大学物理复习习题教学提纲

合集下载

大学物理复习提纲(赵近芳-数学学院)

大学物理复习提纲(赵近芳-数学学院)

第一章“运动学”题型一、分类:1.一般的运动方程、速度、加速度之间的关系2.圆周运动二、计算内容1. 一般的运动方程、速度、加速度之间的关系 知识地图如下:() () () r t t a t υ↓↓r r r€€求导 求导积分 积分轨迹方程2.圆周运动知识地图如右:三、解题步骤声明:解题其实就是清清楚楚地把题目做出来。

只要满足这个条件就行,并非只能按照一种方式来做。

下面给出的只是比较有条理和清晰的一种路子,如果你严格照着做了,结果应该不会错得离谱(老师们还是见过步骤正确,但是简单如四则运算依然要算错的神人,扼腕之余只能表示叹服),而且阅卷老师要给你们分也有比较充足的理由(至少卷子上的文字表明你很清楚正确的步骤)。

当然,如果你觉得自己很清楚,而且也能够在卷子上很清楚地表明“你自己很清楚”这件事情,那么只管走自己的路就是。

但是切记:如果你心里很清楚,但是卷子上只写寥寥几个字,阅卷老师是断然不能从这几个字中看出来“你很清楚”这件事情的(那个需要超能力,貌似老师都木有)。

特别是如果你写的那几个字还出了点错,那就是你自己要跟自己过不去了。

阅卷是“以卷面为依据”,和“以卷面为准绳”的。

所以:能多写些就多写些,尽量写清楚。

1. 一般的运动方程、速度、加速度之间的关系理解已知条件,知道自己在地图上起点在哪儿;理解求解目标,知道地图上哪里是终点;然后在地图中找路,从起点走到终点即可。

如果按照地图上从左至右的方向解题,那是灰常滴简单—你再犯错,那就只能是“自作孽”了。

如果方向是从右至左,则会涉及几个问题: (1)利用积分链式法则的技巧(参见例题1);(2)分离变量积分的技巧(这是你们这个学期《常微》里面最简单的内容,必须会的); (3)定积分和不定积分的选择问题(参见例题1)。

2.圆周运动理解已知条件,知道自己在地图上起点在哪儿;理解求解目标,知道地图上哪里是终点;然后在地图中找路,从起点走到终点即可。

四、典型例题和习题1. 一般的运动方程、速度、加速度之间的关系 【例题1】(教材习题1-5)解:从地图上看,从位置到速度显然行不通(因为不知道位置的函数表达式),那么就要考虑从加速度返回速度的路子。

大学物理复习提纲(下册)

大学物理复习提纲(下册)

大学物理复习纲要(下册)第十四章 光学(一) 光的干涉 1、 怎样获得相干光:将普通光源上同一点发出的光,利用双缝(分波振面法)和反射和折射(分振幅法)使一束光“一分为二”,沿两条不同的路径传播并相遇,这样,单束的每一个波列都分成了频率相同,振动方向相同,相位差恒定的两部分,当它们相遇时,符合相干条件,产生干涉现象。

2、杨氏双缝干涉:波程差条纹坐标:相邻明纹或相邻暗纹之间的距离3、光程: 光在介质中通过L 距离引起的相位差: nL 为光程,即光通过介质中的几何路程折合成的光在真空中的路程。

4、等厚干涉(劈尖、牛顿环)(1)等厚干涉的成纹公式:垂直入射时,上下表面反射的光的光程差(假⎪⎪⎩⎪⎪⎨⎧=-±=±=暗纹明纹)3,2,1(2)12()3,2,1,0(22'k k k k d x d λλ⎪⎪⎩⎪⎪⎨⎧-±±=2)12(22''λλk d d k d d x λddx '=∆'12sin d xd d r r r ==-=∆θnL L nλπλπϕ22==∆⎪⎩⎪⎨⎧=+==+减弱,加强3,2,102)12(3,2,122k k k k nd λλλ设有半波损失)(2)劈尖条纹分布规律:(a) 如果反射光有半波损失,棱处d=0, 零级暗纹 (b) 条纹等间距(c) 相邻明纹(或暗纹)对应的劈尖的厚度差(3)牛顿环:光垂直入射,反射光有半波损失时,明纹半径暗纹半径条纹不是等间距的。

(4)关于半波损失(产生的条件):入射光从光疏介质到光密介质的反射光,相位有π的跃变。

22nn d λλ==∆3,2,1)21(=-=k R k r λ3,2,1,0==k kR r λ当 反射光无半波损失;当 反射光有半波损失;当反射光有半波损失时,透射光一定没有半波损失。

(二) 光的衍射1、 单缝夫琅禾费衍射(1) 理解半波带法。

(2) 成纹规律中央明纹的半角宽度为一级暗纹到中心的距离对应的衍射角其他级明纹的宽度是中央明纹宽度的一半:2、 圆孔衍射:最小分辨角Dd λλθ22.12/0==,物体最小间距h l 0θ=分辨率λθ1,1D ∝3、 衍射光栅:(1)光栅方程(明纹条件))3,2,1,0(sin )(' =±=+k k b b λθ光栅常数b+b ’(b'为不透光部分,b 为透光部分,相当于单缝的缝宽) (2)最大级次:λb b k m '+=,时 或321321 n n n n n n <<>>,时 或321321 n n n n n n ><<>)2,1(2)12(22sin ±±=⎪⎪⎩⎪⎪⎨⎧+=k k k b 明纹中心暗纹中心λλθbf x λ⋅=∆(3) 光栅的缺级问题考虑缝与缝之间的干涉在某处出现光栅亮纹,但由于单缝衍射在该处是暗纹,光栅必在该处缺级。

大学物理上册复习提纲

大学物理上册复习提纲

引言概述:正文内容:
1.运动学
1.1匀速直线运动
1.1.1位移、速度和加速度的概念
1.1.2匀速直线运动的数学描述
1.1.3匀速直线运动的图像解析
1.2匀变速直线运动
1.2.1加速度和速度的关系
1.2.2匀变速直线运动的数学描述
1.2.3匀变速直线运动的图像解析
1.2.4自由落体运动
2.力学
2.1牛顿力学基本概念
2.1.1质点、力和力的合成
2.1.2牛顿三定律及其应用
2.2静力学
2.2.1物体的平衡条件
2.2.2弹力、摩擦力和力的矩
2.3.1动量、动量守恒定律和冲量
2.3.2力的合成和动量定理
2.3.3动能、功和功率
2.3.4动力学的应用:斜面和圆周运动
3.能量与能量守恒
3.1动能和势能
3.2机械能守恒定律
3.2.1弹性碰撞
3.2.2完全非弹性碰撞
3.2.3弹簧振子
4.流体力学
4.1流体的基本性质
4.1.1流体的压强、密度和体积弹性模量4.1.2静力学中的流体平衡条件
4.2流体的动力学性质
4.2.1流体运动的流速、流量和连续性方程4.2.2流体的伯努利定律
4.3流体的应用:大气压力和沉浮
5.1温度和热平衡
5.2热传导和热量
5.3热力学第一定律
5.4理想气体的状态方程
5.5热力学第二定律和熵
5.6热力学过程中的功和热量的转化总结:。

大学物理复习提纲

大学物理复习提纲

大学物理复习提纲各位同学认真复习所列提纲,自己做出答案(可以相互讨论,但不要问老师),不要过分押题,要全面复习平时所学内容!填空:由惠更斯-菲涅尔原理,某时刻的波阵面S上面元dS发出的子波在相距r处点P引起的振动的振幅与α相关,α为有向面元S d与r夹角,2πα≥时,振幅为______。

在杨式双缝实验中,屏与双缝间的距离D=1m,用钠光灯做单色光源(λ=600nm),问:d=10mm时,相邻明纹间距为。

物体运动时,如果离开平衡位置的位移(或角位移)按___________的规律随时间变化,这种运动称为简谐运动。

质量m,摆长L的单摆作小振幅谐振的周期为_________________。

波阵面是指________________________,波的传播方向称为_______。

已知一沿x轴正向传播的平面余弦波在t=1/3s时的波形如图,且周期T=2s。

(1)写出O 点的振动表式_______________;(2)写出该波的波动表式_______________________。

( 第3题图)光的________,__________和_______________现象都可以证明光是一种波动。

相干光源必须满足条件______________________________________。

一物体沿x轴做简谐振动,振幅A=0.1m,周期T=2s。

当t=0时,物体的位移x=0.05m,且向x轴负方向运动。

(1)此简谐振动的表式为:_______________________。

(2)t=1s时的速度大小为:_______________________。

一个发光点发出的光通过光学仪器的圆孔后由透镜汇聚,按几何光学在光屏上只能出现一个______,但实际上看到衍射图样,中央的光斑称为爱里斑,如果入射波长λ,圆孔直径d,则爱里斑角半径约为____________。

光子不仅有能量,还具有质量和动量等一般粒子共有的特性,它的静止质量为_____,动质量可表达为________________。

大学物理复习提纲(下)

大学物理复习提纲(下)

《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。

(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。

会判断磁力矩的方向。

会判断霍尔效应电势的方向。

1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。

《大学物理》复习提纲

《大学物理》复习提纲

一、考试命题计划表二、各章考点分布及典型题解分析补充典型题1、 容器中装有质量为M 的氮气(视为刚性双原子分子理想气体,分子量为28),在高速v 运动的过程中突然停下.设气体定向运动的动能全部转化为气体的内能,试求:气体的温度上升多少2、一质点沿x 轴作简谐振动,其角频率ω = 10 rad/s .试分别写出以下两种初始状态下的振动方程: (1) 其初始位移x 0 = 7.5 cm ,初始速度v 0 = 75.0 cm/s ; (2) 其初始位移x 0 =7.5 cm ,初始速度v 0 =-75.0 cm/s .3、有两个相同的容器,一个盛有氦气,另一个盛有氢气(看作刚性分子),它们的压强和温度都相等。

现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,求应向氦气传递多少的热量。

4、刚性双原子分子的理想气体在一等压膨胀过程中所做的功为A ,试求:(1)此过程中气体内能的增量;(2)此过程中气体吸收的热量。

5、有一平面简谐波沿Ox 轴负方向传播,已知振幅A=1.0m ,周期T=4.0 s, 波长λ=5.0m ,在t=0时坐标原点处的质点位于y=0.5m 处且沿Oy 轴负方向运动。

求该平面简谐波的波动方程。

一、 选择题(每个小题只有一个正确答案,3×10=30分) (力)1、一质点运动方程j t i t r)318(2-+=,则它的运动为 。

A 、匀速直线运动B 、匀速率曲线运动C 、匀加速直线运动D 、匀加速曲线运动(力)2、一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作 。

A 、匀速率曲线运动B 、匀速直线运动C 、停止运动D 、减速运动(力)3、质点作变速直线运动时,速度、加速度的关系为 。

A 、速度为零,加速度一定也为零B 、速度不为零,加速度一定也不为零C 、加速度很大,速度一定也很大D 、加速度减小,速度的变化率一定也减小(力)4、关于势能,正确说法是 。

复习提纲(大学物理上)

复习提纲(大学物理上)

THANK YOU
感谢聆听
康普顿散射实验
验证了光子与物质相互作用时能量守恒和动 量守恒。
原子光谱实验
通过观察原子光谱线,证明了原子能级的存 在和量子化。
量子力学的数学基础
薛定谔方程
描述波函数随时间变化的偏微分方程,是量 子力学的基本方程。
波函数
描述微观粒子状态的函数,具有波动性和粒 子性。
算符
描述物理量的数学符号,如位置算符、动量 算符等。
卡诺循环是效率最高的机械循环,卡诺定理指出可逆循环的效率相等, 都等于相同温度下卡诺循环的效率。
热机效率的极限
由热力学第二定律可知,任何热机的效率都不可能超过卡诺循环的效 率。
热力学第三定律
绝对零度的不可能性
根据热力学第三定律,绝对零度是不 可能达到的,只能无限接近。
熵的单调性
根据熵的单调性,封闭系统的熵不会 减少,即自发过程总是向着熵增加的 方向进行。
02
热学
热力学基础
01
02
03
04
热量与温度
热量是能量转移的一种形式, 温度是物体分子热运动的剧烈 程度的度量。
热平衡定律
当两个物体相互接触时,最终 它们将达到热平衡状态,即它 们的温度相等。
热容量与熵
热容量是物体吸收或放出热量 时温度变化的度量,熵是系统 无序度的量度。
理想气体状态方程
理想气体在平衡态下的状态由 压力、体积和温度决定,其关 系由理想气体状态方程描述。
量子力学的历史背景
19世纪末经典物理学的危机
01
黑体辐射、光电效应等现象无法用经典物理学解释。
玻尔兹曼的统计物理学
02
为解决黑体辐射问题,玻尔兹曼提出统计物理学,但未得到广

大学物理(1B)复习提纲

大学物理(1B)复习提纲

大学物理(1B)复习提纲第九章振动1、谐振动▲表达式及各参数的求法;▲证明谐振动的方法:①线性恢复力指向平衡点;②微分方程标准式;③谐振动表达式▲旋转矢量法、振动曲线;▲质点振动的速度、加速度;▲动能、势能、平均值及总能量;2、谐振动的合成▲同方向、同频率的合成:合振动的振幅与相位▲同方向、不同频率的合成:拍频△垂直振动的合成(频率相同或成简单整数比)第十章波动1、一维平面简谐波▲表达式及各参数的求法;▲物理意义:x点的振动;t时刻的波形;▲如何由振动求波动;▲如何由波形求波动;▲波速仅由介质本身的性质决定▲由波形及传播方向求质元运动方向及相位2、波的能量▲波的能量、能流、能流密度、平均能流密度(波强);▲质元能量、位移、形变三者的关系;△声波与声强级3、惠更斯原理▲次级子波的概念;▲作图法:波的衍射、反射与折射4、波的干涉▲波的相干条件:振动方向相同、频率相同、相位差恒定;▲波的干涉:同方向、同频率谐振动的相干叠加;▲波程差与相位差的关系;5、驻波▲驻波的形成条件;▲由两个相向简谐波合成驻波的表达式;▲波腹与波节的求法;▲驻波的振幅特点、相位特点;▲波在反射中的半波损失问题:(作图法)由波疏→波密反射或固定端反射:有半波损失,入射波与反射波在反射点处反相位;由波密→波疏反射或自由端反射:无半波损失,入射波与反射波在反射点处同相位;6、机械波的多普勒效应▲一个公式(波源、观察者速度趋近为正、远离为负)7、电磁波的性质▲电磁波是横波;▲E和H的表达式及互求;▲E和H方向、相位、幅值、瞬时值的关系;▲电磁波的速度;▲电磁波的能量:能流密度:坡印廷矢量;平均能流密度(电磁波强度);第十一章几何光学▲平面界面上的折射、反射定律;全反射▲费马原理▲单球面近轴光线下的折、反射(由物求像)▲薄透镜成像公式▲薄透镜作图法※显微镜与望远镜第十二章波动光学1、光的干涉▲光程与路程;光程差与相位差;▲真空中波长与介质中波长的关系、折射率;▲双缝干涉、劈尖、牛顿环干涉;▲等倾干涉光程差的计算▲迈氏干涉仪的光路及相关计算;▲薄膜干涉的半波损失问题;▲在干涉光路中加入透明薄膜引起的附加位相差;※时间相干性与空间相干性2、光的衍射▲单缝衍射:菲涅尔半波带法;明、暗条纹位置的计算;△夫朗和费圆孔衍射:光学仪器的分辨本领:最小分辨角;▲光栅衍射:主极大位置、最大级次、重级与缺级、△斜入射光栅公式;▲X射线的衍射:布拉格公式;▲综合题:双缝与单缝、光栅与单缝3、光的偏振▲两个定律:马吕斯定律与布儒斯特定律;▲尼科尔棱镜与偏振片的作用:振幅的投影与光强的计算;▲双折射:光轴、主平面、寻常光与非常光的偏振方向;正晶体(石英)、负晶体(方解石)中o光与e光的波面、折射率、波速;利用惠更斯原理作图:双折射晶体中o光与e光的波面、传播方向;△椭圆、圆偏振光与波片:四分之一波片与二分之一波片的定义与作用;▲偏振光的干涉:干涉装置、振幅投影与光强的计算;第十三章狭义相对论基础1、狭义相对论的两个基本假设▲两个基本假设要会背2、洛伦兹变换▲洛伦兹变换及计算△速度变换(x方向速度变换)3、相对论时空观的几个重要结论▲“同时”的相对性▲时间延迟▲长度收缩4、相对论动力学▲质速关系式;▲质能关系式;▲能量、动量与静质量的关系式;5、光子▲光子的能量、动量、动质量第十四章(1) 光的量子性1、热辐射▲单色辐出度、总辐出度及相互关系;▲黑体的概念;▲两个实验定律及计算:斯特藩--玻尔兹曼定律、维恩位移定律;△普朗克的能量子观点2、光电效应▲爱因斯坦公式:逸出电位、逸出功与截止频率;遏止电压与最大初动能;遏止电压与频率关系曲线:斜率与普朗克常数截止频率与逸出电位▲饱和光电流▲爱因斯坦光子能量与光强表达式;3、康普顿效应▲波长改变量与散射角的理论公式、康普顿波长;▲光子与静止电子碰撞:能量守恒与动量守恒;第十四章(2) 原子结构与半经典量子论1、氢光谱的规律性▲里德伯公式;▲五个线系与原子能级的关系;▲光谱项与里兹并合原则;2、玻尔理论▲轨道量子化、能量量子化、对氢光谱的解释;▲里德伯公式与能级、(最长、最短)波长的计算;3、两个关键实验▲卢瑟福 粒子散射实验:证实原子由原子核与核外电子组成;▲夫朗克--赫兹实验:证实原子能级的存在;第十五章量子力学基础1、德布罗意波(物质波)▲低能粒子、高能粒子德布罗意波长的计算;2、物质波的证实:电子衍射的两个实验(戴维孙—革末、汤姆孙实验)3、波函数的统计解释△自由粒子平面波波函数▲概率密度:波函数模的平方(设:波函数已归一化);▲粒子出现在某区间的概率:概率密度对该区间的积分;▲波函数满足两个条件:归一化条件:全空间积分等于1标准化条件:单值、有限、连续4、不确定原理(不确定关系)▲坐标与动量的不确定关系;▲能量与时间的不确定关系;【以下内容本学期不做要求】5、薛定谔方程△含时间的、定态(不含时间)的薛定谔方程的基本形式6、一维无限深方势阱▲波函数、能级与粒子出现的概率;7、线性谐振子▲能级公式8、电子自旋▲电子自旋的实验验证:施特恩--格拉赫实验;▲自旋角动量与自旋量子数;▲自旋角动量沿外磁场的分量与自旋磁量子数;▲轨道角动量与轨道磁矩;自旋角动量与自旋磁矩;9、原子的壳层结构▲描述原子中电子状态的四个量子数及相应取值范围;▲给定某些量子数求最多可容纳的电子数;▲四个量子数与相应物理量取值的关系;▲电子填充原子壳层遵循两个原理:泡利不相容原理与能量最小原理;▲原子中的电子组态。

大学物理复习提纲

大学物理复习提纲
复习
第一章 运动和力
一、质点运动学
1、
位置矢量
r
xi
yj
zk
运动方程:
r (t) x(t)i y(t) j z(t)k
x x(t)
分量式:
y y(t) z z(t) (消去t得轨道方程)
2、位移 r r2 r1
(x2 x1)i ( y2 y1) j (z2 z1 )k
m1v0l
(1 3
m2l
2
m1l
2
)
l m2
v0
摆动过程:机械能守恒
m1
1 2
(1 3
m2l 2
m1l 2 ) 2
m1gl(1
cos )
m2 g
l 2
(1 cos )
复习
第 4 章 流体力学
一、理想流体的稳定流动
(1)连续性方程: S1V1 S2V2
(2)伯努利方程:
p1
1 2
v12
gh1
p2
五、电势差
Ua
dq
4 π 0r
(电势叠加法)
b
Uab Ua Ub
E dl
a
六、电势力做的功 Aab q(Ua Ub ) q Uab
复习
第 9 章 恒定磁场
一、磁感应强度:
1、毕奥-萨伐尔定律:dB
0
Id
l
r
4r 3
(1) 一段载流直导线的磁场
B
0 I(c
4πa
os1
cos2)
复习
五、熵增加原理:
S 0
孤立系统中的可逆过程,其熵不变;孤立系统中的 不可逆过程,其熵要增加 .(孤立系统的熵永不减少)

大学物理(一)总复习提纲

大学物理(一)总复习提纲
l
非保守力:力所作的功与路径有关. 势能 EP : 与物体间相互作用及相对位置有关的能量.
W保 (Ep Ep0 ) Ep
说明 1、势能是状态函数 ;
2、势能具有相对性,势能大小与势能零点的选取有关; 3、势能是属于系统的 ;

力学中常见的势能
重力势能
Ep mgz
1 2 弹性势能 E p kx 2

t2
t1
Fdt mv2 mv1
质点系的动量定理:系统所受合外力的冲量等于系统 动量的增量 。 n n

t2
t1
ex F dt mi vi mi vi 0
i 1 i 1
(二) 质点系动量守恒定律
ex 若 Fi 0
i
质点系所受合外力为零,系统总动量守恒。即
N 1. 分子数密度 n V
3. 质量密度
nm
M 2. 分子质量 m NA 4. 物质的量 m M
(二) 三个公式
1. 理想气体状态方程(平衡态)
pV RT P nkT
2 2. 理想气体压强的微观公式 P n k 3
3. 温度的统计意义
Байду номын сангаас
1 3 2 k m v kT 2 2
2 平均能量密度: 3
(四) 惠更斯原理(作图法) 介质中波阵面上的各点都可以看作是发射子波的 波源,而在其后的任意时刻,这些子波的包络就是新 的波前.
1 2 2 平均能流密度(波强度): I w u A u 2
1 w 2 A2 2
(五)
波的叠加原理
2 1 2 2
A A A 2 A1 A2 cos 1 波的干涉 2 1 2 π (r2 r1 ) A A1 A2 2k π k 0,1,2, (2k 1) π k 0,1,2, A A1 A2 其他 A1 A2 A A1 A2

大学物理复习提纲-推荐下载

大学物理复习提纲-推荐下载


y(t)
j

z(t)k
1
教学要求:
1.牛顿运动三定律及牛顿定律的应用。
2.常见的几种力。
主要公式:
1.牛顿第一定律:当
2.牛顿第二定律:ຫໍສະໝຸດ F F合外
ma

3.牛顿第三定律(作用力和反作用力定律): F F
第二章 2 动量和能量守恒定律
教学要求:

0 时, v
m
V2 PdV
V1
nCv
(T2

nR(T2 T1 )
T1 )
5. 等温过程: P1V1 P2V2 (E 0内能改变为0。
。( A 0做功为0。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

《大学物理B》复习提纲

《大学物理B》复习提纲

《大学物理B 》复习提纲矢量运算1. 矢量A A Ae =模A (或||A )表示矢量的大小,单位矢量A e 表示方向,且||1A e =直角坐标系下的分量形式:x y z A A i A j A k =++ ,且A =2. 矢量的加减:平行四边形法则或三角形法则直角坐标系下()()()x x y y z z A B A B i A B j A B k ±=±+±+±4. 矢量的数乘mA :当m>0与A 方向相同,当m<0与A方向相反5. 矢量的点乘(或点积、标积)A B ⋅ 为标量:||||cos A B A B θ⋅= (,A B θ为间的夹角)(两相互垂直矢量间的标积为0)直角坐标系下x x y y z z A B A B A B A B ⋅=++6. 矢量的叉乘(或叉积、矢积)A B ⨯ 为矢量:大小||||sin A B θ,方向由右手螺旋法则注:1 )A B ⨯ 的方向一定垂直于,A B 所确定的平面,从A 沿小于180°的角度握向B;2)两相互平行矢量间的矢积为0;3)()A B B A ⨯=-⨯直角坐标系下()()()y z z y z x x z x y y x A B A B A B i A B A B j A B A B k ⨯=-+-+-7. 直角坐标系下矢量的求导:()y x z dA dA t dA dA i j k dt dt dt dt=++(各方向分量分别进行) 8. 直角坐标系下矢量的积分:()()()()()x y z B t A t dt A dt i A dt j A dt k ==++⎰⎰⎰⎰(各方向分量分别进行)力学部分第一章 运动的描述大纲要求:1. 理解运动方程的概念。

2. 深入理解速度、加速度的矢量性和瞬时性。

3. 掌握根据运动学方程求解质点运动的位移、速度和加速度的方法。

4. 明确法向加速度和切向加速度的概念。

大学物理下册复习总提纲[1]

大学物理下册复习总提纲[1]

第7章 静电场(是保守力场)教学要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。

2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。

3.掌握电容、电势差的计算。

主要公式: 一、 电场强度12.点电荷系场强:n E E E E+⋅⋅⋅++=21(矢量和)3(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分) (线元,面元,体元)4.对称性带电体场强:二、电势12.点电荷系电势:n V V V V +⋅⋅⋅++=21(代数和)3(四步走积分法)(建立坐标系、取电荷元、写dV 、积分)4.已知场强分布求电势:⎰⎰⋅=⋅=lv pdr E l d E V 0三、电势差:⎰⋅=∆B AAB l d E U四、电场力做功:⎰⋅=∆=2100l l l d E q U q A五、基本定理(1) 静电场高斯定理:(有源场)物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。

(3)静电场安培环路定理:(无旋场)物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。

第8章 恒定电流和恒定磁场(非保守力场)教学要求:1.电流连续性方程,熟悉毕奥-萨伐尔定律的应用,会解任意形状载流导线周围磁感应强度大小,并由右手螺旋法则求磁感应强度方向; 2.会求解载流导线在磁场中所受安培力;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义)。

主要公式:0. 电流的连续性方程:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r(其中。

向之间的夹角流方向与到场点连线方分别是起点及终点的电和21θθ)2)无限长载流直导线,垂直距离r 处磁感应强度3)半无限长载流直导线,过端点垂线上且垂直距离r 处磁感应强度4)圆形载流线圈,半径为R ,在圆心O 处5)半圆形载流线圈,半径为R ,在圆心O 处6)圆弧形载流导线,圆心角为)(弧度制θ,半径为R ,在圆心O(θ用弧度代入)2.安培力:⎰⨯=lB l Id F (方向沿B l Id⨯方向,或用左手定则判定)dq d d sj S t⋅=-⎰积分法五步走:1.建坐标系;2.取电流元l Id;3.写θsin IdlB dF =;4.分解;5.积分. 安培的分子电流假说3.洛伦兹力: B v q F⨯=(磁场对运动电荷的作用力)当带电粒子同时受到电场力和磁场力时:()F q E B υ→→→→=+⨯4.磁场高斯定理:无源场)(因为磁场线是闭合曲线,从闭合曲面一侧穿入,必从另一侧穿出.)物理意义:表明稳恒磁场中,通过任意闭合曲面的磁通量(磁场强度沿任意闭合曲面的面积分)等于0。

大学物理复习提纲

大学物理复习提纲

大学物理C复习大纲上册:第一章质点运动学一、复习要求:1.了解参考系、坐标系、质点等概念。

2.理解时刻、时间、位置矢量、位移、速度、加速度等概念。

注意时刻与时间、位移与路程、速度与速率、平均速度与瞬时速度的区别。

3.深入理解切向加速度和法向加速度的意义。

4.熟练掌握已知运动方程求位移、速度、加速度的方法;掌握根据初始条件由速度、加速度求质点的运动方程的方法。

二、复习要点:1、位移与路程有什么区别?在什么情况下位移的大小与路程相等?2、物体作直线、圆周运动,已知运动方程求t 内物体的位移和路程、速度与时间的函数关系、物体的速度与坐标的函数关系。

3、圆周运动角速度与线速度的关系,平均速度与平均速率、切向加速度,法向加速度。

三、复习题:习题1-1,2,3,6,14。

第二章牛顿定律一、复习要求:1、牛顿运动定律的表述和表达式。

2、牛顿运动定律的应用。

二、复习要点:1、学会用牛顿运动定律来解决一维运动的基本问题。

三、复习题:教材例题:P42 例5 ,习题2-16、19、20第三章守恒定律一、复习要求:1、理解动量和冲量的概念,掌握动量定理和动量守恒定律以及它们的应用。

2、了解功、动能、保守力和非保守力、重力势能、弹性势能、机械能的概念,会计算恒力和变力的功,掌握动能定理和机械能守恒定律以及它们的应用。

二、复习要点:1.什么是动量、冲量?什么是动量定理、动量守恒定律?内力是否能改变物体系的动量?2.怎样计算元功?什么是动能定理?内力作功能否改变质点系动能?3.什么叫保守力?什么是功能原理?三、复习题:教材例题:P76 例2,习题3-1,2,3,4,5,19,22,23,29,30。

第五章静电场一、复习要求:1.理解点电荷概念。

了解库仑定律的内容及其适用条件。

2.掌握电场强度概念及点电荷的场强公式;会用场强叠加原理求场强。

3.掌握真空中的高斯定理及其简单应用(中心对称、无限长轴对称、无限大平面)。

4. 理解静电场力做功的特点;理解静电场的环路定理;理解电势与电势差的概念;会用计算电势的基本方法解决简单问题;了解电场强度与电势的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理复习习题
判断题
1、一对内力所作的功之和一定为零. ( )
2、质点速度方向恒定,但加速度方向仍可能在不断变化着。

( )
3、对一定的弹簧振子,谐振动的总机械能和振幅成正比。

( )
4、电势为零的地方电场强度必为零。

( )
5、穿过任一闭合曲面的总磁通量恒等于零。

( )
6、设长直螺线管导线中电流为I,单位长度的匝数为n ,则长直螺线管内的磁场为匀强磁场,各点的磁感应强度大小为nI 00εμ。

( )
7、卡诺循环的效率为1
21T T -=η,由此可见理想气体可逆卡诺循环的效率只与高、低温热源的温度有关。

( )
8、理想气体的绝热自由膨胀过程是等温过程。

( )
9、能产生相干波的波源称为相干波源,相干波需要满足的三个条件是:频率相
同、振动方向相同、相位差相同或相位差恒定。

( )
10、当光的入射角一定时,光程差仅与薄膜厚度有关的干涉现象叫等厚干涉。

这种
干涉条纹叫做等厚干涉条纹。

劈尖干涉和牛顿环干涉均属此类。

( )
计算题
1、一质点沿半径为R 的圆周运动,运动学方程为20bt 2
1t v s -=,其中0v 、b 都是常数。

求: (1) 在时刻t ,质点的加速度a ;
(2) 在何时刻加速度的大小等于b ;
(3)到加速度大小等于b 时质点沿圆周运行的圈数。

2、一质量为200g 的砝码盘悬挂在劲度系数k =196N/m 的弹簧下,现有质量为100g 的砝码自30cm 高处落入盘中,求盘向下移动的最大距离(假设砝码和盘的碰撞是完全非弹性碰撞)
3、如图所示表示两个同心均匀带电球面,半径分别为A R ,B R ;分别带有电量为
A q 、
B q 。

分别求出在下面情况下电场和电势。

(1) A R <r ;
(2) B R <<r R A ;
(3) r <B R ;
题3-3图
4、求无限长均匀载流圆柱导体产生的磁场。

设圆柱体截面半径为R ,电流大小为I ,沿轴线方向运动,且在圆柱体截面上,电流分布是均匀的。

R B
q B
5、 1mol 氧气,温度为300K 时体积是33102m -⨯。

若氧气经(1)绝热膨胀到体积为32102m -⨯ ;(2)等温膨胀到体积32102m -⨯后,再等体冷却到绝热膨胀最后达到的温度。

试计算两种过程中氧气所作的功。

相关文档
最新文档