高中数学必修一函数的概念(能力提升题)

合集下载

高一数学必修一函数练习题

高一数学必修一函数练习题

高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。

下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。

练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。

2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。

练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。

2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。

练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。

2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。

练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。

2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。

练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。

2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。

练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。

2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。

练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。

高中数学必修一集合与函数概念知识点总结及练习题

高中数学必修一集合与函数概念知识点总结及练习题

高中数学必修一集合与函数概念知识点总结1.元素与集合(1)元素与集合的定义:一般地,把统称为元素,把一些元素组成的叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是.②互异性:即给定集合的元素是.③无序性.(3)集合相等:只要构成两个集合的元素是,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作,a不是集合A的元素,记作2.集合的表示方法除了用自然语言表示集合外,还可以用和表示集合.(1)列举法:把集合中的元素,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的表示集合的方法.3.常用数集及其记法集合自然数集正整数集整数集有理数集实数集记法4.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集5.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集6.空集(1)定义:的集合叫做空集.(2)用符号表示为:(3)规定:空集是任何集合的. 是任何非空集合的7.子集的有关性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么8.集合的并集与交集的定义并集交集自然语言由所有属于集合A或属于集合B的元素组成的集合由属于集合A且属于集合B的所有元素组成的集合符号语言图形语言9.并集与交集的运算性质并集的运算性质交集的运算性质A∪B B∪A A∩B B∩AA∪A=A∩A=A∪∅=A∩∅=A⊆B⇔A∪B=A⊆B⇔A∩B=A∪B⊇A,A∪B B A∩B⊆B,A∩B A10.全集(1)定义:如果一个集合含有我们所研究问题中涉及的,那么称这个集合为全集.(2)符号表示:通常记作第1 页共4 页。

2021_2022学年新教材高中数学习题课函数的概念与性质课件新人教A版必修第一册

2021_2022学年新教材高中数学习题课函数的概念与性质课件新人教A版必修第一册
(2)根据表中数据确定日交易量 Q(万股)与时间 t(天)的一次函数 关系式;
(3)用 y 表示该股票日交易额(万元),写出 y 关于 t 的函数关系式, 并求在这 30 天中第几天日交易额最大,最大值是多少.
[解]
(1)P=15-t+1102t, +08< ,t2≤0<20t, ≤30
(t∈N *).
习题课提升关键能力 函数的概念与性质
高频考点一|求函数的定义域
[例 1] (1)函数 y= 2x+1+ 3-4x的定义域为( )
A.-12,34
B.-12,34
C[解.-析∞] ,由12 32-x+4x1≥≥00D,,.-解12,得0-∪12(≤0,x≤+∞34,) 所以函数 y=
2x+1+ 3-4x的定义域为-12,34.
(3)求函数 f(x)在区间[2,5]上的最大值和最小值.
解:∵f(x)在(1,+∞)上单调递增, ∴f(x)在[2,5]上的最大值和最小值为 f(x)min=f(2)= 2+12=52,f(x)max=f(5)=5+15=256.
高频考点三|函数的图象及应用
[例 3] 在平面直角坐标系 xOy 中,若直线 y=2a 与函数 y=|x-a|-1 的图象只有一个交 点,则 a 的值为________.
高频考点四|函数模型的建立
[例 4] 某上市股票在 30 天内每股的交易价格 P(元)与时间 t(天) 组成有序数对(t,P),点(t,P)落在图中的两条线段上;该股票在 30
天内的日交易量 Q(万股)与时间 t(天)的部分数据如表所示:
第t天 4
10 16
22
Q/万股 36
30 24
Hale Waihona Puke 18(1)根据提供的图象,写出该种股票每股交易价格 P(元)与时间 t(天)所满足的函数关系式;

2022秋新教材高中数学第三章函数的概念与性质3-3幂函数课后提能训练新人教A版必修第一册

2022秋新教材高中数学第三章函数的概念与性质3-3幂函数课后提能训练新人教A版必修第一册

第三章 3.3A级——基础过关练1.下列函数:①y=x3;②y=4x2;③y=x5+1;④y=(x-1)2;⑤y=x.其中幂函数的个数为( )A.1 B.2 C.3 D.4【答案】B 【解析】②中系数不是1,③中解析式为多项式,④中底数不是自变量本身,所以只有①⑤是幂函数.故选B.2.如图所示,曲线C1与C2分别是函数y=x m和y=x n在第一象限内的图象,则下列结论正确的是( )A.n<m<0B.m<n<0C.n>m>0D.m>n>0【答案】A 【解析】由图象可知两函数在第一象限内递减,故m<0,n<0.由曲线C1,C2的图象可知n<m.3.(2020年郑州月考)已知幂函数f(x)=2kx m的图象过点(,4),则k+m=( )A.4 B. C.5 D.【答案】B 【解析】因为幂函数f(x)=2kx m,所以2k=1,解得k=.又因为图象过点(,4),所以( )m=4,m=4,则k+m=.故选B.4.函数y=x-的图象大致是( )A BC D【答案】D 【解析】由幂函数的性质知函数y=x-在第一象限为减函数,且它的定义域为{x|x>0}.5.(2021年沈阳期末)已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是( )A.(0,1)B.(-∞,1)C.(0,+∞)D.(-∞,0)【答案】B 【解析】当x>1时,恒有f(x)<x,即当x>1时,函数f(x)=xα的图象在y =x的图象的下方,作出幂函数f(x)=xα在第一象限的图象.由图象可知α<1时满足题意.故选B.6.(2020年朔州高一期中)已知幂函数y=f(x)的图象过点,则f(3)=________.【答案】 【解析】设幂函数为f(x)=xα,因为过,所以f=,所以=⇒2-=⇒α=,所以f(3)=3=.7.已知幂函数f(x)=xα图象经过点P(2,),则α=________,函数y=f(x2)-2f(x)的最小值等于________.【答案】 -1 【解析】幂函数f(x)=xα图象经过点P(2,),则2α=,解得α=.所以f(x)=x,所以函数y=f(x2)-2f(x)=(x2)-2x=x-2=(-1)2-1.当x=1时,函数y的最小值为-1.8.(2020年武汉高一期中)已知幂函数f(x)=(2m-1)x-2n2+n+3(n∈Z)为偶函数,且满足f(3)<f(5),则m+n=________.【答案】2 【解析】因为幂函数f(x)=(2m-1)x-2n2+n+3(n∈Z)为偶函数,所以解得m =1,且n=1,3,5,….因为满足f(3)<f(5),即 3-2n2+n+3<5-2n2+n+3,故-2n2+n+3为正偶数,所以n=1.则m+n=1+1=2.9.比较下列各组数的大小.(1)3-和3.2-;(2)4.1和3.8-.解:(1)函数y=x-在(0,+∞)上为减函数.又3<3.2,所以3->3.2-.(2)4.1>1=1,0<3.8-<1-=1,所以4.1>3.8-.B级——能力提升练10.(2020年武汉高一期中)若幂函数f(x)=(m2+m-5)x m2-2m-3的图象不经过原点,则m的值为( )A.2B.-3C.3D.-3或2【答案】A 【解析】由幂函数定义得m2+m-5=1,解得m=-3或m=2.当m=-3时,m2-2m-3=12,f(x)=x12,过原点,不符合题意,故m=-3舍去;当m=2时,m2-2m-3=-3,f(x)=x-3,显然不过原点,符合条件.故选A.11.已知幂函数f(x)=xα的图象过点,则函数g(x)=(x-2)f(x)在区间上的最小值是( )A.-1B.-2C.-3D.-4【答案】C 【解析】由已知得2α=,解得α=-1,所以g(x)==1-在区间上单调递增,则g(x)min=g=-3.故选C.12.(多选)(2021年德州期末)已知实数a,b满足等式a=b,则下列式子可能成立的是( )A.0<b<a<1B.-1<a<b<0C.1<a<b D.a=b【答案】ACD 【解析】首先画出y1=x与y2=x的图象(如图),已知a=b=m,作直线y=m.若m=0或m=1,则a=b;若0<m<1,则0<b<a<1;若m>1,则1<a<b.从图象知,可能成立的是ACD.13.已知2.4α>2.5α,则α的取值范围是________.【答案】(-∞,0) 【解析】因为0<2.4<2.5,而2.4α>2.5α,所以y=xα在(0,+∞)上为减函数,故α<0.14.(2021年南昌模拟)已知幂函数f(x)=xα的部分对应值如下表:x1f(x)1则不等式f(|x|)≤3的解集是________.【答案】{x|-9≤x≤9} 【解析】由表中数据知=,∴α=,∴f(x)=x,∴|x|≤3,即|x|≤9,故-9≤x≤9.15.已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.解:(1)由m2-5m+7=1,得m=2或m=3.当m=2时,f(x)=x-3是奇函数,所以不满足题意,所以m=2舍去;当m=3时,f(x)=x-4,满足题意,所以f(x)=x-4,所以f==16.(2)由f(x)=x-4为偶函数且f(2a+1)=f(a),得|2a+1|=|a|,即2a+1=a或2a+1=-a,解得a=-1或a=-.C级——探究创新练16.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a+1)-<(3-2a)-时a的取值范围.解:因为函数在(0,+∞)上递减,所以3m-9<0,解得m<3.因为m∈N*,所以m=1,2.又函数图象关于y轴对称,所以3m-9为偶数,故m=1.所以(a+1)-<(3-2a)-.又因为y=x-在(-∞,0),(0,+∞)上均递减,所以a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a,解得<a<或a<-1.故a的取值范围是.。

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第一册:第三章 函数的概念与性质 综合测试(附答案与解析)

第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________. 三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围; (3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。

2020届高考数学一轮第二篇函数及其性质专题.函数的概念练习

2020届高考数学一轮第二篇函数及其性质专题.函数的概念练习

专题2.1 函数的概念【考试要求】1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.【知识梳理】1.函数的概念设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【微点提醒】1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.( )(2)对于函数f:A→B,其值域是集合B.( )(3)f (x )=x -3+2-x 是一个函数.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( ) 【答案】 (1)× (2)× (3)× (4)× 【解析】(1)错误.函数y =1的定义域为R ,而y =x 0的定义域为{x|x≠0},其定义域不同,故不是同一函数. (2)错误.值域C ⊆B ,不一定有C =B. (3)错误.f(x)=x -3+2-x 中x 不存在.(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数. 【教材衍化】2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】 B【解析】 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( )A.y =(x +1)2B.y =3x 3+1 C.y =x 2x+1D.y =x 2+1【答案】 B【解析】 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C.函数y =x 2x+1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.【真题体验】4.(2019·北京海淀区期中)已知f (x 5)=lg x ,则f (2)=( ) A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 3 【答案】 A【解析】 令x 5=2,则x =215,∴f (2)=lg 215=15lg 2.5.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x+ln(x +4)的定义域为________. 【答案】 (-4,1]【解析】 f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.6.(2019·济南检测)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【答案】 -2【解析】 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 【考点聚焦】考点一 求函数的定义域【例1】 (1)函数y =1-x 2+log 2(tan x -1)的定义域为________; (2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________. 【答案】 (1)⎝ ⎛⎦⎥⎤π4,1 (2)[0,1) 【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π2(k∈Z ).∴-1≤x ≤1且π4+k π<x <k π+π2,k ∈Z ,可得π4<x ≤1.则函数的定义域为⎝ ⎛⎦⎥⎤π4,1. (2)因为y =f (x )的定义域为[0,2],所以要使g (x )有意义应满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域是[0,1).【规律方法】 1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 【训练1】 (1)(2019·深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)(2019·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞)D.[-9,1)【答案】 (1)C (2)B【解析】 (1)要使函数有意义,则⎩⎪⎨⎪⎧-x 2-x +2≥0,ln x ≠0,解得⎩⎪⎨⎪⎧-2≤x ≤1,x >0且x ≠1.∴函数的定义域是(0,1).(2)易知f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0,解得-9<x <1.故f [f (x )]的定义域为(-9,1). 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________;(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.【答案】 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13【解析】 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,将x 换成1x ,则1x换成x ,得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,解得f (x )=23x +13.【规律方法】 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)(2019·杭州检测)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________; (2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 【答案】 (1)3 (2)3x【解析】 (1)易知f [f (x )]=a (ax -b )-b =a 2x -ab -b , ∴a 2x -ab -b =4x -3(a >0),因此⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =2,b =1. 所以f (x )=2x -1,则f (2)=3. (2)因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x . 考点三 分段函数 角度1 分段函数求值【例3-1】 (2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上, f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________.【答案】22【解析】 因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (15)=f (-1)=12,因此f [f (15)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 角度2 分段函数与方程、不等式问题【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫-14,+∞【解析】 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b , 若52-b <1,即b >32时, 则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4, 解得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b=4,解得b =12. (2)当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=(x +1)+⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x+x +12>1,该式恒成立,当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12,又x >12时,2x+2x -12>212+20=1+2>1恒成立, 综上可知,不等式的解集为⎝ ⎛⎭⎪⎫-14,+∞.【规律方法】 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 【提醒】 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)由题意知f (1)=12+2=3, 因此f [f (1)]=f (3)=3+13-2=4.(2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.【反思与感悟】1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法. 【易错防范】1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.函数f (x )=2x-1+1x -2的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)【答案】 C【解析】 由题意知⎩⎪⎨⎪⎧2x-1≥0,x -2≠0,得⎩⎪⎨⎪⎧x ≥0,x ≠2,所以函数的定义域为[0,2)∪(2,+∞). 2.(2019·郑州调研)如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【答案】 D【解析】 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 3.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x【答案】 D 【解析】 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ;D 中y =1x 的定义域、值域均为(0,+∞).4.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12【答案】 C【解析】 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1, ∴f (log 212)=2(log 212)-1=2log 26=6,因此f (-2)+f (log 212)=3+6=9.5.(2019·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( ) A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【答案】 C【解析】 f (x )=-x 2+4x =-(x -2)2+4. 当x =2时,f (2)=4.由f (x )=-x 2+4x =-5,得x =5或x =-1.∴要使f (x )在[m ,5]上的值域是[-5,4],则-1≤m ≤2.6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510【答案】 B【解析】 代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y =⎣⎢⎡⎦⎥⎤x +310.7.(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A.2B.4C.6D.8【答案】 C【解析】 由已知得0<a <1,则f (a )=a ,f (a +1)=2a , 所以a =2a ,解得a =14或a =0(舍去),所以f ⎝ ⎛⎭⎪⎫1a=f (4)=2(4-1)=6. 8.(2019·上饶质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)【答案】 D【解析】 当a =0时,显然不成立.当a >0时,不等式a [f (a )-f (-a )]>0等价于a 2-2a >0,解得a >2. 当a <0时,不等式a [f (a )-f (-a )]>0等价于a 2+2a >0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞). 二、填空题9.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.【答案】 (0,1]【解析】 要使函数f (x )有意义, 则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].10.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫1x+1xf (-x )=2x (x ≠0),则f (-2)=________.【答案】 72【解析】 令x =2,可得f ⎝ ⎛⎭⎪⎫12+12f (-2)=4,①令x =-12,可得f (-2)-2f ⎝ ⎛⎭⎪⎫12=-1② 联立①②解得f (-2)=72.11.下列四个结论中,正确的命题序号是________.①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=0.【答案】 ②③【解析】 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域和对应关系均分别对应相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (0)=1.12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 【解析】 由题意知,若x ≤0,则2x =12,解得x =-1; 若x >0,则|log 2x |=12,解得x =212或x =2-12. 故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 【能力提升题组】(建议用时:15分钟)13.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数: ①y =x -1x ;②y =ln 1-x 1+x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1. 其中满足“倒负”变换的函数是( )A.①②B.①③C.②③D.①【答案】 B【解析】 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f (x )=ln 1-x 1+x ,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 则f ⎝ ⎛⎭⎪⎫1x =-f (x ). 所以满足“倒负”变换的函数是①③.14.(2019·河南八市联考)设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x ,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( ) A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2) 【答案】 C【解析】 当a ≥1时,2a ≥2.∴f [f (a )]=f (2a )=22a =2f (a )恒成立.当a <1时,f [f (a )]=f (-a +λ)=2f (a )=2λ-a ∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).15.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 【答案】 f (x )=-log 2 x【解析】 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x . 16.(2019·绍兴调研)设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (1))=________;不等式f (x )>2的解集为________.【答案】 1 (1,2)∪(10,+∞)【解析】 f (1)=2e 0=2,f (f (1))=f (2)=log 3(4-1)=1.当x <2时,f (x )>2即ex -1>1=e 0,∴x >1,∴1<x <2.当x ≥2时,f (x )>2即为log 3(x 2-1)>2=log 332,∴x 2>10,即x >10或x <-10,∴x >10.【新高考创新预测】17.(多选题)已知定义域内的函数f (x )满足:f (f (x ))-x >0恒成立,则f (x )的解析式不可能是( )A.f (x )=2 019xB.f (x )=e xC.f (x )=x 2D.f (x )=lg 1+x 2 【答案】 ACD【解析】A 中,f (f (x ))=f ⎝ ⎛⎭⎪⎫2 109x =x (x ≠0)恒成立, 所以f (f (x ))-x >0不恒成立,A 正确;B 中,因为e x >x ,所以ee x >e x >x ,所以f (f (x ))=ee x>x 恒成立,B 错误;C 中,f (f (x ))=x 4=x ,此方程有x =0或x =1两个根,所以f (f (x ))-x >0不恒成立,C 正确;D 中,x =0时,f (f (x ))=x 成立,所以f (f (x ))-x >0不恒成立,D 正确.。

2022_2023学年新教材高中数学课时作业十六函数概念北师大版必修第一册

2022_2023学年新教材高中数学课时作业十六函数概念北师大版必修第一册

课时作业(十六) 函数概念[练基础]1.已知函数f (x )=-1,则f (2)的值为( )A .-2B .-1C .0D .不确定2.下列四组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=|x |,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1 D .f (x )=x +1·x -1,g (x )=x 2-13.函数y =21-1-x的定义域为( ) A .(-∞,1]B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)4.函数f (x )=x 2-4的值域为( )A .(0,+∞) B.[0,+∞)C .(2,+∞) D.[2,+∞)5.函数y =x -2+(x -3)0的定义域为________.6.已知函数f (x )=-x 2-3x +4,x ∈[-3,1],则该函数的值域为________. [提能力]7.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个8.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.9.已知f (x )=1-x 1+x(x ∈R ,且x ≠-1),g (x )=x 2-1. (1)求f (2),g (3)的值;(2)求f (g (3))的值.[战疑难]10.若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2x -1x -1的定义域是( ) A.⎝ ⎛⎦⎥⎤1,32 B.⎣⎢⎡⎦⎥⎤1,32 C .(1,3) D .[1,3]课时作业(十六) 函数概念1.解析:因为函数f(x)=-1,所以不论x 取何值其函数值都等于-1,故f(2)=-1.故选B.答案:B2.解析:对于A :f(x)=|x|,g(x)=x2=|x|,两个函数的定义域和对应关系都相同,表示同一函数;对于B :f(x)的定义域为R ,g(x)的定义域为[0,+∞),两个函数的定义域不同,不是同一函数;对于C :f(x)=x +1(x ≠1)的定义域为{x|x ≠1},g(x)=x +1的定义域为R ,两个函数的定义域不同,不是同一函数;对于D :f(x)的定义域为{x|x ≥1},g(x)的定义域为{x|x ≤-1或x ≥1},两个函数的定义域不同,不是同一函数.故选A. 答案:A3.解析:要使函数有意义,则⎩⎨⎧ 1-x ≥01-1-x ≠0⇒x ≤1且x ≠0.故选B.答案:B 4.解析:由x2-4≥0可知 x2-4≥0,则函数f(x)的值域为[0,+∞).答案:B5.解析:要使函数有意义,则⎩⎪⎨⎪⎧ x -2≥0x -3≠0,解得x ≥2且x ≠3,所以函数的定义域为[2,3)∪(3,+∞).答案:[2,3)∪(3,+∞)6.解析:f(x)=-x2-3x +4=-⎝ ⎛⎭⎪⎫x +322+254,x ∈[-3,1],f(x)min =f(1)=0,f(x)max =f ⎝ ⎛⎭⎪⎫-32=254,所以该函数的值域为⎣⎢⎡⎦⎥⎤0,254. 答案:⎣⎢⎡⎦⎥⎤0,254 7.解析:由2x2-1=1,得x1=1,x2=-1;由2x2-1=7,得x3=-2,x4=2.所以定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个.因此共有9个“孪生函数”.答案:B8.解析:f(x)的定义域为R ,则mx2+4mx +3≠0,对任意的x ∈R 恒成立.①当m =0时,3≠0,满足题意;②当m ≠0时,只需Δ=16m2-12m<0即可,∴0<m<34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. 答案:⎣⎢⎡⎭⎪⎫0,34 9.解析:(1)f(2)=1-21+2=-13,g(3)=32-1=8. (2)f(g(3))=f(8)=1-81+8=-79. 10.解析:因为y =f(x)的定义域是[0,2],可得g(x)中的f(2x -1),0≤2x -1≤2,解得12≤x ≤32.再由x -1>0,得x>1.综上,得1<x ≤32.故选A. 答案:A。

高中数学必修一函数大题(含详细解答)

高中数学必修一函数大题(含详细解答)

高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。

试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。

已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。

(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。

3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。

(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册

2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册

3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。

最新湘教版高中数学必修一课后习题--3

最新湘教版高中数学必修一课后习题--3

第3章函数的概念与性质3.1 函数3.1.1 对函数概念的再认识课后篇巩固提升必备知识基础练1.函数f (x )=√x+1x -1的定义域是( ) A .[-1,1)B.[-1,1)∪(1,+∞)C.[-1,+∞)D.(1,+∞){x +1≥0,x -1≠0,解得x ≥-1,且x ≠1. 2.(2020山东潍坊期中)下列各图一定不是函数图象的是( ),一个x 的值只能对应一个y 的值,而选项A 中一个x 的值可能对应两个y 的值,故不是函数图象.故选A .3.在下列关于x ,y 的关系式中,y 可以表示为x 的函数关系式的是( )A.x 2+y 2=1B.|x|+|y|=1C.x 3+y 2=1D.x 2+y 3=1,函数关系中任意一个x 都有唯一的y 对应,选项A,B,C 中关于x ,y 的关系式中,存在x 有两个y 与之对应,不能构成函数关系,选项D 中的任意一个x 都有唯一的y 对应,能构成函数关系.故选D .4.(2021广州广雅中学高一期末)下列四组函数中,表示同一个函数的一组是( )A.y=|x|,u=√v 2B.y=√x 2,s=(√t )2C.y=x 2-1x -1,m=n+1D.y=√x +1·√x -1,y=√x 2-1A,y=|x|和u=√v 2=|v|的定义域都是R ,对应关系也相同,因此是同一个函数;对于B,y=√x 2的定义域为R ,s=(√t )2的定义域为{t|t ≥0},两函数定义域不同,因此不是同一个函数;对于C,y=x 2-1x -1的定义域为{x|x ≠1},m=n+1的定义域为R ,两函数定义域不同,因此不是同一个函数;对于D,y=√x +1·√x -1的定义域为{x|x ≥1},y=√x 2-1的定义域为{x|x ≤-1,或x ≥1},定义域不同,不是同一个函数.故选A .5.(2020浙江苍南校级月考)函数f (x )=3x+1+√2-x 的定义域为 .-∞,-1)∪(-1,2]f (x )有意义,则{2-x ≥0,x +1≠0,解得x ≤2且x ≠-1, 故f (x )的定义域为(-∞,-1)∪(-1,2].6.若函数f (x )=ax 2-1,a 为正实数,且f (f (-1))=-1,则a 的值是 .f (-1)=a ·(-1)2-1=a-1,f (f (-1))=a ·(a-1)2-1=a 3-2a 2+a-1=-1,∴a 3-2a 2+a=0,∴a=1或a=0(舍去).故a=1.7.已知函数f (x )=1+x 21-x 2. (1)求f (x )的定义域;(2)若f (a )=2,求a 的值;(3)求证:f (1x)=-f (x ).f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x|x ≠±1}.f (x )=1+x 21-x 2,且f (a )=2, 所以f (a )=1+a 21-a 2=2,即a 2=13, 解得a=±√33.f (1x )=1+(1x )21-(1x )2=x 2+1x 2-1, -f (x )=-1+x 21-x 2=x 2+1x 2-1, 所以f (1x )=-f (x ).关键能力提升练8.(2020浙江温州四校高一期中)设f(x)=1+2x-1,x≠±1,则f(-x)等于()A.f(x)B.-f(x)C.-1f(x)D.1f(x)(x)=1+2x-1=x+1x-1,则f(-x)=-x+1-x-1=x-1x+1=1f(x),故选D.9.(2021湖南长沙天心校级期末)下列函数与函数y=x2相等的是()A.u=v2B.y=x·|x|C.y=x 3xD.y=(√x)4A,y=x2的定义域为R,u=v2的定义域为R,定义域和对应关系都相同,y=x2与u=v2相等; 对于B,y=x2与y=x·|x|的对应关系不同,不是同一个函数;对于C,y=x 3x的定义域为{x|x≠0},定义域不同,不是同一个函数;对于D,y=(√x)4的定义域为{x|x≥0},定义域不同,不是同一个函数.故选A.10.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”共有()A.5个B.4个C.3个D.2个y=2x2+1,值域为{1,5}的孪生函数,分别为①y=2x2+1,x∈{0,√2};②y=2x2+1,x∈{0,-√2};③y=2x2+1,x∈{0,√2,-√2},共3个,故选C.11.(多选题)(2021浙江东阳高一期中)下列函数值域为[0,4]的是()A.f(x)=x-1,x∈[1,5]B.f(x)=-x2+4C.f(x)=√16-x2D.f(x)=x+1x-2(x>0)x∈[1,5]时,x-1∈[0,4],所以函数f(x)=x-1,x∈[1,5]的值域是[0,4],故A正确;因为-x2≤0,所以-x2+4≤4,所以函数值域是(-∞,4],故B错误;因为-x2≤0,所以16-x2≤16,又16-x2≥0,所以0≤√16-x 2≤4,即函数值域为[0,4],故C 正确;因为x>0,所以x+1x ≥2,所以x+1x -2≥0,当且仅当x=1时等号成立,故函数值域为[0,+∞),故D 错误.故选AC .12.(1)函数y=2x+1,x ∈(-1,1]的值域是 .(2)函数y=x 2+x+2,x ∈R 的值域是 .-1,3] (2)[74,+∞)∵-1<x ≤1, ∴-2<2x ≤2.∴-1<2x+1≤3. ∴函数的值域为(-1,3].(2)∵x 2+x+2=x+122+74≥74,∴函数的值域为74,+∞. 13.若关于x 的函数y=√kx 2-6kx +8的定义域是R ,则k 的取值范围是 .,89]函数y=√kx 2-6kx +8的定义域是R , ∴kx 2-6kx+8≥0对于x ∈R 恒成立.①当k=0时,8≥0成立;②当k>0时,Δ=(-6k )2-4×k×8≤0,解得0<k ≤89.综上,k 的取值范围为[0,89].14.已知函数f (x )=4-2x 的值域为[-2,10],则函数的定义域为 .-3,3][-2,10]可知,-2≤4-2x ≤10,解得-3≤x ≤3,因此函数的定义域为[-3,3].15.已知函数f (x )=x 2x 2+1.(1)求f (1),f (2)+f (12)的值;(2)证明:f (x )+f (1x)等于定值.(1)=1212+1=12;f (2)=2222+1=45,f (12)=(12)2(12)2+1=15, 所以f (2)+f (12)=45+15=1.(1x )=(1x)2(1x )2+1=1x 2+1,所以f (x )+f (1x )=x 2x 2+1+1x 2+1=1,为定值. 学科素养创新练16.已知函数f (x )=x 2-2x ,x ∈[0,b ],且该函数的值域为[-1,3],则b 的值为 .f (x )=x 2-2x (x ≥0)的图象如图所示.由图象结合值域[-1,3]可知,区间右端点b 必为函数最大值3的对应点的横坐标.所以f (b )=3,即b 2-2b=3,解得b=-1或b=3.又-1∉[0,b ],所以b=3.。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

高中数学 1.2.1函数的概念同步测试 新人教A版必修1-新人教A版高一必修1数学试题

高中数学 1.2.1函数的概念同步测试 新人教A版必修1-新人教A版高一必修1数学试题

第一章1.21.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2xC .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}. (2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0 [答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考某某卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x[答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·某某高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值X 围是________.[答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的X 围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的X 围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33. (3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).。

高中数学必修一2.1函数的概念练习题

高中数学必修一2.1函数的概念练习题

2.1函数的概念1.下列对应关系中是从M 到N 的函数的个数为( )A. {}x y x f x x N R M =→>==:,0|,B. 2:,,x y x f Z N Z M =→==C. x y x f R N Z M =→==:,,D. {}0:,0],1,1[=→=-=y x f N M2.变量x 与变量y,w,z 的对应关系如下表所示:则下列说法正确的是( )A. y 是x 的函数B. w 不是x 的函数B. z 是x 的函数 D. z 不是x 的函数3.下列四个图中,不是以x 为自变量的函数的图象是( )4.下列各组函数表示相同函数的是( )A. 3392+=--=x y x x y 与 B. 112-=-=x y x y 与C. )0(1)0(0≠=≠=x y x x y 与D. )(12)(12Z x x y Z x x y ∈-=∈+=与5. 下列函数中与函数32x y -=为同一函数的是( ) A.x x y 2-= B. x x y 2--= C. 32x y -= D. xx y 22-= 6. (1).函数142--=x x y 的定义域为( ) A.[-2,2] B. [-2,2) C.[-2,1)U(1,2] D.(-2,1)U(1,2)(2).函数x x x y +-=)1(的定义域为( )A. {x|x ≥0}B. {x|x ≥1}C.{x|x ≥0}U{0}D.{x|0≤x ≤1}(3).函数x x x y +-=0)1(的定义域为( )A. (0,+∞)B.(-∞,0)C.(0,1) U(1,+∞)D.(-∞,-1)U(-1,0)U(0,+∞)(4)函数322--=x x y 的定义域为M ,函数31)(-+=x x x f 的定义域为N ,则( )A. N M =B.N M ⊆C. Φ=N C M RD.{}3=N C M R7.(1).已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( )A.(-1,1)B. )21,1(-- C. (-1,0) D. )1,21( (2).若函数y=f(x)的定义域是[0,2],则函数1)2()(-=x x f x g 的定义域是( ) A. [0,1] B. [0,1) C. [0,1)∪(1,4] D. (0,1)(3).已知函数y=f(x+1)的定义域是[1,2],则函数y=f(x-3)的定义域是( )A. [5,6]B. [-1,0]C. [-3,-2]D. [-2,-1]8.(1).若函数31)(23++-=mx mx x x f 的定义域为R ,则m 的取值范围是____________.(2).若函数132)(++-=x x x f 的定义域为A ,函数)2)(1(1)(x a a x x g ---=(a<1)的定义域为B.若A B ⊆,则a 的取值范围是____________.9.(1).设11)(22+-=x x x f ,则=)21()2(f f _______. (2).设1)(,11)(2-=+=x x g xx f ,则.________)]2([_______,)2(==g f f (3).若,2)]2([f 2)(2-=-=f ax x f 且则a=______.(4).已知2)(,2)(ax x g xx f ==且f(2)=g(2).若f(x)<g(x),则x 的取值范围为________.(5).设函数2312211)(,)(,)(x x f x x f x x f ===-,则._________)))2007(((321=f f f。

最新人教A版高中数学必修一培优课时作业(十六)函数的概念(一)

最新人教A版高中数学必修一培优课时作业(十六)函数的概念(一)

课时作业(十六) 函数的概念(一)[练基础]1.下列函数中定义域为R 的是( ) A .y =x B .y =(x -1)0C .y =x 2+3D .y =1x2.若函数f (x )=x -4|x |-5的定义域为集合A ,则A =( )A.[)4,+∞B.()5,+∞C.[)4,5D.[)4,5∪()5,+∞3.设函数f (x )=3x 2-1,则f (a )-f (-a )的值是( ) A .0 B .3a 2-1 C .6a 2-2 D .6a 24.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12等于( )A .1B .-1 C.35 D .-355.设函数f (x )=x -6x +2,则当f (x )=2时,则x 的取值为( )A .-4B .4C .-10D .106.(多选)已知集合A ={}x |0≤x ≤8,集合B ={}y |0≤y ≤4,则下列对应关系中,可看作是从A 到B 的函数关系的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12x D .f :x →y =x7.若f (x )=2xx 2+2,则f (1)=________.8.函数f (x )=x +1+12-x的定义域为________.9.求下列函数的定义域:(1)f (x )=3x -1+1-2x +4;(2)f (x )=(x +3)0|x |-x.10.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝⎛⎭⎫1x ,f (a +1); (2)若f (x )=5,求x .[提能力]11.(多选)给出下列四个对应,其中构成函数的是( )12.函数y =4-x 2x 2-2x -3定义域是( )A.[)-2,-1B.[]-2,-1∪[]2,3C.[)-2,-1∪[)2,3D.[]-2,-1 13.设函数f (n )=k (其中n ∈N *)k 是π的小数点后的第n 位数字,π=3.141 592 653 5…,则f ()f (f (10))=________.14.若函数f (x )=3x -1mx 2+x +3的定义域为R ,则m 的取值范围为________.15.已知函数f (x )=2x +a ,g (x )=14(x 2+3),若g []f (x )=x 2+x +1,求a 的值.[培优生]16.已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12,f (3)与f ⎝⎛⎭⎫13; (2)由(1)中求得的结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系吗?证明你的发现; (3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 020)+f ⎝⎛⎭⎫12 020的值.课时作业(十六) 函数的概念(一)1.解析:A 中,函数y =x 的定义域为[0,+∞),A 不符合;B 中,函数y =(x -1)0的定义域为{x |x ≠1},B 不符合;C 中,函数y =x 2+3的定义域为R ,C 符合;D 中,函数y =1x的定义域为{x |x ≠1},D 不符合;故选C. 答案:C2.解析: 由题意,若函数f (x )=x -4|x |-5有意义,则满足,⎩⎪⎨⎪⎧x -4≥0|x |-5≠0,解得x ≥4且x ≠5,所以函数的定义域为[)4,5∪()5,+∞.故选D.答案:D3.解析:f (a )-f (-a )=3a 2-1-[]3(-a )2-1=0.故选A. 答案:A4.解析:f (2)=22-122+1=4-14+1=35.f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-1⎝⎛⎭⎫122+1=14-114+1=-35. ∴f (2)f ⎝⎛⎭⎫12=-1.故选B.答案:B5.解析:令x -6x +2=2,解得x =-10.故选C.答案:C6.解析:根据函数的定义,对于D ,在集合A 中的部分元素,在集合B 中没有元素与它对应,故不正确.故选ABC.答案:ABC7.解析:f (1)=21+2=23.答案:238.解析:令⎩⎪⎨⎪⎧1+x ≥02-x ≠0,解得x ≥-1且x ≠2,所以函数定义域为{}x |x ≥-1且x ≠2.答案:{}x |x ≥-1且x ≠29.解析:(1)要使函数式有意义,必须满足⎩⎪⎨⎪⎧3x -1≥0,1-2x ≥0,即⎩⎨⎧x ≥13,x ≤12.所以13≤x ≤12,即函数的定义域为⎣⎡⎦⎤13,12.(2)要使函数式有意义,必须满足⎩⎪⎨⎪⎧ x +3≠0|x |-x >0,即⎩⎪⎨⎪⎧x ≠-3|x |>x ,解得⎩⎪⎨⎪⎧x ≠-3x <0.所以函数的定义域为(-∞,-3)∪(-3,0).10.解析:(1)f (2)=22+2-1=5, f ⎝⎛⎭⎫1x =1x 2+1x -1=1+x -x 2x 2,f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, 解得x =2或x =-3.11.解析:A 项:每一个自变量都有唯一的数字与之对应,可以构成函数,A 正确;B 项:自变量3没有对应的数字,不能构成函数,B 错误;C 项:自变量2同时对应了两个数字,不能构成函数,C 错误;D 项:每一个自变量都有唯一的数字与之对应,可以构成函数,D 正确,故选AD.答案:AD12.解析:要使函数y =4-x 2x 2-2x -3有意义,则⎩⎪⎨⎪⎧4-x 2≥0x 2-2x -3>0,解得-2≤x <-1, 所以函数y =4-x 2x 2-2x -3定义域是[)-2,-1.故选A.答案:A 13.解析:函数=f (n )=k (其中n ∈N *)k 是π的小数点后的第n 位数字,π=3.141 592 653 5…,所以f (10)=5,f (f (10))=f (5)=9, f (f (f (10)))=f (9)=3. 答案:314.解析:要使原函数有意义,必须满足mx 2+x +3≠0,由于函数的定义域是R ,故mx 2+x +3≠0对一切实数x 恒成立.当m =0时,x +3≠0,即x ≠-3,与f (x )的定义域为R矛盾,所以m =0不合题意.当m ≠0时,有Δ=12-12m <0,解得m >112.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m >112.答案:⎩⎨⎧⎭⎬⎫m |m >11215.解析:∵f (x )=2x +a ,g (x )=14(x 2+3),∴g []f (x )=g (2x +a )=14[](2x +a )2+3=x 2+ax +14(a 2+3).又∵g []f (x )=x 2+x +1,∴x 2+ax +14(a 2+3)=x 2+x +1,故a =1.16.解析:(1)由f (x )=x 21+x 2=1-1x 2+1,所以f (2)=1-122+1=45,f ⎝⎛⎭⎫12=1-114+1=15.f (3)=1-132+1=910,f ⎝⎛⎭⎫13=1-119+1=110.(2)由(1)中求得的结果发现f (x )+f ⎝⎛⎭⎫1x =1.证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+1x 21+1x2=x 21+x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,∴f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, f (4)+f ⎝⎛⎭⎫14=1,…,f (2 020)+f ⎝⎛⎭⎫12 020=1. ∴f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 020)+f ⎝⎛⎭⎫12 020=2 019.。

最新湘教版高中数学必修一课后习题--3

最新湘教版高中数学必修一课后习题--3

第3章函数的概念与性质3.1 函数3.1.3 简单的分段函数课后篇巩固提升必备知识基础练1.若f (x )={x -3,x ≥10,f (f (x +6)),x <10,则f (5)的值为( )A.8B.9C.10D.11,f (5)=f (f (11))=f (8)=f (f (14))=f (11)=8.故选A .2.已知f (x )=|x|,g (x )=x 2,设h (x )={f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),则函数h (x )的大致图象是( )f (x )≤g (x ),即|x|≤x 2时,解得x ≤-1或x ≥1或x=0,故h (x )={|x |,x ≤-1或x ≥1或x =0,x 2,-1<x <1且x ≠0,故h (x )的大致图象为D .3.函数f (x )={2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,2]∪{3}C.[0,+∞)D.[0,3]0≤x ≤1时,0≤2x ≤2,即0≤f (x )≤2;当1<x<2时,f (x )=2;当x ≥2时,f (x )=3.综上可知f (x )的值域为[0,2]∪{3}.4.(2021江西名校联盟高一期末)已知函数y={x 2+1,x ≤0,2x ,x >0,若f (a )=10,则a 的值是( )A.3或-3B.-3或5C.-3D.3或-3或5a ≤0,则f (a )=a 2+1=10,∴a=-3(a=3舍去);若a>0,则f (a )=2a=10,∴a=5.综上可得,a=5或a=-3,故选B .5.已知f (x )的图象如图所示,则f (x )的解析式为 .(x )={-1,0≤x <1,x -2,1≤x ≤20≤x<1时,f (x )=-1;当1≤x ≤2时,设f (x )=kx+b (k ≠0), 则{k +b =-1,2k +b =0,解得{k =1,b =-2, 此时f (x )=x-2.综上,f (x )={-1,0≤x <1,x -2,1≤x ≤2.6.设函数f (x )={(x +1)2,x <1,4x ,x ≥1,则f (f (8))= ,使得f (a )≥4a 的实数a 的取值范围是 .(-∞,1]解析因为f (x )={(x +1)2,x <1,4x,x ≥1,所以f (8)=48=12,因此f (f (8))=f12=12+12=94. 当a<1时,f (a )≥4a 可化为(a+1)2≥4a ,即(a-1)2≥0显然恒成立,所以a<1; 当a ≥1时,f (a )=4a ≥4a , 解得a=1.综上,a 的取值范围为(-∞,1].7.某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲俱乐部每小时5元,乙俱乐部按月计费,一个月中30小时以内(含30小时)90元,超过30小时的部分每小时2元;某公司准备下个月从这两家俱乐部中选择一家开展活动,其活动时间不少于15小时,也不超过40小时.设在甲家开展活动x (15≤x ≤40)小时的收费为f (x )元,在乙家开展活动x 小时的收费为g (x )元. (1)试分别写出f (x )和g (x )的解析式. (2)选择哪家比较合算?请说明理由.由题意可知f (x )=5x ,15≤x ≤40,g (x )={90,15≤x ≤30,30+2x ,30<x ≤40.(2)由5x=90,解得x=18, 即当15≤x<18时,f (x )<g (x ); 当x=18时,f (x )=g (x ); 当18<x ≤40时,f (x )>g (x ).所以当15≤x<18时,选甲家比较合算; 当x=18时,两家一样合算; 当18<x ≤40时,选乙家比较合算.关键能力提升练8.(2020陕西华阴高一期末)设函数f (x )={12x -1,x ≥0,1x,x <0,若f (a )=a ,则实数a 的值为( )A.±1B.-1C.-2或-1D.±1或-2a ≥0时,有12a-1=a ,解得a=-2(不满足条件,舍去);当a<0时,有1a=a ,解得a=1(不满足条件,舍去)或a=-1.所以实数a 的值是-1.故选B . 9.已知函数f (x )={x 2,x ≤1,x +4x-3,x >1,则f (x )的值域是( )A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)f (x )={x 2,x ≤1,x+4x -3,x >1,知当x ≤1时,x 2≥0;当x>1时,x+4x -3≥2√x ·4x -3=4-3=1,当且仅当x=4x ,即x=2时等号成立. 综上,f (x )的值域是[0,+∞).故选B .10.(多选题)(2020湖北黄冈黄州一中期中)已知f (x )=x ,g (x )=x 2-2x ,且F (x )={g (x ),f (x )≥g (x ),f (x ),f (x )<g (x ),则F (x )的最值情况是 ( )A.有最大值3B.有最小值-1C.无最小值D.无最大值f (x )≥g (x )得0≤x ≤3;由f (x )<g (x ),得x<0或x>3,所以F (x )={x 2-2x ,x ∈[0,3],x ,x ∈(-∞,0)⋃(3,+∞).作出函数F (x )的图象如图,可得F (x )无最大值,无最小值.11.(2021福建厦门高一期末)“高斯函数”为y=[x ],其中[x ]表示不超过x 的最大整数.例如:[-2.1]=-3,[3.1]=3.已知函数f (x )=|x-1|(3-[x ]),x ∈[0,2),若f (x )=52,则x= ;不等式f (x )≤x 的解集为 . 答案1634,2,得f (x )={3-3x ,0≤x <1,2x -2,1≤x <2,当0≤x<1时,3-3x=52, 即x=16;当1≤x<2时,2x-2=52,即x=94(舍),综上x=16.当0≤x<1时,3-3x ≤x ,即34≤x<1,当1≤x<2时,2x-2≤x ,即1≤x<2,综上34≤x<2.12.设集合A=0,12,B=[12,1],函数f (x )={x +12,x ∈A ,2-2x ,x ∈B ,已知m ∈A ,且f (f (m ))∈A ,则实数m 的取值范围是 . 答案14,12解析∵m ∈A ,∴0≤m<12,f (m )=m+12∈12,1.∴f (f (m ))=2-2m+12=1-2m.∵f (f (m ))∈A ,∴0≤1-2m<12,则14<m ≤12. ∵0≤m<12,∴14<m<12. ∴m 的取值范围是14,12.13.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过5 000元的部分不纳税,超过5 000元的部分为全月纳税所得额,此项税款按下表分段累计计算:(1)已知张先生的月工资、薪金所得合计为10 000元,问他当月应缴纳多少个人所得税?(2)设王先生的月工资、薪金所得合计为x 元,当月应缴纳个人所得税为y 元,写出y 与x 的函数关系式.(3)已知李先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得合计为多少?赵先生应交税为1 500×3%+3 000×10%+500×20%=445(元).(2)y 与x 的函数关系式为y={0,0≤x ≤5 000,(x -5 000)×3%,5 000<x ≤6 500,45+(x -6 500)×10%,6 500<x ≤9 500,345+(x -9 500)×20%,9 500<x ≤14 000.(3)李先生一月份缴纳个人所得税为303元,故必有6 500<x ≤9 500,从而303=45+(x-6 500)×10%,解得x=9 080.所以王先生当月的工资、薪金所得为9 080元.学科素养创新练14.某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12 000元.公司每位员工的培训费用按以下方式与该机构结算:当公司参加培训的员工人数不超过30时,每人的培训费用为850元;当公司参加培训的员工人数多于30时,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为x ,每位员工的培训费为y 元,培训机构的利润为Q 元.(1)写出y 与x (x>0,x ∈N +)之间的函数关系式;(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求出最大利润.当1≤x ≤30且x ∈N +时,y=850;当30<x ≤60且x ∈N +时,y=850-10(x-30)=1 150-10x. 所以y={850,1≤x ≤30,且x ∈N +,1 150-10x ,30<x ≤60,且x ∈N +.(2)当1≤x ≤30且x ∈N +时,Q=850x-12 000,Q max =850×30-12 000=13 500(元); 当30<x ≤60且x ∈N +时,Q=-10x 2+1 150x-12 000,其对称轴为x=1152=57.5,故当x=57或58时,Q max =21 060元.所以当公司参加培训的员工为57人或58人时,培训机构可获得最大利润,最大利润为21 060元.。

2022秋新教材高中数学第三章函数的概念与性质3-4函数的应用一课后提能训练新人教A版必修第一册

2022秋新教材高中数学第三章函数的概念与性质3-4函数的应用一课后提能训练新人教A版必修第一册

第三章 3.4A级——基础过关练1.在一定范围内,某种产品的购买量y与单价x之间满足一次函数关系.如果购买1 000吨,则每吨800元,购买2 000吨,则每吨700元,那么一客户购买400吨,其价格为每吨( )A.820元B.840元C.860元D.880元【答案】C 【解析】设y=kx+b(k≠0),则解得k=-10,b=9 000,则y=-10x+9 000.由400=-10x+9 000,得x=860(元).2.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A. cm2B.4 cm2C.3 cm2D.2 cm2【答案】D 【解析】设一段长为x cm,则另一段长为(12-x) cm,两个正三角形的面积之和为S cm2.分析知0<x<12.则S=+=(x-6)2+2,当x=6时,S min=2.3.某自行车存车处在某一天总共存放车辆4 000辆,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为( )A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=0.1x+1 200(0≤x≤4 000)D.y=-0.1x+1 200(0≤x≤4 000)【答案】D 【解析】由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.4.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是( )A.B.C.-1D.-1【答案】C 【解析】设每月的产量增长率为x,1月份产量为a,则a(1+x)11=ma,所以1+x=,即x=-1.5.如今,物价飞速上涨,某商品2020年零售价比2019年上涨25%,欲控制2021年比2019年只上涨10%,则2021年应比2020年降价( )A.15%B.12%C.10%D.8%【答案】B 【解析】设2021年应比2020年降价x%,则(1+25%)·(1-x%)=1+10%,解得x=12.6.某数学练习册,定价为40元.若一次性购买超过9本,则每本优惠5元,并且赠送10元代金券;若一次性购买超过19本,则每本优惠10元,并且赠送20元代金券.某班购买x(x∈N*,x≤40)本,则总费用f(x)与x的函数关系式为__________________(代金券相当于等价金额).【答案】f(x)=(x∈N *) 【解析】当0<x<10时,f(x)=40x;当10≤x<20时,f(x)=(40-5)x-10=35x-10;当20≤x≤40时,f(x)=(40-10)x-20=30x-20.所以f(x)=(x∈N *).7.端午节期间,某商场为吸引顾客,实行买100送20活动,即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物.如果你有1 460元现金,在活动期间到该商场购物,最多可以获赠购物券累计________元.【答案】360 【解析】由题意可知,1 460=1 400+20+40,1 400元现金可送280元购物券,把280元购物券当作现金加上20元现金可送60元购物券,再把60元购物券当作现金加上40元现金可获送20元购物券,所以最多可获赠购物券280+60+20=360(元).8.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元/件)之间的关系满足一次函数:m=162-3x.若要使每天获得最大的销售利润,则该商品的售价应定为________元/件.【答案】42 【解析】设每天获得的销售利润为y元,则y=(x-30)·(162-3x)=-3(x -42)2+432,所以当x=42时,获得的销售利润最大,故该商品的售价应定为42元/件.9.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(单位:分)与通话费用y(单位:元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.解:(1)由图象可设y1=k1x+29,y2=k2x.把点B(30,35),C(30,15)分别代入y1=k1x+29,y2=k2x,得k1=,k2=.所以y1=x+29(x≥0),y2=x(x≥0).(2)令y1=y2,即x+29=x,则x=96.当x=96时,y1=y2,两种卡收费一致;当x<96时,y1>y2,使用“便民卡”便宜;当x>96时,y1<y2,使用“如意卡”便宜.B级——能力提升练10.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么( )A.人可在7秒内追上汽车B.人可在10秒内追上汽车C.人追不上汽车,其间距最少为5米D.人追不上汽车,其间距最少为7米【答案】D 【解析】设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s +25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值7.故选D.11.某单位计划建造如图所示的三个相同的矩形饲养场,现有总长为1的围墙材料,要使围出的饲养场的总面积最大,则每个矩形的长宽之比为( )A.B.C.D.【答案】A 【解析】如图所示,设一个矩形饲养场的长为AB=x,宽为AD=y,则4x+6y=1,所以y=(1-4x),则饲养场的总面积为S=3xy=x(1-4x)=-2+.故当x=,y =,即长宽之比为∶=时,饲养场的总面积最大.12.统计某种水果在一年中四个季度的市场价格及销售情况如下表.季度1234每千克售价/元19.5520.0520.4519.95某公司计划按这一年各季度“最佳近似值m”收购这种水果,其中的最佳近似值m这样确定,即m与上表中各售价差的平方和最小时的近似值,那么m的值为________.【答案】20 【解析】设y=(m-19.55)2+(m-20.05)2+(m-20.45)2+(m-19.95)2=4m2-2×(19.55+20.05+20.45+19.95)m+19.552+20.052+20.452+19.952,则当m==20时,y取最小值.13.某电脑公司2019年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2021年经营总收入要达到1 690万元,且计划从2019年到2021年,每年经营总收入的年增长率相同,则2020年预计经营总收入为______万元.【答案】1 300 【解析】设年增长率为x(x>0),则×(1+x)2=1 690,所以1+x=,因此2020年预计经营总收入为×=1 300(万元).14.一种药在病人血液中的含量不低于2 g时,它才能起到有效治疗的作用.已知每服用m(1≤m≤4)个单位的药剂,药剂在血液中的含量y(g)随着时间x(h)变化的函数关系式近似为y=mf(x),其中f(x)=(1)若病人一次服用3个单位的药剂,求有效治疗的时间长;(2)若病人第一次服用2个单位的药剂,6 h后再服用n个单位的药剂,要使接下来的2 h中能够持续有效治疗,求n的最小值.解:(1)因为m=3,所以y=当0≤x<6时,由≥2,解得x≤11,所以0≤x<6;当6≤x≤8时,由12-≥2,解得x≤,所以6≤x≤.综上,0≤x≤.故若病人一次服用3个单位的药剂,有效治疗的时间为 h.(2)(方法一)当6≤x≤8时,设该病人两次服用药剂后,药剂在血液中的含量为t g,则t=2×+n=8-x+.因为8-x+≥2对6≤x≤8恒成立,即n≥对6≤x≤8恒成立,令g(x)=,则g(x)=在[6,8]上是单调递增函数.当x=8时,g(x)取得最大值,所以n≥.所以n的最小值为.(方法二)由方法一知t=8-x+,分析知t=8-x+在x∈[6,8]上单调递减,故8-8+≥2,解得n≥.所以n的最小值为.C级——探究创新练15.(2020年浏阳期末)某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量M(万股)与时间t(天)的部分数据如表所示:第t天6132027M/万股34272013(1)根据提供的图象,求该股票每股交易价格P(元)与时间t(天)所满足的函数关系式;(2)根据表中数据,求日交易量M(万股)与时间t(天)的一次函数关系式;(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?解:(1)当0≤t<20时,设函数解析式为P=at+b,把点(0,2)和(10,4)代入得解得所以P=t+2;当20≤t≤30时,把t=20代入P=t+2,解得P=6,设函数解析式为P=mt+n,把点(20,6)和(30,5)代入得解得所以P=-t+8.所以P=(2)设M=ct+d,(c≠0),把点(6,34)和点(13,27)代入得解得所以M=-t+40.(3)因为该股票每股交易价格P=日交易量M=-t+40,所以该股票日交易额y=PM=当0≤t<20时,y=-t2+6t+80,当t=15时,y max=125;当20≤t≤30时,y=t2-12t+320,当t=20时,y max=120.综上所述,在这30天内第15天日交易额最大,最大值为125万元.。

高中数学必修一第三章函数的概念与性质易错题集锦(带答案)

高中数学必修一第三章函数的概念与性质易错题集锦(带答案)

高中数学必修一第三章函数的概念与性质易错题集锦单选题1、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( )A .1B .2C .3D .4答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y =x a 形式,故y =x 3,y =x 满足条件,共2个故选:B2、若函数f (x +1x )=x 2+1x 2,且f (m )=4,则实数m 的值为( )A .√6B .√6或−√6C .−√6D .3答案:B分析:令x +1x =t ,配凑可得f (t )=t 2−2,再根据f (m )=4求解即可令x +1x =t (t ≥2或t ≤−2),x 2+1x 2=(x +1x )2−2=t 2−2,∴f (t )=t 2−2,f (m )=m 2−2=4,∴m =±√6.故选;B3、已知函数f (x )={x 2+a,x ≤0,2x ,x >0.若f[f (−1)]=4,且a >−1,则a =( ) A .−12B .0C .1D .2 答案:C分析:根据函数的解析式求出f(−1)=1+a ,结合1+a >0即可求出f[f(−1)],进而得出结果. 由题意知,f(−1)=(−1)2+a =1+a ,又a >−1,所以1+a >0,所以f[f(−1)]=f(1+a)=21+a =4,解得a =1.故选:C4、已知f(x)是一次函数,且f(x −1)=3x −5,则f(x)=( )A .3x −2B .2x +3C .3x +2D .2x −3答案:A分析:设一次函数y =ax +b(a ≠0),代入已知式,由恒等式知识求解.设一次函数y =ax +b(a ≠0),则f(x −1)=a(x −1)+b =ax −a +b ,由f(x −1)=3x −5得ax −a +b =3x −5,即{a =3b −a =−5 ,解得{a =3b =−2,∴f(x)=3x −2. 故选:A .5、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可. 设幂函数为y =x α,因为该幂函数得图象经过点P (4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x−12在(0,+∞)上为减函数,所以排除B,故选:A6、已知函数f(x)=2x2−6x+3,x∈[−1,2],则函数的值域是()A.[−32,11)B.[32,11)C.[ −1,11]D.[−32,11]答案:D分析:根据二次函数的对称轴和端点处的值即可求解值域.∵f(x)=2x2−6x+3=2(x−32)2-32,对称轴x=32,当x∈[−1,2],f(x)min=f(32)=−32,又因为f(−1)=11,f(2)=1,∴f(x)max=f(−1)=11,所以函数的值域为[−32,11].故选:D7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C8、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.多选题9、幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,则以下说法正确的是()A.m=3B.函数f(x)在(−∞,0)上单调递增C.函数f(x)是偶函数D.函数f(x)的图象关于原点对称答案:ABD分析:根据幂函数的定义与性质得到方程(不等式)组,解得m=3,即可得到f(x),从而判断可得;解:因为幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,所以{m 2−5m+7=1m2−6>0,解得m=3,所以f(x)=x3,所以f(−x)=(−x)3=−x3=−f(x),故f(x)=x3为奇函数,函数图象关于原点对称,所以f(x)在(−∞,0)上单调递增;故选:ABD10、定义在R上的偶函数f(x)满足f(x+1)=−f(x),且在[−1,0]上是增函数,则()A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上是增函数C.f(x)在[1,2]上是减函数D.f(2)=f(0)答案:AD分析:由题可得分析可得f(x+1)=f(1−x),进而可判断AD,利用函数的对称性结合条件可判断BC. 因为f(x+1)=−f(x),f(x)是偶函数,所以f(−x)=−f(−x +1)=f(x),即f(x +1)=f(1−x),所以函数f(x)的图象关于直线x =1对称,故A 正确;由偶函数在对称区间上的单调性相反,得f(x)在[0,1]上是减函数,故B 错误; 因为函数f(x)的图象关于直线x =1对称,且f(x)在[0,1]上是减函数,所以f(x)在[1,2]上是增函数,故C 错误;由f(x +1)=f(1−x),可得f(2)=f(0),故D 正确.故选:AD.11、设α∈{−1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α的值有( ) A .−1B .1C .3D .12 答案:BC分析:根据α的取值,结合幂函数的性质,判断选项.α=−1时,y =x −1的定义域是(−∞,0)∪(0,+∞),不正确;α=1时,函数y =x 的定义域是R ,且是奇函数,故正确;α=3是,函数y =x 3的定义域是R ,且是奇函数,故正确;α=12时,函数y =x 12的定义域是[0,+∞),不正确.故选:BC填空题12、若函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是________. 答案:2分析:根据f (x )= f (-x ),简单计算可得结果.∵f (x )为偶函数,∴对于任意x ∈R ,有f (-x )=f (x ),即(m -1)(-x )2+(m -2)(-x )+(m 2-7m +12)=(m -1)x 2+(m -2)x +(m 2-7m +12), ∴2(m -2)x =0对任意实数x 均成立,∴m =2.所以答案是:2小提示:本题考查根据函数奇偶性求参数,掌握概念,细心计算,属基础题.13、(1)函数y=x45的定义域是________,值域是________;(2)函数y=x−25的定义域是________,值域是________;(3)函数y=x 32的定义域是________,值域是________;(4)函数y=x−34的定义域是________,值域是________.答案:R[0,+∞)(−∞,0)∪(0,+∞)(0,+∞)[0,+∞)[0,+∞)(0,+∞)(0,+∞)分析:画出对应幂函数的图像,结合幂函数的图像特征,写出定义域与值域(1)幂函数y=x 45图像如图所示,定义域为R,值域为[0,+∞),(2)幂函数y=x−25图像如图所示,定义域为(−∞,0)∪(0,+∞),值域为(0,+∞),(3)幂函数y=x 32图像如图所示,定义域为[0,+∞),值域为[0,+∞),(4)幂函数y=x−34图像如图所示,定义域为(0,+∞),值域为(0,+∞),所以答案是:(1)R;[0,+∞),(2)(−∞,0)∪(0,+∞);(0,+∞),(3)[0,+∞);[0,+∞),(4)(0,+∞);(0,+∞).14、若函数f(x)=(2m−1)x m是幂函数,则实数m=______.答案:1分析:根据幂函数定义列方程求解可得.因为f(x)=(2m−1)x m是幂函数,所以2m−1=1,解得m=1. 所以答案是:1解答题15、已知函数f(x)=x−1x+2,x∈[3,5].(1)判断函数f(x)的单调性,并证明;(2)求函数f(x)的值域.答案:(1)单调递增,证明见解析;(2)[25,4 7 ]分析:(1)利用函数单调性的定义即可证明函数f(x)在区间[3,5]上的单调性;(2)根据函数f(x)在区间[3,5]上的单调性即可求其值域.(1)f(x)=x−1x+2=x+2−3x+2=1−3x+2在区间[3,5]上单调递增,证明如下:任取x1,x2∈[3,5]且x1<x2,f(x1)−f(x2)=(1−3x1+2)−(1−3x2+2)=3x2+2−3x1+2=3(x1+2)−3(x2+2) (x1+2)(x2+2)=3(x1−x2)(x1+2)(x2+2),因为3≤x1<x2≤5,所以x1−x2<0,x1+2>0,x2+2>0,所以f(x1)−f(x2)<0,即f(x1)<f(x2),所以函数f(x)在区间[3,5]上单调递增.(2)由(1)知:f(x)在区间[3,5]上单调递增,所以f(x)min=f(3)=3−13+2=25,f(x)max=f(5)=5−15+2=47,所以函数f(x)的值域是[25,4 7 ].。

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档