纳法证明:12+22+…+n 2+…+22+12=nn 2+3,第二步证明由“k 到k +1”时,左边应加( )A .k 2B .(k +1)2C .k 2+(k +1)2+k 2D .(k +1)2+k 2[答案] D[解析] 当n =k 时,左边=12+22+…+k 2+…+22+12,当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+…+22+12,∴选D.4.已知S k =1k +1+1k +2+1k +3+ (12)(k =1,2,3,…),则S k +1等于( ) A .S k +1k +B .S k +12k +2-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1k ++1+1k ++2+…+1k +=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 5.数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3[答案] B[解析] a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项B .f (n )中共有n +1项C .f (n )中共有n 2-n 项 D .f (n )中共有n 2-n +1项[答案] D[解析] f (n )的分母从n 开始取自然数到n 2止,共有n 2-(n -1)=n 2-n +1项. 7.如果不等式2n>n 2+1对于n ≥n 0的正整数n 都成立,则n 0的最小值为________. [答案] 5[解析] 当n =1时,2>2不成立, 当n =2时,4>5不成立. 当n =3时,8>10不成立 当n =4时,16>17不成立 当n =5时,32>26成立当n =6时,64>37成立,由此猜测n 0应取5. 8.用数学归纳法证明:(n +1)+(n +2)+…+(n +n )=n n +2(n ∈N *)的第二步中,当n =k +1时等式左边与n =k 时等式左边的差等于________.[答案] 3k +2[解析] [(k +1)+1]+[(k +1)+2]+…+[(k +1)+(k +1)]-[(k +1)+(k +2)+…+(k +k )]=[(k +1)+k ]+[(k +1)+(k +1)]-(k +1) =3k +2.9.(2012·长春模拟)如图,第n 个图形是由正n +2边形“扩展”而来的(n =1,2,3,…),则第n -2(n ≥3,n ∈N *)个图形共有________个顶点.[答案] n (n +1)[解析] 当n =1时,顶点共有3×4=12(个), 当n =2时,顶点共有4×5=20(个), 当n =3时,顶点共有5×6=30(个), 当n =4时,顶点共有6×7=42(个),故第n -2图形共有顶点(n -2+2)(n -2+3)=n (n +1)个.10.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. [解析] ∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,及a 2≥(a 1+1)2-1得,a 2≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n-1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k-1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k-1≥2k +1-1,即n =k +1时,结论也成立.由①、②知,对任意n ∈N *,都有a n ≥2n-1. 即1+a n ≥2n.∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n<1.能力拓展提升11.若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1C.nn +1D .1[答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=nn +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x 1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,, 所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n . 12.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )π B .(3n 2-n +1)π C.n 2+n π2D.n 2-n +π2[答案] A[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,A n -1A n 对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n+3n 2=(3n 2+n )π. 13.已知数列{a n }的前n 项和为S n ,a 1=1,且S n 、S n +1、2S 1成等差数列,则S 2、S 3、S 4分别为________,由此猜想S n =________.[答案] 32,74,158 S n =2n-12n -1[解析] ∵S n 、S n +1、2S 1成等差数列, ∴2S n +1=S n +2S 1,∵S 1=a 1=1,∴2S n +1=S n +2. 令n =1,则2S 2=S 1+2=1+2=3, ∴S 2=32.同理,分别令n =2、n =3, 可求得S 3=74,S 4=158,由S 1=1=21-120,S 2=32=22-121,S 3=74=23-122,S 4=158=24-123,猜想S n =2n-12n -1.14.(2012·温州一模)已知n ∈N *,设平面上的n 个椭圆最多能把平面分成a n 部分,则a 1=2,a 2=6,a 3=14,a 4=26,…,则a n =________.[答案] 2n 2-2n +2[解析] 观察规律可知a n -a n -1=(n -1)×4,利用累加法可得a n =2n 2-2n +2. 15.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +2.[证明] (1)当n =1时,左边=12=1, 右边=(-1)0·+2=1,∴原等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +2.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k -1k k +2+(-1)k·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)kk +k +2,∴n =k +1时,等式也成立, 由(1)、(2)得对任意n ∈N +有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +2.16.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. [解析] (1)由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为(13,13).∴直线l 的方程为2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立, 则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1 =b k1-4a 2k ·(2a k +1)=b k 1-2a k =1-2a k1-2a k=1, ∴当n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.1.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下:1°当n=1时,12+1≤1+1,不等式成立.2°假设n=k(k∈N*)时不等式成立,即k2+k<k+1,则n=k+1时,k +2+k+=k2+3k+2<k2+3k++k+2=k+2=(k+1)+1.∴当n=k+1时,不等式成立.上述证法( )A.过程全都正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D.2.观察下式:1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……据此你可归纳猜想出的一般结论为( )A.1+3+5+…+(2n-1)=n2(n∈N*)B.1+3+5+…+(2n+1)=n2(n∈N*)C.1+3+5+…+(2n-1)=(n+1)2(n∈N*)D.1+3+5+…+(2n+1)=(n+1)2(n∈N*)[答案] D[解析]观察可见第n行左边有n+1个奇数,右边是(n+1)2,故选D.3.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为( )A .190B .715C .725D .385 [答案] B[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+n -2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715.4.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n . ∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n .下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N )时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ), ∵0<a k <1,∴1a k +1≥1a k-a k =1a k +11-a k, ∴1a k +1-1a k ≥11-a k>1. 令k =1,2,3,…,n -1得: 1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1,∴1a n >1a 1+n -1>n ,∴a n <1n.5.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝ ⎛⎭⎪⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1、a 2、a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝ ⎛⎭⎪⎫n ,S n n 代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝ ⎛⎭⎪⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立.②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立. 由①②知,对一切n ∈N *,a n =2n 成立.(2)因为a n =2n (n ∈N *),所以数列{a n }依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b 100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b 100=68+24×80=1988, 又b 5=22,所以b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k 与a k +1或S k 与S k +1间的关系,使命题得证.。

高考数学复习考点65 数学归纳法(练习)(解析版)

高考数学复习考点65 数学归纳法(练习)(解析版)

考点65 数学归纳法【题组一 概念理解】1.(2020·辽宁)用数学归纳法证明:1232(21)n n n +++⋅⋅⋅+=+时,从n k =推证1n k =+时,左边增加的代数式是( ) A .43k + B .42k + C .22k + D .21k +【答案】A【解析】由题意,可得当1n =时,等式的左边为12+, 当n k =时,等式的左边为1232k +++⋅⋅⋅+,当1n k =+时,等式的左边为1232(21)2(1)k k k +++⋅⋅⋅+++++, 所以从k 到1k +时,左边需增加的代数式是(21)2(1)43k k k +++=+, 故选A .2.(2020·安徽贵池。

池州一中)某个命题与自然数n 有关,若*()n k k N =∈时命题成立,那么可推得当1n k =+时该命题也成立,现已知5n =时,该命题不成立,那么可以推得A .6n =时该命题不成立B .6n =时该命题成立C .4n =时该命题不成立D .4n =时该命题成立【答案】C【解析】假设4n =时该命题成立,由题意可得5n =时,该命题成立,而5n =时,该命题不成立,所以4n =时,该命题不成立.而5n =时,该命题不成立,不能推得6n =该命题是否成立.故选C . 3.(2020·合肥一六八中学)用数学归纳法证明“()*(31)71nn n N+⋅-∈能被9整除”,在假设n k =时命题成立之后,需证明1n k =+时命题也成立,这时除了用归纳假设外,还需证明的是余项( )能被9整除.A .376k ⨯+B .1376k +⨯+C .37 3 k ⨯-D .1373k +⨯-【答案】B【解析】假设n k =时命题成立,即(31)71kk +⋅-能被9整除, 当1n k =+时,()131171(31)71k kk k +⎡⎤-⎣⎦++⋅--+⋅⎡⎤⎣⎦()1347(31)7k k k k +-=+⋅+⋅()13137(31)7k kk k +=++⋅+⋅⎡⎤⎣⎦-()1131737(31)7k k k k k ++=+-+⋅⋅+⋅ ()1631737k k k +=⋅+⋅+⋅()131663177k k k +⎡=⎤-⋅+⋅⎦⋅+⎣+ (31)71k k +⋅-能被9整除要证上式能被9整除,还需证明1367k +⋅+也能被9整除 故选:B4.(2020·陕西省洛南中学)用数学归纳法证明1+2+3+⋯+n 2=n 4+n 22,则当n =k +1时,左端应在n =k的基础上加上( ) A .k 2+1B .(k +1)2C .(k 2+1)+(k 2+2)+⋯+(k +1)2D .(k+1)4+(k+1)22【答案】C【解析】当n=k 时,等式左端=1+2+…+k 2,当n=k+1时,等式左端=1+2+…+k 2+k 2+1+k 2+2+…+(k+1)2,增加了项(k 2+1)+(k 2+2)+(k 2+3)+…+(k+1)2.故选:C .5.(2020·小店.山西大附中)用数学归纳法证明不等式“1111312224n n n +++>++(2n >)”过程中,由n k =到1n k =+时,不等式的左边( )A .增加了一项()121k +B .增加了两项()112121k k +++ C .增加了两项()112121k k +++,又减少了一项11k + D .增加了一项()121k +,又减少了一项11k + 【答案】C【解析】由题意,当n k =时,左端11112k k k k=++++++,当1n k =+时,左端1111232122k k k k =++++++++, 所以第二步由k 到1k +时, 不等式左端的变化是增加了11,2122k k ++两项,同时减少了11k +项.故选:C. 6.(2020·吉林吉林)用数学归纳法证明等式,()123...221n n n ++++=+时,由n k =到1n k =+时,等式左边应添加的项是( ) A .21k +B .22k +C .()()2122k k +++D .()()12...2k k k +++++【答案】C【解析】:因为要证明等式的左边是连续正整数,所以当由n k =到1n k =+时,等式左边增加了()()()()()1232212112322122k k k k k k ⎡⎤++++++++-++++=+++⎣⎦,故选C.7.(2020·安徽金安)用数学归纳法证明不等式111131214n n n n ++⋅⋅⋅+>+++的过程中,由n k =递推到1n k =+时,不等式左边( )A .增加了一项()121k +B .增加了两项121k +,()121k + C .增加了A 中的一项,但又减少了另一项11k + D .增加了B 中的两项,但又减少了另一项11k + 【答案】D【解析】当n k =时,左边11112=++⋅⋅⋅++++k k k k, 当1n k =+时,左边111(1)1(1)2(1)(1)=++⋅⋅⋅++++++++k k k k()11111232121=++⋅⋅⋅++++++++k k k k k k ,所以,由n k =递推到1n k =+时,不等式左边增加了121k +,()121k +;减少了11k +;故选:D 8.(2020·驻马店市基础教学研究室)用数学归纳法证明:()()()()()*1221321n n n n n n n +++=⨯⨯⨯⨯-∈N 时,从“n k =到1n k =+”等式左边的变化结果是( )A .增乘一个因式()21k +B .增乘两个因式()21k +和()22k +C .增乘一个因式()221k +D .增乘()21k +同时除以()1k +【答案】C【解析】当n k =时,则有()()()()1221321k k k k k k +++=⨯⨯⨯⨯-;当1n k =+时,则有()()()()1232221321k k k k k ++++=⨯⨯⨯⨯+.()()()12132121213212k kk k k +⨯⨯⨯⨯++⨯⨯-=⨯⨯,故从“n k =到1n k =+”等式左边的变化结果是:增乘一个因式()221k +.故选:C.9.(2020·河南宛城.南阳中学)已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋯+=++⋯+ ⎪+++⎝⎭时,若已假设(2n k k =≥为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .1n k =+ B .2n k =+ C .22n k =+D .2(2)n k =+【答案】B【解析】若已假设n =k (k ≥2,k 为偶数)时命题为真,因为n 只能取偶数,所以还需要证明n =k +2成立.、 故选B.【题组二 数学归纳法的运用】1.(2020·镇原中学)用数学归纳法证明()()()2222*121123N 6n n n n n +++++⋅⋅⋅+=∈.【答案】见解析【解析】证明:①当1n =时,左边211==,右边()()11121116⨯+⨯⨯+==,等式成立;②假 设 当 ()*N n k k =∈时等式成立,即()()()2222*121123N 6k k k k k +++++⋅⋅⋅+=∈. 那么,()()()()222222121123116k k k k k k +++++⋅⋅⋅+++=++()()()()()2212761216166k k k k k k k +++++++==()()()12236k k k +++= ()()()()*111211N 6k k k k +++++⎡⎤⎡⎤⎣⎦⎣⎦=∈即当1n k =+时等式也成立.由①②知,等式对任何*N n ∈都成立.2.(2019·扶风县法门高中)数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.【答案】(1)123437151,,,248a a a a ====,1212n n n a --=;(2)证明见解析.【解析】(1)123437151,,,248a a a a ====,由此猜想1212n n n a --=;(2)证明:当1n =时,11a =,结论成立;假设n k =(1k ≥,且k N +∈),结论成立,即1212k k k a --=当+1n k =(1k ≥,且k N +∈)时,()11112122k k k k k k k a S S k a k a a a ++++=-=+--+=+-,即122k k a a +=+,所以11112122212222k k k k k k a a +-+--++-===,这表明当1n k =+时,结论成立,综上所述,1212n n n a --=()n N +∈.3.(2020·上海杨浦)设数列{}n a 的前n 项和为n S ,且2(1)n n n S a S -=(n *∈N ),设121(1)(1)n n n n b n a a ++=-+⋅(n *∈N ),数列{}n b 的前n 项和n T .(1)求1S 、2S 、3S 的值;(2)利用“归纳—猜想—证明”求出n S 的通项公式; (3)求数列{}n T 的通项公式.【答案】(1)112S =,223S =,334S =;(2)1n n S n =+(*n ∈N );(3)111(1)()22(1)(2)n n T n n +-=+++. 【解析】(1)由2(1)n n n S a S -=,令1n =,则2211(1)S S -=,得112S =, 当2n ≥时,由1n n n a S S -=-,得21(1)()n n n n S S S S --=-,得112n n S S -=-,令2n =,得223S =,令3n =,得334S =,即112S =,223S =,334S =. (2)由(1)知112S =,223S =,334S =,猜想1n nS n =+,下面用数学归纳法证明:① 当1n = 时,由猜想知显然成立; ②假设n k =猜想成立,即1k kS k =+, 则当1n k =+时,由(1)有112k k S S +=-121k k =-+112(1)1k k k k ++==+++,即当1n k =+时,猜想1n nS n =+也成立. 综合①②可知,猜想1n n S n =+成立,即1n nS n =+ (3)由(2)知112a =,当2n ≥时,1n n n a S S -=-11n n n n-=-+1(1)n n =+, 综合知:1(1)n a n n =+,又121(1)(1)n n n n b n a a ++=-+⋅,则12(1)(1)11(1)(1)(2)n n n n n n b n +=-++++⋅⋅1(1)(2)n n n +-=+1(1)11()22n n n +-=-+当n 为偶数时,n T =111111111111[(1)()()()()()]23243546112n n n n ---+---++----++ 1111(1)2122n n =--+++=111()22(1)(2)n n -+++当n 为奇数时,n T =1n n T b -+111()22(1)n n -=+++111()22n n -+=111()22(1)(2)n n +++ 综上可得111(1)()22(1)(2)n n T n n +-=+++ 4.(2020·浙江高三二模)已知数列11(1)n n na ab +=+,n *∈N ,且11a =. (1)若{}n b 的前n 项和为22n,求{}n a 和{}n b 的通项公式(2)若2n b n =,求证:92n a <【答案】(1)21n a n =-;12n b n =- (2)证明见解析 【解析】(1)n b 的前n 项和为22n,∴ {}n b 是等差数列,设n b an b =+,则12112()22n b a b b b n n ⎧=+=⎪⎪⎨+⎪=⎪⎩,112a b =⎧⎪⎨=-⎪⎩12n b n ∴=- 1121(1)1212n n n n a a a n n ++∴=+=--,12121n na n a n ++∴=- , 122123121232532325231n n n n n n a a a a n n n a a a a n n n --------∴⨯⨯⨯⋅⋅⋅=⨯⨯⨯⋅⋅⋅⨯--- 21n a n =-21n a n ∴=-满足11a = 21n a n ∴=-(n *∈N )(2)2n b n =代入11(1)n n n a a b +=+得121(1)n n a a n+=+, 1211n n a a n+=+ 用数学归纳法证明:1n =时,1912a =<显然成立,设n k =时,92k a <成立, 则1n k =+时,1222191999(1)(1)2222k ka a k k k +=+<+=+< 所以92n a <成立 5.(2020·安徽屯溪一中)已知数列114⨯ ,147⨯ ,1710⨯ ,...,1(32)(31)n n -⨯+,...,记数列的前n项和n S .(1)计算1S ,2S ,3S ,4S ; (2)猜想n S 的表达式,并证明. 【答案】(1)114S =,227S =,3310S =,4413S =;(2)31n nS n =+,证明见解析. 【解析】(1)111144S ==⨯,21124477S =+=⨯,3213771010S =+=⨯,43141010313S =+=⨯(2)猜想31n nS n =+ 证明:①当1n =时,左边114S ==,右边14=,猜想成立②假设当()*n k k N=∈时猜想成立即11111447710(32)(31)31k k k k ++++=⨯⨯⨯-++那么当1n k =+时111111447710(32)(31)[3(1)2][3(1)1]k k k k +++++⨯⨯⨯-++-++1131(31)(34)3(1)1k k k k k k +=+=+++++ 因此对1n k =+也成立; 根据①②对于*n N ∈猜想成立.。

2021年高考数学考点39数学归纳法必刷题理含解析

2021年高考数学考点39数学归纳法必刷题理含解析

考点39 数学归纳法1.用数学归纳法证明:()能被整除.从假设成立 到成立时,被整除式应为( ) A . B . C . D .【答案】C【解析】由于当n=k+1 时,x 2n-1+y2n-1=x2k+1+y2k+1,故选:C .2.等式()2222211235742n n n ++++=-+( ) A . *n N ∈时都成立 B . 当1,2,3n =时成立C . 当4n =时成立, 5n =时不成立D . 仅当4n =时不成立 【答案】B3.利用数学归纳法证明“,”时,从“”变到“”时,左边应增乘的因式是( ) A .B .C .D .【答案】C【解析由题意,n="k" 时,左边为(k+1)(k+2)…(k+k );n=k+1时,左边为(k+2)(k+3)…(k+1+k+1);从而增加两项为(2k+1)(2k+2),且减少一项为(k+1),故选C . 4.用数学归纳法证明“…”时,由到时,不等试左边应添加的项是( )A. B.C. D.【答案】C5.如果命题对于成立,同时,如果成立,那么对于也成立。

这样,下述结论中正确的是()A.对于所有的自然数成立 B.对于所有的正奇数成立C.对于所有的正偶数成立 D.对于所有大于3的自然数成立【答案】B【解析】由于若命题对成立,则它对也成立.又已知命题成立,可推出均成立,即对所有正奇数都成立故选:B.6.已知正项数列中,用数学归纳法证明:.【答案】见解析.7.设M N +⊆,正项数列{}n a 的前n 项的积为n T ,且k M ∀∈,当n k >时,n k n k n k T T T T +-=都成立.(1)若{}1M =, 13a =, 233a ={}n a 的前n 项和; (2)若{}3,4M =, 12a ={}n a 的通项公式.【答案】33322n -(2) 122n -【解析】(1)当n≥2时,因为M={1}11Tn Tn +-n T 1,可得a n+1=a n a 1, 故1an an+=a 1=3(n≥2). 又a 13a 23{a n }是公比为3的等比数列,故{a n }的前n ()31313n --32•3n 32. (2)当n >k Tn kTn k +-=T n T k 11Tn kTn k +++-=T n+1T k ,所以a2,a3,a4是公比为q 14的等比数列,所以{an}(n≥2)是公比为q14的等比数列.因为当n=4,k=3时,T7T1=T42T32;当n=5,k=4时,T9T1=T52T42,所以(14q)7=2a24,且(14q)10=2a26,所以14q=2,a22.又a12,所以{a n}(n∈N*)是公比为14q的等比数列.故数列{a n}的通项公式是a n=2n﹣12.8.已知数列{}n a 满足123012323222n n n n nC C C a C +++=++++…*2n n nn C n N ++∈,.(1)求1a , 2a , 3a 的值;(2)猜想数列{}n a 的通项公式,并证明. 【答案】(1) 122,4,a a ==38,a = (2)见解析121+10231-1+1+111121112222222k k k kk k k k k k k k k k k k C C C C C C -++++++++-+⎛⎫=++++⋯+++ ⎪⎝⎭,于是11122k k k a a ++=+. 所以112k k a ++=, 故1n k =+时结论也成立. 由①②得, =2n n a *n N ∈,. 9.用数学归纳法证明:对于任意的,.【答案】见解析10.(1)已知,比较和的大小并给出解答过程;(2)证明:对任意的,不等式成立.【答案】(1)见解析;(2)见解析. 【解析】11.已知数列是等差数列,.(1)求数列的通项公式;(2)设数列的通项 (其中且)记是数列的前项和,试比较与的大小,并证明你的结论.【答案】(1);(2)当时,,当时,,证明见解析.,即当n=k+1时,(*)式成立由①②知,(*)式对任意正整数n都成立于是,当a>1时,S n>log a b n+1,当 0<a<1时,S n<log a b n+1 . 12.已知数列满足,.(1)计算,,,根据计算结果,猜想的表达式;(2)用数学归纳法证明你猜想的结论.【答案】(1)答案见解析;(2)证明见解析.由题意得,∴当时猜想也成立;由①和②,可知猜想成立,即.13.已知数列的前项和为,且满足,.(1)计算,,,根据计算结果,猜想的表达式;(2)用数学归纳法证明你猜想的结论.【答案】(1)答案见解析;(2)证明见解析.∴,∴,∴当时猜想也成立,由①和②,可知猜想成立,即.14.已知数列满足且.(1)计算、、的值,由此猜想数列的通项公式;(2)用数学归纳法对你的结论进行证明.【答案】(1),;(2)证明见解析.a b c,使得等式15.是否存在常数,,()()()22222242,,-+-++-=++对一切正整数n都成立?若存在,求出a b c n n n n n an bn c1122的值;若不存在,说明理由.【答案】见解析.,,,使得所给等式成立.【解析】假设存在a b c16.是否存在正整数,使得对任意正整数都能被36整除?若存在,求出的最小值,并用数学归纳法证明你的结论;若不存在,请说明理由.【答案】见解析17.已知正项数列中,且(1)分别计算出的值,然后猜想数列的通项公式;(2)用数学归纳法证明你的猜想.【答案】(1);;(2)见解析. 【解析】(1)令得化简得,解得或.18.数列中,,前项的和记为.(1)求的值,并猜想的表达式;(2)请用数学归纳法.....证明你的猜想.【答案】(1)见解析;(2)见解析【解析】(1)∵,∴,,∴猜想.(2)证明:①当时,,猜想成立;②假设当时,猜想成立,即:;∴当时,∴时猜想成立∴由①、②得猜想得证.19.(1)证明:;(2)证明:();(3)证明:.【答案】(1)见解析;(2)见解析;(3)见解析.所以.(3)由题意得,20.设,对于,有. (1)证明:(2)令,证明:(I)当时,(II)当时,【答案】(1)见解析;(2)(I)见解析;(II)见解析.21.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)(n∈N*)时,从“n=k到n=k+1”时,左边应增加的代数式为________.【答案】2(2k+1)【解析】首先写出当n=k时和n=k+1时等式左边的式子.当n=k时,左边等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),①当n=k+1时,左边等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),②∴从n=k到n=k+1的证明,左边需增加的代数式是由两式相除得到=2(2k+1).22.用数学归纳法证明“”从到左端需增乘的代数式为____________.【答案】23.设,那么______.【答案】【解析】,,,故答案为.24.用数学归纳法证明等式时,第一步验证时,左边应取的项是______.【答案】word【解析】在等式中,当时,,而等式左边起始为的连续的正整数的和,故时,等式左边的项为,故答案为.25.用数学归纳法证明,则当时左端应在的基础上加上的项为_______.21 / 21。

高考理科数学(人教版)一轮复习讲义:第七章 第六节 数学归纳法 Word版含答案

高考理科数学(人教版)一轮复习讲义:第七章 第六节 数学归纳法 Word版含答案

第六节数学归纳法1.数学归纳法的2个步骤一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)归纳奠基证明当n 取第一个值n 0(n 0∈N *)时命题成立(初始值n 0不一定为1); (2)归纳递推假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[注意] 证明当n =k +1时命题成立一定会用到归纳假设,即假设n =k (k ≥n 0,k ∈N *)时命题成立,解题时要搞清从n =k 到n =k +1增加了哪些项或减少了哪些项.2.数学归纳法的2个步骤的意义步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证. 这两个步骤缺一不可,如果只有步骤(1)缺少步骤(2),无法对n 取n 0后的数时结论是否正确作出判断;如果只有步骤(2)缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)就没有意义了.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)数学归纳法主要用于研究与正整数有关的数学问题,但并不是所有与正整数有关的问题都能用数学归纳法证明.( )(3)证明当n =k +1时命题成立用到归纳假设,即n =k (k ≥n 0,k ∈N *)时命题成立.( ) (4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )答案:(1)× (2)√ (3)√ (4)× 二、选填题1.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .4解析:选C 三角形是边数最少的凸多边形,故第一步应检验n =3.2.用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+n (n -1)2d 时,假设当n =k 时,公式成立,则S k =( )A .a 1+(k -1)d B.k (a 1+a k )2C .ka 1+k (k -1)2d D .(k +1)a 1+k (k +1)2d 解析:选C 假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+k (k -1)2d .3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 由f (n )可知,f (n )中共有n 2-n +1项,且n =2时,f (2)=12+13+14.4.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证的不等式的左边为________.答案:1+12+135.用数学归纳法证明不等式1+12+14+…+12n -1>12764成立,起始值应取为n =________.解析:不等式的左边=1-12n1-12=2-12n -1,当n <8时,不等式不成立,故起始值应取n =8.答案:8考点一用数学归纳法证明等式[师生共研过关][典例精析]用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *).[证明] (1)当n =1时, 左边=12×1×(2×1+2)=18,右边=14(1+1)=18,左边=右边,所以等式成立.(2)假设n =k (k ≥1,k ∈N *)时等式成立, 即12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1), 则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2] =k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14(k +1+1).所以当n =k +1时,等式也成立.由(1)(2)可知,对于一切n ∈N *等式都成立.[解题技法]1.数学归纳法证明等式的2个思路(1)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.(2)由n =k 时等式成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程.2.口诀记忆——记牢“4句话” 两个步骤要做到,递推基础不可少;归纳假设要用到,结论写明莫忘掉.[过关训练]设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).证明:(1)当n =2时,左边=f (1)=1,右边=2⎝⎛⎭⎫1+12-1=1,左边=右边,等式成立.(2)假设n =k (k ≥2,k ∈N *)时,结论成立, 即f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], 所以当n =k +1时结论仍然成立.由(1)(2)可知,f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). 考点二用数学归纳法证明不等式[师生共研过关][典例精析]已知函数f (x )=x -32x 2,设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.[证明] (1)当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立. (2)假设当n =k (k ≥2,k ∈N *)时, 不等式0<a k <1k +1成立. 因为f (x )=x -32x 2的对称轴方程为x =13,所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13, 得0<f (a k )<f ⎝⎛⎭⎫1k +1.于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 由(1)(2)可知,对任何n ∈N *,不等式a n <1n +1成立. [解题技法]用数学归纳法证明不等式应注意的2个问题(1)当遇到与正整数n 有关的不等式证明时,用其他方法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.运用放缩法时,要注意放缩的“度”.[过关训练]设整数p>1,n∈N*.证明:当x>-1且x≠0时,(1+x)p>1+px.证明:(1)当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.(2)假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)·(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以当p=k+1时,原不等式也成立.综合(1)(2)可得,当x>-1,且x≠0时,对一切正整数p>1,不等式(1+x)p>1+px均成立.考点三归纳—猜想—证明[师生共研过关][典例精析]已知数列{a n}的前n项和S n满足:S n=a n2+1a n-1,且a n>0,n∈N*.(1)求a1,a2,a3,并猜想{a n}的通项公式;(2)证明通项公式的正确性.[解](1)当n=1时,由已知得a1=a12+1a1-1,即a21+2a1-2=0.∴a1=3-1(a1>0).当n=2时,由已知得a1+a2=a22+1a2-1,将a1=3-1代入并整理得a22+23a2-2=0.∴a2=5-3(a2>0).同理可得a3=7- 5.猜想a n=2n+1-2n-1(n∈N*).(2)证明:①由(1)知,当n=1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即a k=2k+1-2k-1.由于a k+1=S k+1-S k=a k+12+1a k+1-a k2-1a k,将a k=2k+1-2k-1代入上式,整理得a2k+1+22k+1 a k+1-2=0,∴a k+1=2k+3-2k+1,即n=k+1时通项公式成立.由①②可知对所有n∈N*,a n=2n+1-2n-1都成立.[解题技法]归纳—猜想—证明的应用策略(1)一般思路:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用.其关键是归纳、猜想出公式.(2)基本步骤:“试验—归纳—猜想—证明”.高中阶段该部分与数列结合的问题是最常见的问题.[过关训练]已知f(n)=1+123+133+143+…+1n3,g(n)=32-12n2,n∈N*.(1)当n=1,2,3时,试比较f(n)与g(n)的大小;(2)猜想f(n)与g(n)的大小关系,并给出证明.解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n=2时,f(2)=98,g(2)=118,所以f(2)<g(2);当n=3时,f(3)=251216,g(3)=312216,所以f(3)<g(3).(2)由(1)猜想f(n)≤g(n),下面用数学归纳法给出证明.①当n=1,2,3时,不等式显然成立,②假设当n=k(k≥3,k∈N*)时不等式成立,即1+123+133+143+…+1k3<32-12k2.那么,当n=k+1时,f(k+1)=f(k)+1(k+1)3<32-12k2+1(k+1)3.因为f(k+1)-g(k+1)<32-12k2+1(k+1)3-⎣⎡⎦⎤32-12(k+1)2=12(k+1)2-⎣⎡⎦⎤12k2-1(k+1)3=k+32(k+1)3-12k2=-3k-12(k+1)3k2<0,所以f(k+1)<g(k+1).由①②可知,对一切n∈N*,都有f(n)≤g(n)成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. n -1B. n +1-1C. n +1-2D. n +2-2高中数学高考总复习数学归纳法习题及详解一、选择题1 1. 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1,S = 3-1,S =1, nn +1+ n nn 1 2 3 由此可猜想 S n =()[答案] B1 1 1 12.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于()k 1 k 2 k 3 2k 1A. S k + +2(k 1)1 1 B. S k + + - + 2k 1 k 11 1C. S k ++ - +2k 1 2k 2 1 1 D. S k ++ + + 2k 1 2k 2[答案] C1 11 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = ++ + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1k 2 k 3 2k 2 k 1+…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 23. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下:12+1≤1+1,不等式成立.2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k <k +1,则 n =k +1 时, (k +1)2+(k +1)= k 2+3k +2< (k 2+3k +2)+k +2= (k +2)2=(k +1)+1. ∴当 n =k +1 时,不等式成立. 上述证法()A .过程全都正确B .n =1 验得不正确C .归纳假设不正确D .从 n =k 到 n =k +1 的推理不正确 [答案] D[解析] 没用归纳假设.4.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……则在表中数字2010 出现在( )A.第44 行第75 列B.第45 行第75 列C.第44 行第74 列D.第45 行第74 列[答案] D[解析] 第n 行有2n-1 个数字,前n 行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1936,452=2025,且1936<2010,2025>2010,∴2010 在第45 行.又2025-2010=15,且第45 行有2×45-1=89 个数字,∴2010 在第89-15=74 列,选D.5.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2 成立时,总可推出f(k+1)≥(k+1)2 成立”.那么,下列命题总成立的是( )A.若f(3)≥9 成立,则当k≥1 时,均有f(k)≥k2 成立B.若f(5)≥25 成立,则当k≤5 时,均有f(k)≥k2 成立C.若f(7)<49 成立,则当k≥8 时,均有f(k)>k2 成立D.若f(4)=25 成立,则当k≥4 时,均有f(k)≥k2 成立[答案] D[解析] 对于A,f(3)≥9,加上题设可推出当k≥3 时,均有f(k)≥k2 成立,故A 错误.对于B,要求逆推到比5 小的正整数,与题设不符,故B 错误.对于C,没有奠基部分,即没有f(8)≥82,故C 错误.对于D,f(4)=25≥42,由题设的递推关系,可知结论成立,故选 D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n 个图共挖去小正方形( )A.(8n-1)个B .(8n +1)个 1C. (8n -1) 个7 1D. (8n +1) 个7 [答案] C[解析] 第 1 个图挖去 1 个,第 2 个图挖去 1+8 个,第 3 个图挖去 1+8+82 个……第 n 8n -1个图挖去 1+8+82+…+8n -1=个. 77.观察下式:1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( )A .1+3+5+…+(2n -1)=n 2(n ∈N *)B .1+3+5+…+(2n +1)=n 2(n ∈N *)C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *)D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第 n 行左边有 n +1 个奇数,右边是(n +1)2,故选 D.x8.(2010·天津滨海新区五校)若 f (x )=f 1(x )= + ,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则 f (1)+1 x f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=()A .n 9B. + n 1 nC. + n 1 D .1 [答案] A1 2 3 n x [解析] 易知 f (1)= ,f (2)= ,f (3)= ,…,f (n )= + ;由 f n (x )=f n -1(f (x ))得,f 2(x )= +2 3 4 n 1 x x 1 1 1 12x 1,f 3(x )= + ,…,f n (x )= + ,从而 f 1(1)= ,f 2(1)= ,f 3(1)= ,…,f n (1)= + ,1 3x 1 nx234 n 1所以 f (n )+f n (1)=1,故 f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n .( ) ( ) ( ) ( )2 9.(2010·曲阜一中)设 f (x )是定义在 R 上恒不为零的函数,且对任意的实数 x ,y ∈R , 1 都有f (x )·f (y )=f (x +y ),若a 1= ,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是()21 A .[ ,2)2 1 B .[ ,2]2 1 C .[ ,1]2 1 D .[ ,1)2[答案] D1(1)(1)[解析] 由已知可得 a 1=f (1)=2,a 2=f (2)=f 2(1)= 2 2,a 3=f (3)=f (2)·f (1)=f 3(1)= 211 1 1 1 1 [1-(\f(1,2))2] 1 3,…,a n =f (n )=f n (1)=2 n ,∴S n= + 2+ 3+…+ n = =1-( )n , 2 2 2 2 1 21- 21∵n ∈N *,∴ ≤S n <1.210.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为 1 的正三角形,曲线 CA 1、A 1A 2,A 2A 3 是分别以 A 、B 、C 为圆心,AC 、BA 1、CA 2 为半径画的圆弧,曲线 CA 1A 2A 3 称为螺旋线旋转一圈.然后又以 A 为圆心,AA 3 为半径画圆弧……这样画到第 n 圈,则所得螺旋线的长度 l n 为()A .(3n 2+n )πB .(3n 2-n +1)π (3n 2+n )π C. 2(3n 2-n +1)π D. 2[答案] A2π[解析] 由条件知CA 1,A 1A 2,A 2A 3,…,An -1A n 对应的中心角都是 3,且半径依次为2π 2π 2π 2π1,2,3,4,…,故弧长依次为 3 , 3 ×2, 3 ×3…,据题意,第一圈长度为 3(1+2+3),第二2π 2π 2π圈长度为 3 (4+5+6),第 n 圈长度为 3 [(3n -2)+(3n -1)+3n ],故 L n = 3(1+2+3+…+3n )2π 3n (1+3n ) = 3 · 2=(3n 2+n )π. 二、填空题2 3 3 8 4 15 6+ 6 35 nn 2-1 2-11.(2010·浙江金华十校模考)已知 =2 , =3 , =4 ,…,若a 6+ t =6 at ,(a ,t 均为正实数),类比以上等式,可推测a ,t 的值,则 a +t = .[答案] 41[解析] 注意分数的分子、分母与整数的变化规律,2→分子 2,分母 3=22-1,3→分子 3,分母 8=32-1,4→分子 4,分母 15=42-1,故猜想 a =6,t =62-1=35,再验证 =6成立,∴a +t =41.[点评] 一般地,ann + = n 1 a =n ,(n ∈N *)成立. 例如,若 15+ t=15 t 成立,则 t +a =239.12.考察下列一组不等式:Error!将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为.[答案] a m +n +b m +n >a m b n +a n b m (a ,b >0,a ≠b ,m ,n >0) 13.(2010· 浙 江 杭 州 质 检 ) 观 察 下 列 等 式 : (x 2+x +1)0=1;(x 2+x +1)1=x 2+x +1; (x 2+x +1)2=x 4+2x 3+3x 2+2x +1; (x 2+x +1)3=x 6+3x 5+6x 4+7x 3+6x 2+3x +1;可以推测(x 2+x +1)4 的展开式中,系数最大的项是 .[答案] 19x 4[解析] 观察其系数变化规律: (x 2+x +1)1 为 1,1,1 (x 2+x +1)2 为 1,2,3,2,1 (x 2+x +1)3 为 1,3,6,7,6,3,1故由此可推测(x 2+x +1)4 系数中最大的为 6+7+6=19,故系数最大项是 19x 4. 14.(2010·南京调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数 为 2,第二位同学首次报出的数为 3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第 2010 个被报出的数为.[答案] 4[解析] 根据规则,五位同学第一轮报出的数依次为 2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为 8,4,2,8,6,故除第一、第二位同学第一轮报出的数为 2,3 外, 从第三位同学开始报出的数依次按 6,8,8,4,2,8 循环,则第 2010 个被报出的数为 4.2 2+3 3 3+ 8 4+4 15 635 n 3n 2-12x 2x [点评] 数字 2010 比较大,不可能一个一个列出数到第 2010 个数,故隐含了探寻其规律性(周期)的要求,因此可通过列出部分数,观察是否存在某种规律来求解.明确了这一特点解决这类问题就有了明确的解题方向和思路.三、解答题15. 已知点列 A n (x n,0),n ∈N *,其中 x 1=0,x 2=a (a >0),A 3 是线段 A 1A 2 的中点,A 4 是线段 A 2A 3 的中点,…A n 是线段 A n -2A n -1 的中点,…,(1) 写出 x n 与 x n -1、x n -2 之间的关系式(n ≥3);(2) 设 a n =x n +1-x n ,计算 a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明.x n -1+x n -2[解析] (1)当 n ≥3 时,x n = 2 .(2)a 1=x 2-x 1=a ,x 2+x 1 1 1a 2=x 3-x 2= 2 -x 2=- (x 2-x 1)=- a ,2 2 x 3+x 2 1 1a 3=x 4-x 3= 2 -x 3=- (x 3-x 2)= a ,2 4 1由此推测 a n =(- )n -1a (n ∈N *).2 证法 1:因为 a 1=a >0,且x n +x n -1x n -1-x n 1 1 a n =x n +1-x n = 2 -x n = 2 =- (x n -x n -1)=- a n -1(n ≥2),2 2 1所以 a n =(- )n -1a .2证法 2:用数学归纳法证明:1(1)当 n =1 时,a 1=x 2-x 1=a =(- )0a ,公式成立.21(2)假设当 n =k 时,公式成立,即 a k =(- )k -1a 成立.那么当 n =k +1 时,2x k +1+x k 11 1 1 1 a k +1=x k +2-x k +1= -x k +1=- (x k +1-x k )=- a k =- (- )k -1a =(- )(k +1)-2 2 2 2 2 211a ,公式仍成立,根据(1)和(2)可知,对任意 n ∈N *,公式 a n=(- )n -1a 成立. 2 S n a n16. 设数列{a n }的前 n 项和为 S n ,对一切 n ∈N *,点(n , n )都在函数 f (x )=x + 的图象上. (1) 求 a 1,a 2,a 3 的值,猜想 a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按 1 项、2 项、3 项、4 项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9, a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求 b 5+b 100 的值.S n a n[分析] (1)将点(n , n)的坐标代入函数 f (x )=x + 中,通过整理得到 S n 与 a n 的关系,2x 则 a 1,a 2,a 3 可求;(2) 通过观察发现 b 100 是第 25 组中第 4 个括号内各数之和,各组第 4 个括号中各数之和构成首项为 68、公差为 80 的等差数列,利用等差数列求和公式可求 b 100.S n a n[解析] (1)∵点(n , n)在函数 f (x )=x + 的图象上, S n a n 1 ∴ n =n + ,∴S n =n 2+ a n . 2n 2 1令 n =1 得,a 1=1+ a 1,∴a 1=2;21令 n =2 得,a 1+a 2=4+ a 2,∴a 2=4;21令 n =3 得,a 1+a 2+a 3=9+ a 3,∴a 3=6.2 由此猜想:a n =2n . 用数学归纳法证明如下:①当 n =1 时,由上面的求解知,猜想成立. ②假设 n =k (k ≥1)时猜想成立,即 a k =2k 成立,1则当 n =k +1 时,注意到 S n =n 2+ a n (n ∈N *),21 1故 S k +1=(k +1)2+ a k +1,S k =k 2+ a k .2 21 1两式相减得,a k +1=2k +1+ a k +1- a k ,所以 a k +1=4k +2-a k .2 2 由归纳假设得,a k =2k ,故 a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明 n =k +1 时,猜想也成立. 由①②知,对一切 n ∈N *,a n =2n 成立.(2)因为 a n =2n (n ∈N *),所以数列{a n }依次按 1 项、2 项、3 项、4 项循环地分为(2),(4,6), (8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记 为一组.由于每一个循环含有 4 个括号,故 b 100 是第 25 组中第 4 个括号内各数之和.由分组规律知,各组第 4 个括号中所有第 1 个数组成的数列是等差数列,且公差为 20.同理,由各组第 4 个括号中所有第 2 个数、所有第 3 个数、所有第 4 个数分别组成的数列也都是等差数列,且公差均为 20.故各组第 4 个括号中各数之和构成等差数列,且公差为 80.注意到第一组中第 4 个括号内各数之和是 68,所以 b 100=68+24×80=1988, 又 b 5=22,所以 b 5+b 100=2010.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归n -n 3+1 =3 纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找 a k 与 a k +1 或 S k 与 S k +1 间的关系,使命题得证.17.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x - 1)n (n ≥2,n ∈N *).(1)当 n =5 时,求 a 0+a 1+a 2+a 3+a 4+a 5 的值. a 2(2)设 b n = - , T n = b 2+ b 3+ b 4+…+ b n .试用数学归纳法证明: 当 n ≥2 时, T n =2n 3n (n +1)(n -1)3.[解析] (1)当 n =5 时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令 x =2 得 a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以 a 2=C 2·2n -2 a 2b n = =2C 2=n (n -1)(n ≥2) 2n 3①当 n =2 时.左边=T 2=b 2=2,2(2+1)(2-1) 右边= =2,左边=右边,等式成立.3 ②假设当 n =k (k ≥2,k ∈N *)时,等式成立, k (k +1)(k -1)即 T k = 3成立那么,当 n =k +1 时,k (k +1)(k -1)k (k +1)(k -1) 左边=T k +b k +1= 3 +(k +1)[(k +1)-1]= 3+k (k +1)(k -1 )k (k +1)(k +2)(k +1)[(k +1)+1][(k +1)-1] = =右边.3 故当 n =k +1 时,等式成立.n (n +1)(n -1)综上①②,当 n ≥2 时,T n = 3.=k (k +1)。

相关文档
最新文档