磁控溅射镀膜原理和工艺设计
磁控溅射镀膜原理
磁控溅射镀膜原理
磁控溅射镀膜是一种常用的薄膜制备技术,其原理是利用磁控溅射装置将固体材料转化为薄膜状,并将其沉积在基底材料上。
该技术具有高成膜速率、较高的膜均匀性和优良的附着力等优点。
在磁控溅射装置中,首先需要将目标材料(也称为靶材)放置在真空腔室中。
真空腔室初步抽气后,通过加热靶材或施加直流电弧或射频等方式,在靶材表面形成高能电子。
这些加热或激发的电子进一步与惰性气体(如氩气)发生碰撞,使其部分激发成高能态。
同时,由于磁场的存在,这些高能态的粒子将被束缚在靶材周围的磁场线上,形成等离子体环。
接下来,通过加速电场的作用,激发态粒子会从等离子体环中释放出来,并以高速撞击到基底材料上。
在撞击过程中,靶材表面的原子将被冲击撞击而脱离,并形成带电粒子。
这些带电粒子将在真空环境中传输,并最终沉积在待镀膜的基底材料上。
因此,基底材料表面就形成了一层特定厚度和特定性质的薄膜。
磁控溅射镀膜技术的成膜过程中,磁场的存在起到了重要的作用。
磁场的存在使得等离子体中的带电粒子能够沿着磁场线运动,在较长的时间内与基底材料进行撞击,提高了膜层的成膜速率和附着力。
此外,通过调节磁场的强度和方向,还可以实现对薄膜成分和薄膜性能的控制。
因此,磁控溅射镀膜技术在各种领域中得到了广泛应用,如光学薄膜、电子器件、压敏电阻器等。
磁控溅射镀膜工艺参数对薄膜性能影响
磁控溅射镀膜工艺参数对薄膜性能影响一、磁控溅射镀膜技术概述磁控溅射技术,作为一种先进的物理气相沉积技术,广泛应用于薄膜制备领域。
该技术通过在高真空环境中,利用磁场和电场的共同作用,使得靶材表面产生等离子体,靶材原子或分子被激发并溅射出来,随后沉积在基底上形成薄膜。
磁控溅射技术因其高沉积速率、良好的膜厚均匀性、较低的沉积温度以及能够制备高纯度薄膜等优点,被广泛用于制备各种高性能薄膜材料。
1.1 磁控溅射技术的原理磁控溅射技术的核心原理是利用磁场对等离子体中的电子进行约束,形成所谓的“磁镜效应”,使得电子在靶材表面附近形成高密度区域,从而提高溅射效率。
在溅射过程中,靶材原子或分子被等离子体中的离子撞击而逸出,并在电场的作用下飞向基底,沉积形成薄膜。
1.2 磁控溅射技术的应用磁控溅射技术在多个领域有着广泛的应用,包括但不限于:- 光学薄膜:用于制射镜、增透膜、滤光片等。
- 电子器件:用于制备半导体器件中的绝缘层、导电层等。
- 装饰镀膜:用于制备各种装饰性金属膜。
- 耐磨镀膜:用于提高材料表面的硬度和耐磨性。
二、磁控溅射镀膜工艺参数磁控溅射镀膜工艺参数对薄膜的性能有着决定性的影响。
这些参数包括溅射功率、溅射气压、溅射气体种类、溅射时间、基底温度等。
通过精确控制这些参数,可以优化薄膜的物理、化学和机械性能。
2.1 溅射功率对薄膜性能的影响溅射功率是影响薄膜性能的关键因素之一。
溅射功率越高,靶材表面的等离子体密度越大,溅射速率也越高。
然而,过高的溅射功率可能导致薄膜内部产生较多的缺陷,如气泡、晶格畸变等,从而影响薄膜的性能。
因此,选择合适的溅射功率对于获得高质量的薄膜至关重要。
2.2 溅射气压对薄膜性能的影响溅射气压同样对薄膜性能有着显著的影响。
较低的溅射气压有利于提高薄膜的致密性,减少薄膜内部的孔隙率,但过低的气压可能导致薄膜生长过程中的原子迁移率降低,影响薄膜的均匀性。
相反,较高的溅射气压可以增加薄膜的沉积速率,但可能会降低薄膜的致密性。
磁控溅射镀膜
磁控溅射镀膜磁控溅射镀膜是一种应用于材料表面改性的先进技术。
它利用准分子束磁控溅射设备,通过电弧、离子束或电子束的能量作用于目标材料,使其产生高温、高压等物理、化学效应,从而实现材料表面镀膜的目的。
本文将从磁控溅射镀膜的基本原理、应用领域、优势和不足以及发展前景等方面进行详细介绍,旨在全面了解磁控溅射镀膜技术的特点及其在现代工业中的应用。
1. 磁控溅射镀膜的基本原理磁控溅射镀膜技术是将所需镀层物质以固体靶材的形式放在装备中的靶极,利用外加的电场、磁场或离子束等等,使得靶材产生某种运动状态,随后可以将靶面上的物质溅射出来,沉积在基材表面,形成薄膜。
其中磁场的作用是将靶材中被离子轰击的金属离子引导回到靶材中心,以增加溅射效率。
2. 磁控溅射镀膜的应用领域磁控溅射镀膜技术广泛应用于许多工业领域,如电子、光学、太阳能电池、柔性电子器件、集成电路、玻璃制造等。
在电子领域,磁控溅射镀膜技术可用于制备薄膜晶体管,提高电子器件的性能和稳定性。
在光学领域,磁控溅射镀膜技术可制备高反射率、低反射率和色分离膜等光学薄膜。
在太阳能电池领域,磁控溅射镀膜技术可用于制备光学膜和透明导电膜。
在柔性电子器件领域,磁控溅射镀膜技术可用于制备导电薄膜和保护膜。
3. 磁控溅射镀膜的优势和不足磁控溅射镀膜技术具有许多优势。
首先,其产生的薄膜具有高质量、高致密性和良好的附着力。
其次,磁控溅射镀膜过程中无需加热基材,可避免基材变形和热损伤。
此外,磁控溅射镀膜技术具有膜层成分可调、薄膜复杂结构可控等特点。
然而,磁控溅射镀膜技术也存在不足之处。
一方面,磁控溅射镀膜设备体积较大、成本较高,且对真空度要求较高。
另一方面,由于目前磁控溅射镀膜技术仍处于发展阶段,其在大尺寸薄膜制备和高速镀膜方面还存在一定限制。
4. 磁控溅射镀膜的未来发展随着科学技术的不断进步,磁控溅射镀膜技术将进一步得到发展和完善。
一方面,磁控溅射镀膜技术将在薄膜成分调控和复杂结构薄膜制备方面取得更大突破,以满足不同行业对薄膜材料的需求。
磁控溅射 镀膜速度
磁控溅射镀膜速度磁控溅射是一种常用的薄膜沉积技术,利用磁场控制离子轰击靶材,使靶材表面的原子或分子通过溅射形成薄膜。
在磁控溅射过程中,镀膜速度是一个非常重要的参数,它决定了薄膜的厚度和生长速率。
本文将从原理、影响因素和优化方法三个方面来探讨磁控溅射的镀膜速度。
一、磁控溅射的原理磁控溅射是利用磁控电子枪或离子枪,将高能粒子轰击靶材表面,使靶材原子或分子从表面脱离并沉积在基片上形成薄膜的过程。
在磁控溅射过程中,由于磁场的存在,离子在空间中形成磁控电子云,从而使离子在靶材表面形成较高的能量密度,从而促进原子或分子的溅射。
而镀膜速度则是指单位时间内沉积在基片上的薄膜厚度。
二、影响磁控溅射镀膜速度的因素1. 靶材材料:不同材料的靶材具有不同的溅射效率,即单位能量导致的溅射原子数目。
一般来说,金属靶材的溅射效率较高,而绝缘体材料的溅射效率较低。
2. 气体氛围:磁控溅射过程中,通常会加入气体氛围,如氧气、氮气等。
不同气体对溅射速率的影响是不同的,一般来说,氧气会增加溅射速率,而氮气则会降低溅射速率。
3. 溅射功率:溅射功率是指离子或电子轰击靶材的能量。
溅射功率越大,镀膜速度也就越高。
4. 基片与靶材的距离:基片与靶材的距离会影响离子或电子的传输路径和能量损失,从而影响溅射速率。
一般来说,靶材与基片的距离越近,溅射速率越高。
5. 磁场强度:磁场强度是影响磁控溅射的关键参数之一,它可以调节离子或电子的轨道,从而影响溅射速率。
磁场强度越大,溅射速率也就越高。
三、优化磁控溅射的镀膜速度的方法1. 调节靶材材料和气体氛围:根据需要调节靶材材料和气体氛围,以获得所需的镀膜速度。
可以通过实验和经验总结来确定最佳的靶材材料和气体氛围组合。
2. 提高溅射功率:通过增加溅射功率,可以提高镀膜速度。
但需注意不要超过靶材的承受范围,以免损坏靶材。
3. 控制基片与靶材的距离:合理控制基片与靶材的距离,可以使离子或电子的传输路径和能量损失最小化,从而提高溅射速率。
玻璃磁控溅射镀膜
玻璃磁控溅射镀膜是一种在玻璃表面形成一层或多层金属、金属化合物或其它化合物薄膜的工艺技术。
以下是该工艺的简要介绍:
1. 溅射原理:在磁控溅射镀膜过程中,电子在电场的作用下加速飞向基片,与氩原子发生碰撞,电离出大量的氩离子和电子。
氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶材原子(或分子)沉积在基片上成膜。
2. 磁控技术:二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内。
该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断地与氩原子发生碰撞电离出大量的氩离子轰击靶材。
经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。
3. 镀膜种类:根据不同的应用需求,可以溅射不同的材料,形成各种不同的镀膜。
例如,热反射镀膜可以使玻璃具有遮蔽太阳光的功能;低辐射镀膜可以使玻璃具有保温作用,具有节能效果。
4. 工业应用:玻璃磁控溅射镀膜工艺在建筑、汽车、家居、电子等多个行业都有广泛的应用。
如LOW-E玻璃就是一种典型的磁控溅射镀膜玻璃,它具有保温、隔热、节能等效果。
总的来说,玻璃磁控溅射镀膜工艺通过精确控制薄膜的成分和厚度,赋予了玻璃一系列特殊的性能,极大地拓展了玻璃的应用范围。
如需更多信息,建议查阅磁控溅射镀膜相关论文获取。
镀膜设备原理及工艺
镀膜设备原理及工艺一.镀膜设备原理1.磁控溅射:磁控溅射系统在阴极靶材的背后放置100〜lOOOGauss强力磁铁,真空室充入011〜10Pa压力的惰性气体(Ar),作为气体放电的载体。
在高压作用下Ar原子电离成为A叶离子和电子,,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的A叶离子,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上。
而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收A叶离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。
简单说:真空溅镀室先由高真空泵抽至一定压力之后,通过恒压仪器或质量流量计向溅镀室内充入惰性气体(如氩气)至一恒定压力(如2X10-1Pa或5XIO-IP a后,在磁控阴极靶上施加一定功率的直流电源或中频电源,在正负电极高压的作用下,阴极靶前方与阳极之间的气体原子被大量电离,产生辉光放电,电离的过程使氩原子电离为A叶离子和可以独立运动的电子,在高压电场的作用下,电子飞向阳极,而带正电荷的A叶离子则高速飞向作为阴极的靶材,并在与靶材的撞击过程中释放出其能量,获得相当高能量的靶材原子脱离其靶材的束缚而飞向基体,于是靶材粒子沉积在靶对面的基体上形成薄膜。
溅射产额丫随入射离子能量E变化的简单示意图,简称溅射曲线。
从该图可以看出溅射产额随入射离子能量的变化有如下特征:存在一个溅射阈值,阈值能量一般为20~100 eV。
当入射离子的能量小于这个阈值时,没有原子被溅射出来。
通常当入射离子的能量为1~10 keV时,溅射产额可以达到一个最大值。
当入射离子的能量超过10 keV 时,溅射产额开始随入射离子的能量增加而下降。
入射离子的能量E (eV)图6.1溅射产额随入射离子能量变化的示意图2.主要溅射方式:反应溅射是在溅射的惰性气体气氛中,通入一定比例的反应气体,通常用作反应气体的主要是氧气和氮气。
《磁控溅射镀膜技术》课件
要点二
溅射参数与工艺条件
溅射参数和工艺条件对磁控溅射镀膜的沉积速率、膜层质 量、附着力等有着重要影响。主要的溅射参数包括工作气 压、磁场强度、功率密度等,工艺条件包括基材温度、气 体流量和组成等。通过对这些参数的优化和控制,可以获 得具有优异性能的膜层。
磁控溅射镀膜设备
03
与系统
磁控溅射镀膜设备的组成
多元靶材磁控溅射
技术
研究多种材料同时溅射的工艺技 术,实现多元材料的复合镀膜, 拓展镀膜材料的应用范围。
磁控溅射与其他技术的结合应用
磁控溅射与脉冲激光沉积技术结合
01
通过结合两种技术,实现快速、大面积的镀膜,提高生产效率
。
磁控溅射与化学气相沉积技术结合
02
利用化学气相沉积技术在磁控溅射的基础上进一步优化镀膜性
磁控溅射机制
在磁场的作用下,电子的运动轨迹发生偏转,增加与气体分子的碰撞概率,产 生更多的离子和活性粒子,从而提高了溅射效率和沉积速率。
磁控溅射镀膜的工艺流程
要点一
工艺流程概述
磁控溅射镀膜的工艺流程包括前处理、溅射镀膜和后处理 三个阶段。前处理主要是对基材进行清洗和预处理,确保 基材表面的清洁度和粗糙度符合要求;溅射镀膜是整个工 艺的核心部分,通过控制溅射参数和工艺条件,实现膜层 的均匀、致密和附着力强的沉积;后处理主要包括对膜层 的退火、冷却和清洗等处理,以优化膜层性能。
纳米薄膜的制备与应用
总结词
纳米薄膜因其独特的物理和化学性质在许多 领域具有巨大的应用潜力。
详细描述
磁控溅射技术可以用于制备纳米级别的薄膜 ,如纳米复合材料、纳米陶瓷、纳米金属等 ,这些薄膜在催化剂、传感器、电池等领域 有广泛应用。
其他领域的应用研究
磁控溅射镀膜原理及工艺
磁控溅射的物理基础
磁场控制
通过磁场控制电子的运动轨迹,延长其在工 作气体的停留时间,提高气体离化率。
偏转磁场
电子在磁场中受到洛伦兹力作用,偏转方向 与电场方向相反,从而避免了电子与工作气 体碰撞。
能量传递
高能电子撞击工作气体,使气体分子离化成 离子和电子,离子在电场作用下加速飞向基 片,撞击基片表面的固体原子或分子,使其 溅射出来。
镀膜工艺参数优化
真空度控制
气体流量控制
优化真空室内的真空度,以提高镀膜 质量。
优化工作气体和反应气体的流量,以 获得良好的镀膜效果。
溅射功率调节
根据靶材和镀膜需求,调节溅射功率 ,以获得理想的镀膜层厚度和性能。
04
磁控溅射镀膜的应用
光学薄膜
减反射膜
通过在光学元件表面镀制一层特定厚度的薄膜,减少光的反射,提高透光率。
01
真空室
用于容纳待镀膜的基片和溅射源 ,是整个镀膜系统的核心部分。
02
03
04
控制系统
用于控制镀膜过程中的各项参数 ,如温度、压力、电流等。
磁控溅射源
01
02
03
阴极
通常由靶材制成,接负电 压,在电场的作用下吸引 正离子。
阳极
通常为金属环或平面,接 正电压,与阴极共同形成 放电空间。
磁场
通过磁场控制电子的运动 轨迹,提高离化率和溅射 效率。
真空系统及测量控制系统
真空系统
由真空泵、管道、阀门等组成,用于抽真空,创造适宜的镀 膜环境。
测量控制系统
通过各种传感器和测量仪表,实时监测镀膜过程中的各种参 数,如压力、温度、电流等,确保镀膜过程的稳定性和可重 复性。
03
磁控溅射镀膜原理及工艺课件
溅射出来的粒子与入射粒子的比值。
磁控溅射原理
磁场控制
通过引入磁场来控制电场分布, 提高等离子体密度和均匀性,从 而提高镀膜质量和沉积速率。
偏压控制
通过在基片上施加负偏压,吸引 带正电的离子,加速离子对基片 的轰击,提高膜层的致密度和结 合力。
溅射粒子传输
通过溅射产生的粒子在电场和磁 场的共同作用下,输送到基片表 面并沉积形成薄膜。
适用于金属靶的溅射镀膜, 可获得高沉积速率。
STEP 03
脉冲电源
适用于合金靶的溅射镀膜, 可获得均匀的膜层结构。
适用于非金属靶的溅射镀 膜,可获得较低的基片温 度。
磁控溅射镀膜工艺
镀膜材料的选取
01
耐腐蚀材料
选用具有高耐腐蚀性能的材料, 如不锈钢、钛合金等,以提高镀 膜的耐久性。
导电材料
02
03
开发新型镀膜技术
研究新型的镀膜技术,如脉冲溅射、反应溅射等,以获得具有优异 性能的薄膜。
新材料、新工艺的研究
探索新型材料
研究新型的溅射材料,如金属、陶瓷、半导体等,以满足不同领域 的需求。
开发新工艺
研究新的镀膜工艺,如多层镀膜、复合镀膜等,以提高薄膜的综合 性能。
优化材料配比
通过优化材料的配比,获得具有优异性能的薄膜,以满足不同领域的 需求。
降低成本、扩大应用领域的研究
降低生产成本
通过优化工艺参数和材料配比,降低生产成本,提高 经济效益。
扩大应用领域
研究新的应用领域,如光学、电子、能源等,以拓展 磁控溅射镀膜的应用范围。
提高生产效率
通过改进生产设备和工艺流程,提高生产效率,降低 生产成本。
THANKS
感谢您的观看
磁控溅射镀膜原理及工艺
磁控溅射镀膜本理及工艺之阳早格格创做纲要:真空镀膜技能动做一种爆收特定膜层的技能,正在现真死爆收计中有着广大的应用.真空镀膜技能有三种形式,即挥收镀膜、溅射镀膜战离子镀.那里主要道一下由溅射镀膜技能死少去的磁控溅射镀膜的本理及相映工艺的钻研.关键词汇:溅射;溅射变量;处事气压;重积率.绪论溅射局里于1870年开初用于镀膜技能,1930年以去由于普及了重积速率而渐渐用于工业死产.时常使用二极溅射设备如左图.常常将欲重积的资料制成板材-靶,牢固正在阳极上.基片置于正对付靶里的阳极上,距靶一定距离.系统抽至下真空后充进(10~1)帕的气体(常常为氩气),正在阳极战阳极间加几千伏电压,二极间即爆收辉光搁电.搁电爆收的正离子正在电场效用下飞背阳极,与靶表面本子碰碰,受碰碰从靶里劳出的靶本子称为溅射本子,其能量正在1至几十电子伏范畴内.溅射本子正在基片表面重积成膜.其中磁控溅射不妨被认为是镀膜技能中最超过的成便之一.它以溅射率下、基片温降矮、膜-基分离力好、拆置本能宁静、支配统制便当等便宜,成为镀膜工业应用范畴(特天是修筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对付大里积的匀称性有特天苛刻央供的连绝镀膜场合)的尾选规划.1磁控溅射本理溅射属于PDV(物理气相重积)三种基础要收:真空挥收、溅射、离子镀(空心阳极离子镀、热阳极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流搁电离子镀)中的一种.磁控溅射的处事本理是指电子正在电场E的效用下,正在飞背基片历程中与氩本子爆收碰碰,使其电离爆收出Ar正离子战新的电子;新电子飞背基片,Ar正离子正在电场效用下加速飞背阳极靶,并以下能量轰打靶表面,使靶材爆收溅射.正在溅射粒子中,中性的靶本子或者分子重积正在基片上产死薄膜,而爆收的二次电子会受到电场战磁场效用,爆收E(电场)×B(磁场)所指的目标漂移,简称E×B漂移,其疏通轨迹近似于一条晃线.若为环形磁场,则电子便以近似晃线形式正在靶表面搞圆周疏通,它们的疏通路径不然而很少,而且被束缚正在靠拢靶表面的等离子体天区内,而且正在该天区中电离出洪量的Ar正离子去轰打靶材,从而真止了下的重积速率.随着碰碰次数的减少,二次电子的能量消耗殆尽,渐渐近离靶表面,并正在电场E的效用下最后重积正在基片上.由于该电子的能量很矮,传播给基片的能量很小,以致基片温降较矮.磁控溅射是进射粒子战靶的碰碰历程.进射粒子正在靶中经历搀杂的集射历程,战靶本子碰碰,把部分动量传给靶本子,此靶本子又战其余靶本子碰碰,产死级联历程.正在那种级联历程中某些表面附近的靶本子赢得背中疏通的脚够动量,离开靶被溅射出去.磁控溅射种类磁控溅射包罗很多种类.各有分歧处事本理战应用对付象.然而有一共共面:利用磁场与电场接互效用,使电子正在靶表面附近成螺旋状运止,从而删大电子碰打氩气爆收离子的概率.所爆收的离子正在电场效用下碰背靶里从而溅射出靶材.磁控溅射正在技能上不妨分为直流(DC)磁控溅射、中频(MF)磁控溅射、射频(RF)磁控溅射.三种分类的主要对付比圆下表.D C MF RF电源代价廉价普遍下贵靶材圆靶/矩形靶仄里靶/转动靶考查室普遍用圆仄里靶靶材材量央供导体无节制无节制抵御靶中毒本收强强强2磁控溅射工艺钻研溅射变量电压战功率正在气体不妨电离的压强范畴内如果改变施加的电压,电路中等离子体的阻抗会随之改变,引起气体中的电流爆收变更.改变气体中的电流不妨爆收更多或者更少的离子,那些离子碰碰靶体便不妨统制溅射速率.普遍去道:普及电压不妨普及离化率.那样电流会减少,所以会引起阻抗的低重.普及电压时,阻抗的降矮会大幅度天普及电流,即大幅度普及了功率.如果气体压强稳定,溅射源下的基片的移动速度也是恒定的,那么重积到基片上的资料的量则决断于施加正在电路上的功率.正在VONARDENNE镀膜产品中所采与的范畴内,功率的普及与溅射速率的普及是一种线性的关系.气体环境真空系统战工艺气体系齐部共统制着气体环境.最先,真空泵将室体抽到一个下真空(约莫为10-6torr).而后,由工艺气体系统(包罗压强战流量统制安排器)充进工艺气体,将气体压强降矮到约莫2×10-3torr.为了保证得到适合品量的共一膜层,工艺气体必须使用杂度为99.995%的下杂气体.正在反应溅射中,正在反应气体中混同少量的惰性气体(如氩)不妨普及溅射速率.2.1.3 气体压强将气体压强降矮到某一面不妨普及离子的仄衡自由程、从而使更多的离子具备脚够的能量去碰打阳极以便将粒子轰打出去,也便是普及溅射速率.超出该面之后,由于介进碰碰的分子过少则会引导离化量缩小,使得溅射速率爆收低重.如果气压过矮,等离子体便会燃烧共时溅射停止.普及气体压强不妨普及离化率,然而是也便降矮了溅射本子的仄衡自由程,那也不妨降矮溅射速率.不妨得到最大重积速率的气体压强范畴非常渺小.如果举止的是反应溅射,由于它会不竭消耗,所以为了保护匀称的重积速率,必须依照适合的速度补充新的反应气体.2.1.4 传动速度玻璃基片正在阳极下的移动是通过传动去举止的.降矮传动速度使玻璃正在阳极范畴内通过的时间更少,那样便不妨重积出更薄的膜层.不过,为了包管膜层的匀称性,传动速度必须脆持恒定.镀膜区内普遍的传动速度范畴为每分钟0 ~ 600 英寸(约莫为0 ~ 15.24 米)之间.根据镀膜资料、功率、阳极的数量以及膜层的种类的分歧,常常的运止范畴是每分钟90 ~ 400(约莫为2.286 ~ 10.16 米)英寸之间.2.1.5 距离与速度及附效力为了得到最大的重积速率并普及膜层的附效力,正在包管不会益害辉光搁电自己的前提下,基片应当尽大概搁置正在离阳极迩去的场合.溅射粒子战睦体分子(及离子)的仄衡自由程也会正在其中收挥效用.当减少基片与阳极之间的距离,碰碰的几率也会减少,那样溅射粒子到达基片时所具备的本收便会缩小.所以,为了得到最大的重积速率战最佳的附效力,基片必须尽大概天搁置正在靠拢阳极的位子上.工艺会受到很多参数的效用.其中,一些是不妨正在工艺运止功夫改变战统制的;而其余一些则虽然是牢固的,然而是普遍正在工艺运止前不妨正在一定范畴内举止统制.二个要害的牢固参数是:靶结媾战磁场.每个单独的靶皆具备其自己的里里结媾战颗粒目标.由于里里结构的分歧,二个瞅起去真足相共的靶材大概会出现迥然分歧的溅射速率.正在镀膜支配中,如果采与了新的或者分歧的靶,应当特天注意那一面.如果所有的靶材块正在加工功夫具备相似的结构,安排电源,根据需要普及或者降矮功率不妨对付它举止补偿.正在一套靶中,由于颗粒结构分歧,也会爆收分歧的溅射速率.加工历程会制成靶材里里结构的好别,所以纵然是相共合金身分的靶材也会存留溅射速率的好别.共样,靶材块的晶体结构、颗粒结构、硬度、应力以及杂量等参数也会效用到溅射速率,而那些则大概会正在产品上产死条状的缺陷.那也需要正在镀膜功夫加以注意.不过,那种情况惟有通过调换靶材才搞得到办理.靶材耗费区自己也会制成比较矮下的溅射速率.那时间,为了得到劣良的膜层,必须重新安排功率或者传动速度.果为速度对付于产品是至关要害的,所以尺度而且适合的安排要收是普及功率.用去捕获二次电子的磁场必须正在所有靶里上脆持普遍,而且磁场强度应当符合.磁场不匀称便会爆收不匀称的膜层.磁场强度如果不适合(比圆过矮),那么纵然磁场强度普遍也会引导膜层重积速率矮下,而且大概正在螺栓头处爆收溅射.那便会使膜层受到传染.如果磁场强度过下,大概正在开初的时间重积速率会非常下,然而是由于刻蚀区的关系,那个速率会赶快低重到一个非常矮的火仄.共样,那个刻蚀区也会制成靶的利用率比较矮.2.3可变参数正在溅射历程中,通过改变改变那些参数不妨举止工艺的动背统制.那些可变参数包罗:功率、速度、气体的种类战压强.2.功率每一个阳极皆具备自己的电源.根据阳极的尺寸战系统安排,功率不妨正在0 ~ 150KW(标称值)之间变更.电源是一个恒流源.正在功率统制模式下,功率牢固共时监控电压,通过改变输出电流去保护恒定的功率.正在电流统制模式下,牢固并监控输出电流,那时不妨安排电压.施加的功率越下,重积速率便越大.2.速度另一个变量是速度.对付于单端镀膜机,镀膜区的传动速度不妨正在每分钟0 ~ 600英寸(约莫为米)之间采用.对付于单端镀膜机,镀膜区的传动速度不妨正在每分钟0 ~ 200英寸(约莫为米)之间采用.正在给定的溅射速率下,传动速度越矮则表示重积的膜层越薄.2.末尾一个变量是气体.不妨正在三种气体中采用二种动做主气体战辅气体去举履止用.它们之间,所有二种的比率也不妨举止安排.气体压强不妨正在1 ~ 5×10-3 torr之间举止统制.2./基片之间的关系正在直里玻璃镀膜机中,另有一个不妨安排的参数便是阳极与基片之间的距离.仄板玻璃镀膜机中不不妨安排的阳极.3考查①认识真空镀膜的支配历程战要收.②相识磁控溅射镀膜的本理及要收.③教会使用磁控溅射镀膜技能.④钻研分歧处事气压对付镀膜效用.SAJ-500超下真空磁控溅射镀膜机(配有杂铜靶材);氩气瓶;陶瓷基片;揩镜纸.3.3考查本理磁控溅射系统是正在基础的二极溅射系统死少而去,办理二极溅射镀膜速度比蒸镀缓很多、等离子体的离化率矮战基片的热效力明隐的问题.磁控溅射系统正在阳极靶材的里前搁置强力磁铁,真空室充进0.1~10Pa 压力的惰性气体(Ar),动做气体搁电的载体.正在下压效用下Ar本子电离成为Ar+离子战电子,爆收等离子辉光搁电,电子正在加速飞背基片的历程中,受到笔直于电场的磁场效用,使电子爆收偏偏转,被束缚正在靠拢靶表面的等离子体天区内,电子以晃线的办法沿着靶表面前进,正在疏通历程中不竭与Ar本子爆收碰碰,电离出洪量的Ar+离子,与不磁控管的结构的溅射相比,离化率赶快减少10~100倍,果此该天区内等离子体稀度很下.通过多次碰碰后电子的能量渐渐降矮,解脱磁力线的束缚,最后降正在基片、真空室内壁及靶源阳极上.而Ar+离子正在下压电场加速效用下,与靶材的碰打并释搁出能量,引导靶材表面的本子吸支Ar+离子的动能而摆脱本晶格束缚,呈中性的靶本子劳出靶材的表面飞背基片,并正在基片上重积产死薄膜.准备历程(1)动脚支配前宽肃教习道支配规程及有关资料,认识镀膜机战有关仪器的结构及功能、支配步调与注意事项,包管仄安支配.(2)荡涤基片.用无火酒粗荡涤基片,使基片镀膜里浑净无净污后用揩镜纸包好,搁正在搞燥器内备用.(3)镀膜室的浑理与准备.先背真空腔内充气一段时间,而后降钟罩,拆好基片,浑理镀膜室,降下钟罩.考查主要过程(1)挨开总电源,开用总控电,降降机降下,真空腔挨开后,搁进需要的基片,决定基片位子(A、B、C、D),决定靶位子(1、2、3、4,其中4为荡涤靶).(2)基片战靶准备好后,降降机低重至真空腔稀启(注意:关关真空腔时用脚扶着顶盖,以统制顶盖与强敌的相对付位子,历程中注意仄安,留神挤压到脚指).(3)开用板滞泵,抽一分钟安排之后,挨开复合真空计,当示数约为10E-1量级时,开用分子泵,频次为400HZ(默认),共时预热离子荡涤挨开直流或者射流电源及流量隐现仪.(4)(采用支配)挨开加热控温电源.开用慢停统制,报警至于通位子,功能选则为烘烤.(5)然而真空度达到5×10-4Pa时,关关复合真空计,开开电离真空计,通氩气(流量20L/min),挨开气路阀,将流量计Ⅰ拨至阀控档,宁静后挨开离子源,依次安排加速至200V~250V ,中战到12A 安排,阳极80V ,阳极10V ,屏极300V .从监控步调中调开工艺树立文献,开用开初荡涤.(6)荡涤完成后,按离子源参数安排好同的程序将各参数归整,关关离子源,将流量计Ⅱ置于关关档.(7)流量计Ⅰ置于阀控档(瞅是可有读数,普遍为30.可则查明本果),安排统制电离真空计示数约1Pa ,安排直流或者射频电源到所需功率,开初镀膜.(8)镀膜历程中注意设备处事状态,若工艺参数有非常十分变更应即时纠正或者停止镀膜,问题办理后圆可重新镀膜.(9)镀膜完成后,关关直流或者射频电源,关关氩气总阀门.将挡板顺时针旋至最大通路.当气罐流量形成整后,关关流量计Ⅱ,继承抽半个小时到二个小时.(10)关关流量隐现仪战电离真空计,停止分子泵,频次降至100HZ 后关关板滞泵,5分钟后关关分子泵,关关总电源.由处事气压与重积率的关系表不妨瞅出:正在其余参数稳定的条件下,随着处事气压的删大,重积速率先删大后减小.正在某一个最佳处事气压下,有一个对付应的最大重积速率.气体分子仄衡自由程与压强犹如下关系其中λ为气体分子仄衡自由程, k 为玻耳兹曼常数,T 为气体温度, d 为气体分子直径, p 为气体压强.由此可知,正在脆持气体分子直径战睦体温度稳定的条件下,如果处事压强删大,则气体分子仄衡自由程将pd kT 2π2=λ减小,溅射本子与气体分子相互碰碰次数将减少,二次电子收射将巩固.而当处事气压过大时,重积速率会减小,本果犹如下二面:(1)由于气体分子仄衡自由程减小,溅射本子的背反射战受气体分子集射的几率删大,而且那一效用已经超出了搁电巩固的效用.溅射本子经多次碰碰后会有部分遁离重积天区,基片对付溅射本子的支集效用便会减小,从而引导了重积速率的降矮.(2)随着Ar气分子的删加,溅射本子与Ar气分子的碰碰次数洪量减少,那引导溅射本子能量正在碰碰历程中大大益坏,以致粒子到达基片的数量缩小,重积速率低重.通过考查及对付截止的分解不妨得出如下论断:正在其余参数稳定的条件下,随着处事气压的删大,重积率先删大后减小.正在某一个最佳处事气压下,有一个对付应的最大重积率.虽然以上处事气压与重积率的关系程序不过正在杂铜靶材战陶瓷基片上得到的,然而对付其余分歧靶材与基片的镀膜工艺钻研也具备一定的参照代价.参照文献[1]王删祸. 真用镀膜技能. 电子工业出版社,2008.[2]程守洙,江之永. 一般物理教. 北京:下等培养出版社, 1982.[3]宽一心,林鸿海. 薄膜技能. 北京:刀兵工业出版社,1994. [4].。
磁控溅射镀膜工艺介绍
磁控溅射镀膜工艺介绍
磁控溅射镀膜工艺是一种常用的表面涂层技术,也被称为磁控溅射
蒸镀。
其原理是利用高速电子束轰击靶材,使靶材表面的原子脱离,然后沉积在基底材料上,形成一层均匀的薄膜。
磁控溅射镀膜工艺主要包括以下几个步骤:
1. 准备工作:选取合适的靶材和基底材料,并确保其表面清洁和光
洁度达到要求。
2. 真空处理:将工作室内部抽空,使环境达到一定的真空度,以防
止污染和氧化。
3. 靶材激活:通常情况下,靶材需要通过预热和轰击来激活。
预热
可以提高靶材表面的活性,轰击则能够使靶材表面的原子脱离。
1
4. 沉积过程:在激活的靶材表面形成原子或分子流,通过准直系统控制沉积的方向和位置,最终将原子或分子沉积在基底材料上,形成一层薄膜。
5. 膜层控制:通过控制溅射功率、气压和沉积时间等参数,可以控制薄膜的成分、厚度和结构,以及表面的光洁度。
6. 薄膜检测:对沉积后的薄膜进行各种测试和检测,以确保其质量和性能符合要求。
磁控溅射镀膜工艺具有很多优点,如沉积速度快、薄膜均匀、沉积材料范围广、能够沉积复杂的多层结构等。
因此,在生产和科研领域都有广泛的应用,如制备光学薄膜、涂层保护和功能改性等。
2。
磁控溅射镀膜原理及工艺
磁控溅射镀膜原理及工艺之袁州冬雪创作摘要:真空镀膜技术作为一种发生特定膜层的技术,在现实生发生活中有着广泛的应用.真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀.这里主要讲一下由溅射镀膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究.关键词:溅射;溅射变量;工作气压;沉积率.绪论溅射现象于1870年开端用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产.常常使用二极溅射设备如右图.通常将欲沉积的资料制成板材-靶,固定在阴极上.基片置于正对靶面的阳极上,距靶一定间隔.系统抽至高真空后充入(10~1)帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,南北极间即发生辉光放电.放电发生的正离子在电场作用下飞向阴极,与靶概况原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围内.溅射原子在基片概况沉积成膜.其中磁控溅射可以被认为是镀膜技术中最突出的成就之一.它以溅射率高、基片温升低、膜-基连系力好、装置性能稳定、操纵节制方便等优点,成为镀膜工业应用范畴(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的平均性有特别刻薄要求的持续镀膜场合)的首选方案.1磁控溅射原理溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直放逐电离子镀)中的一种.磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离发生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶概况,使靶材发生溅射.在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而发生的二次电子会受到电场和磁场作用,发生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线.若为环形磁场,则电子就以近似摆线形式在靶概况做圆周运动,它们的运动途径不但很长,而且被束缚在接近靶概况的等离子体区域内,而且在该区域中电离出大量的Ar正离子来轰击靶材,从而实现了高的沉积速率.随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶概况,并在电场E的作用下最终沉积在基片上.由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低.磁控溅射是入射粒子和靶的碰撞过程.入射粒子在靶中履历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程.在这种级联过程中某些概况附近的靶原子获得向外运动的足够动量,分开靶被溅射出来.磁控溅射种类磁控溅射包含很多种类.各有分歧工作原理和应用对象.但有一共同点:操纵磁场与电场交互作用,使电子在靶概况附近成螺旋状运行,从而增大电子撞击氩气发生离子的概率.所发生的离子在电场作用下撞向靶面从而溅射出靶材.磁控溅射在技术上可以分为直流(DC)磁控溅射、中频(MF)磁控溅射、射频(RF)磁控溅射.三种分类的主要对比方下表.D C MF RF电源价格便宜一般昂贵靶材圆靶/矩形靶平面靶/旋转靶试验室一般用圆平面靶靶材材质要求导体无限制无限制抵御靶中毒才能弱强强应用金属金属/化合物工业上不采取此法2磁控溅射工艺研究溅射变量电压和功率在气体可以电离的压强范围内如果改变施加的电压,电路中等离子体的阻抗会随之改变,引起气体中的电流发生变更.改变气体中的电流可以发生更多或更少的离子,这些离子碰撞靶体便可以节制溅射速率.一般来讲:提高电压可以提高离化率.这样电流会增加,所以会引起阻抗的下降.提高电压时,阻抗的降低会大幅度地提高电流,即大幅度提高了功率.如果气体压强不变,溅射源下的基片的移动速度也是恒定的,那末沉积到基片上的资料的量则决议于施加在电路上的功率.在VONARDENNE镀膜产品中所采取的范围内,功率的提高与溅射速率的提高是一种线性的关系.气体环境真空系统和工艺气体系统共同节制着气体环境.首先,真空泵将室体抽到一个高真空(大约为10-6torr).然后,由工艺气体系统(包含压强和流量节制调节器)充入工艺气体,将气体压强降低到大约2×10-3torr.为了确保得到适当质量的同一膜层,工艺气体必须使用纯度为99.995%的高纯气体.在反应溅射中,在反应气体中混合少量的惰性气体(如氩)可以提高溅射速率.2.1.3 气体压强将气体压强降低到某一点可以提高离子的平均自由程、进而使更多的离子具有足够的能量去撞击阴极以便将粒子轰击出来,也就是提高溅射速率.超出该点之后,由于参与碰撞的分子过少则会导致离化量减少,使得溅射速率发生下降.如果气压过低,等离子体就会熄灭同时溅射停止.提高气体压强可以提高离化率,但是也就降低了溅射原子的平均自由程,这也可以降低溅射速率.可以得到最大沉积速率的气体压强范围非常狭窄.如果停止的是反应溅射,由于它会不竭消耗,所以为了维持平均的沉积速率,必须依照适当的速度补偿新的反应气体.2.1.4 传动速度玻璃基片在阴极下的移动是通过传动来停止的.降低传动速度使玻璃在阴极范围内颠末的时间更长,这样便可以沉积出更厚的膜层.不过,为了包管膜层的平均性,传动速度必须坚持恒定.镀膜区内一般的传动速度范围为每分钟0 ~ 600 英寸(大约为0 ~ 15.24 米)之间.根据镀膜资料、功率、阴极的数量以及膜层的种类的分歧,通常的运行范围是每分钟90 ~ 400(大约为2.286 ~ 10.16 米)英寸之间.2.1.5 间隔与速度及附着力为了得到最大的沉积速率并提高膜层的附着力,在包管不会破坏辉光放电自身的前提下,基片应当尽量放置在离阴极最近的地方.溅射粒子和气体分子(及离子)的平均自由程也会在其中发挥作用.当增加基片与阴极之间的间隔,碰撞的几率也会增加,这样溅射粒子到达基片时所具有的才能就会减少.所以,为了得到最大的沉积速率和最好的附着力,基片必须尽量地放置在接近阴极的位置上.工艺会受到很多参数的影响.其中,一些是可以在工艺运行期间改变和节制的;而别的一些则虽然是固定的,但是一般在工艺运行前可以在一定范围内停止节制.两个重要的固定参数是:靶布局和磁场.每个单独的靶都具有其自身的外部布局和颗粒方向.由于外部布局的分歧,两个看起来完全相同的靶材可以会出现迥然分歧的溅射速率.在镀膜操纵中,如果采取了新的或分歧的靶,应当特别注意这一点.如果所有的靶材块在加工期间具有相似的布局,调节电源,根据需要提高或降低功率可以对它停止抵偿.在一套靶中,由于颗粒布局分歧,也会发生分歧的溅射速率.加工过程会造成靶材外部布局的差别,所以即使是相同合金成分的靶材也会存在溅射速率的差别.同样,靶材块的晶体布局、颗粒布局、硬度、应力以及杂质等参数也会影响到溅射速率,而这些则可以会在产品上形成条状的缺陷.这也需要在镀膜期间加以注意.不过,这种情况只有通过更换靶材才干得到处理.靶材损耗区自身也会造成比较低下的溅射速率.这时候,为了得到优良的膜层,必须重新调整功率或传动速度.因为速度对于产品是至关重要的,所以尺度而且适当的调整方法是提高功率.用来捕获二次电子的磁场必须在整个靶面上坚持一致,而且磁场强度应当合适.磁场不平均就会发生不平均的膜层.磁场强度如果不适当(比方过低),那末即使磁场强度一致也会导致膜层沉积速率低下,而且可以在螺栓头处发生溅射.这就会使膜层受到污染.如果磁场强度过高,可以在开端的时候沉积速率会非常高,但是由于刻蚀区的关系,这个速率会迅速下降到一个非常低的水平.同样,这个刻蚀区也会造成靶的操纵率比较低.2.3可变参数在溅射过程中,通过改变改变这些参数可以停止工艺的动态节制.这些可变参数包含:功率、速度、气体的种类和压强.2.功率每个阴极都具有自己的电源.根据阴极的尺寸和系统设计,功率可以在0 ~ 150KW(标称值)之间变更.电源是一个恒流源.在功率节制形式下,功率固定同时监控电压,通过改变输出电流来维持恒定的功率.在电流节制形式下,固定并监控输出电流,这时可以调节电压.施加的功率越高,沉积速率就越大.2.速度另外一个变量是速度.对于单端镀膜机,镀膜区的传动速度可以在每分钟0 ~ 600英寸(大约为米)之间选择.对于双端镀膜机,镀膜区的传动速度可以在每分钟0 ~ 200英寸(大约为米)之间选择.在给定的溅射速率下,传动速度越低则暗示沉积的膜层越厚.2.最后一个变量是气体.可以在三种气体中选择两种作为主气体和辅气体来停止使用.它们之间,任何两种的比率也可以停止调节.气体压强可以在1 ~ 5×10-3 torr之间停止节制.2./基片之间的关系在曲面玻璃镀膜机中,还有一个可以调节的参数就是阴极与基片之间的间隔.平板玻璃镀膜机中没有可以调节的阴极.3试验①熟悉真空镀膜的操纵过程和方法.②懂得磁控溅射镀膜的原理及方法.③学会使用磁控溅射镀膜技术.④研究分歧工作气压对镀膜影响.SAJ-500超高真空磁控溅射镀膜机(配有纯铜靶材);氩气瓶;陶瓷基片;擦镜纸.3.3试验原理磁控溅射系统是在基本的二极溅射系统发展而来,处理二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应分明的问题.磁控溅射系统在阴极靶材的眼前放置强力磁铁,真空室充入0.1~10Pa 压力的惰性气体(Ar),作为气体放电的载体.在高压作用下Ar原子电离成为Ar+离子和电子,发生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子发生偏转,被束缚在接近靶概况的等离子体区域内,电子以摆线的方式沿着靶概况前进,在运动过程中不竭与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的布局的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高.颠末多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室内壁及靶源阳极上.而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材概况的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的概况飞向基片,并在基片上沉积形成薄膜.准备过程(1)动手操纵前认真学习讲操纵规程及有关资料,熟悉镀膜机和有关仪器的布局及功能、操纵程序与注意事项,包管平安操纵.(2)清洗基片.用无水酒精清洗基片,使基片镀膜面清洁无脏污后用擦镜纸包好,放在干燥器内备用.(3)镀膜室的清理与准备.先向真空腔内充气一段时间,然后升钟罩,装好基片,清理镀膜室,降下钟罩.试验主要流程(1)打开总电源,启动总控电,升降机上升,真空腔打开后,放入需要的基片,确定基片位置(A、B、C、D),确定靶位置(1、2、3、4,其中4为清洗靶).(2)基片和靶准备好后,升降机下降至真空腔密封(注意:关闭真空腔时用手扶着顶盖,以节制顶盖与强敌的相对位置,过程中注意平安,小心挤压到手指).(3)启动机械泵,抽一分钟左右之后,打开复合真空计,当示数约为10E-1量级时,启动分子泵,频率为400HZ(默许),同时预热离子清洗打开直流或射流电源及流量显示仪.(4)(选择操纵)打开加热控温电源.启动急停节制,报警至于通位置,功能选则为烘烤.(5)但真空度达到5×10-4Pa时,关闭复合真空计,开启电离真空计,通氩气(流量20L/min),打开气路阀,将流量计Ⅰ拨至阀控档,稳定后打开离子源,依次调节加速至200V~250V,中和到12A左右,阳极80V ,阴极10V ,屏极300V.从监控程序中调出工艺设置文件,启动开端清洗.(6)清洗完成后,按离子源参数调节相反的顺序将各参数归零,关闭离子源,将流量计Ⅱ置于关闭档.(7)流量计Ⅰ置于阀控档(看是否有读数,一般为30.否则查明原因),调节节制电离真空计示数约1Pa ,调节直流或射频电源到所需功率,开端镀膜.(8)镀膜过程中注意设备工作状态,若工艺参数有异常变更应及时改正或停止镀膜,问题处理后方可重新镀膜.(9)镀膜完毕后,关闭直流或射频电源,关闭氩气总阀门.将挡板逆时针旋至最大通路.当气罐流质变成零后,关闭流量计Ⅱ,继续抽半个小时到两个小时.(10)关闭流量显示仪和电离真空计,停止分子泵,频率降至100HZ 后关闭机械泵,5分钟后关闭分子泵,关闭总电源.备注:纯铜含铜率≥99.99%由工作气压与沉积率的关系表可以看出:在其他参数不变的条件下,随着工作气压的增大,沉积速率先增大后减小.在某一个最佳工作气压下,有一个对应的最大沉积速率.气体分子平均自由程与压强有如下关系其中λ为气体分子平均自由程, k 为玻耳兹曼常数,T 为气体温度, d 为气体分子直径, p 为气体压强.由此可知,在坚持气体分子直径和气体温度不变的条件下,如果工作压强增大,则气体分子平均自由程将减小,溅射原子与气体分子相互碰撞次数将增加,二次电子发射将pd kT 2π2=λ增强.而当工作气压过大时,沉积速率会减小,原因有如下两点:(1)由于气体分子平均自由程减小,溅射原子的背反射和受气体分子散射的几率增大,而且这一影响已经超出了放电增强的影响.溅射原子经多次碰撞后会有部分逃离沉积区域,基片对溅射原子的收集效率就会减小,从而导致了沉积速率的降低.(2)随着Ar气分子的增多,溅射原子与Ar气分子的碰撞次数大量增加,这导致溅射原子能量在碰撞过程中大大损失,致使粒子到达基片的数量减少,沉积速率下降.通过试验及对成果的分析可以得出如下结论:在其他参数不变的条件下,随着工作气压的增大,沉积率先增大后减小.在某一个最佳工作气压下,有一个对应的最大沉积率.虽然以上工作气压与沉积率的关系规律只是在纯铜靶材和陶瓷基片上得到的,但对其他分歧靶材与基片的镀膜工艺研究也具有一定的参考价值.参考文献[1]王增福. 实用镀膜技术. 电子工业出版社,2008.[2]程守洙,江之永. 普通物理学. 北京:高等教导出版社, 1982.[3]严一心,林鸿海. 薄膜技术. 北京:刀兵工业出版社,1994. [4].。
磁控溅射镀膜原理和工艺设计
礒控溅射镀膜原理及工艺扌商要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。
真空镀膜技术有三种形式,即蒸发镀膜、溅豺镀膜和离子镀。
这里主要讲一下由溅豺镀膜技术发履来的磁控溅射镀膜的原理及相应工艺的研究。
关键说]:溅射:概射变童;工作气压;沉积率。
绪论溅射现象于1870年幵始用于镀膜技术,1930年以后由于捉高了沉积速率而逐渐用于工业生产。
常用二极濺射设备如右图。
通常将欲沉积的材料制成板材-靶,固定在阴极上。
基片置于正对鞄面的阳极上,距靶一定距离。
系统抽至高真空后充入(10〜1)帕的气体(通常为氮乞),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。
放电产生的正离子在电场作用下飞向阴极,与耗表面原子碰撞,受碰-撞从靶面逸出的靶原子称为溅.射眉子,其能量在1至几十电子伏范围内。
溅.射原子在基片表面沉积成蹊。
其中磁控溅豺可以被认为是镀膜技术中最突岀的成就之一。
它以溅豺率高、基片温升低、旗-基结合力好、装置性能稳定、操作控制方便等优点,成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案。
1磁控溅射原理溅射属于PDV (物理乞相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极禹子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频禹子镀、直流放电离子镀)中的一种。
磁控溅.射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氮原子发生碰扌童,使其电离产生岀Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击轮表面,使轮材发生溅射。
在溅豺粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E (电场〉XB (磁场〉所指的方向漂移,简称EXB漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运 动路径不仅很妆,而且被束缚在蠡近靶表面的等离子体区域内,并且在该区域中电离表面附近的靶原子获得向外运动的足够动量,离开-鞄被懑射出来。
磁控溅射属于等离子体镀膜的原理
磁控溅射属于等离子体镀膜的原理一、磁控溅射技术概述磁控溅射技术是一种常用的薄膜制备技术,广泛应用于光学薄膜、电子器件、陶瓷材料等领域。
它利用磁场作用下的等离子体来制备薄膜,具有高附着力、高镀率、均匀性好等优点。
二、磁控溅射镀膜原理磁控溅射镀膜的原理基于溅射效应和电子轰击效应。
在磁控溅射设备中,将待镀物作为靶材,通过高能粒子轰击靶材表面,使靶材表面的原子或分子脱离,形成等离子体。
然后,利用磁场的作用,将等离子体中的离子引导到待镀物表面,形成均匀的薄膜。
三、磁控溅射工艺过程磁控溅射工艺一般包括预处理、溅射镀膜和后处理三个步骤。
1. 预处理:在进行磁控溅射镀膜之前,需要对待镀物进行表面清洁和处理。
常用的预处理方法有超声波清洗、溶剂清洗、离子清洗等,这些方法可以有效去除表面的杂质和氧化物,提高薄膜附着力。
2. 溅射镀膜:在预处理完成后,将待镀物和靶材放置在真空室中,通过抽气将真空度提高到一定程度。
然后,在电弧放电或射频场的作用下,使靶材表面的原子或分子脱离,形成等离子体。
通过调节磁场的强度和方向,控制离子的运动轨迹,使其沉积在待镀物表面,形成均匀的薄膜。
3. 后处理:在薄膜形成后,需要进行后处理以提高薄膜的性能。
后处理包括退火、氧化、抛光等步骤,可以改善薄膜的结晶性、致密性和光学性能。
四、磁控溅射技术的优势与其他薄膜制备技术相比,磁控溅射技术具有以下优势:1. 高附着力:由于磁控溅射过程中离子能量较高,使得薄膜与基底之间的结合更紧密,附着力更强。
2. 高镀率:磁控溅射技术可以实现较高的镀率,镀膜速度快,可以提高生产效率。
3. 均匀性好:通过调节磁场的强度和方向,可以控制离子的运动轨迹,使薄膜在待镀物表面均匀沉积。
4. 可控性强:磁控溅射技术可以通过调节工艺参数,如气压、离子能量、靶材成分等,来控制薄膜的组成、结构和性能。
五、磁控溅射技术在实际应用中的例子磁控溅射技术在光学薄膜、电子器件和陶瓷材料等领域有着广泛的应用。
磁控溅射法制备薄膜材料实验报告
实验一磁控溅射法制备薄膜材料一、实验目的1.详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜, 如金属铜膜;3.测量制备金属膜的电学性能和光学性能;二、 4、掌握实验数据处理和分析方法, 并能利用 Origin 绘图软件对实验数据进行处理和分析。
三、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。
四、实验原理1.磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上, 辉光放电是只在真空度约为几帕的稀薄气体中, 两个电极之间加上电压时产生的一种气体放电现象。
辉光放电时, 两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述, 以气压为1.33Pa 的 Ne 为例, 其关系如图 5 -1 所示。
图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后, 由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。
随着电压的升高, 带电离子和电子获得足够能量, 与中性气体分子碰撞产生电离, 使电流逐步提高, 但是电压受到电源的高输出阻抗限制而为一常数, 该区域称为“汤姆森放电”区。
一旦产生了足够多的离子和电子后, 放电达到自持, 气体开始起辉, 出现电压降低。
进一步增加电源功率, 电压维持不变, 电流平稳增加, 该区称为“正常辉光放电”区。
当离子轰击覆盖了整个阴极表面后, 继续增加电源功率, 可同时提高放电区内的电压和电流密度, 形成均匀稳定的“异常辉光放电”, 这个放电区就是通常使用的溅射区域。
随后继续增加电压, 当电流密度增加到~0.1A/cm 2时, 电压开始急剧降低, 出现低电压大电流的弧光放电, 这在溅射中应力求避免。
(2)溅射通常溅射所用的工作气体是纯氩, 辉光放电时, 电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞, 电离出大量的氩离子和电子, 电子飞向基片。
氩离子在电场的作用下加速轰击靶材, 溅射出大量的靶材原子, 这些被溅射出来的原子具有一定的动能, 并会沿着一定的方向射向衬底, 从而被吸附在衬底上沉积成膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁控溅射镀膜原理及工艺摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。
真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。
这里主要讲一下由溅射镀膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。
关键词:溅射;溅射变量;工作气压;沉积率。
绪论溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。
常用二极溅射设备如右图。
通常将欲沉积的材料制成板材-靶,固定在阴极上。
基片置于正对靶面的阳极上,距靶一定距离。
系统抽至高真空后充入(10~1)帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。
放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏围。
溅射原子在基片表面沉积成膜。
其中磁控溅射可以被认为是镀膜技术中最突出的成就之一。
它以溅射率高、基片温升低、膜-基结合力好、装置性能稳定、操作控制方便等优点,成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案。
1磁控溅射原理溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。
磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域,并且在该区域中电离出大量的Ar正离子来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射是入射粒子和靶的碰撞过程。
入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。
在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。
1.1磁控溅射种类磁控溅射包括很多种类。
各有不同工作原理和应用对象。
但有一共同点:利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。
所产生的离子在电场作用下撞向靶面从而溅射出靶材。
1.1.1技术分类磁控溅射在技术上可以分为直流(DC)磁控溅射、中频(MF)磁控溅射、射频(RF)磁控溅射。
D C MF RF电源价格便宜一般昂贵靶材圆靶/矩形靶平面靶/旋转靶试验室一般用圆平面靶靶材材质要求导体无限制无限制抵御靶中毒能力弱强强应用金属金属/化合物工业上不采用此法可靠性好较好较好2磁控溅射工艺研究2.1溅射变量2.1.1电压和功率在气体可以电离的压强围如果改变施加的电压,电路中等离子体的阻抗会随之改变,引起气体中的电流发生变化。
改变气体中的电流可以产生更多或更少的离子,这些离子碰撞靶体就可以控制溅射速率。
一般来说:提高电压可以提高离化率。
这样电流会增加,所以会引起阻抗的下降。
提高电压时,阻抗的降低会大幅度地提高电流,即大幅度提高了功率。
如果气体压强不变,溅射源下的基片的移动速度也是恒定的,那么沉积到基片上的材料的量则决定于施加在电路上的功率。
在VONARDENNE镀膜产品中所采用的围,功率的提高与溅射速率的提高是一种线性的关系。
2.1.2气体环境真空系统和工艺气体系统共同控制着气体环境。
首先,真空泵将室体抽到一个高真空(大约为10-6torr)。
然后,由工艺气体系统(包括压强和流量控制调节器)充入工艺气体,将气体压强降低到大约2×10-3torr。
为了确保得到适当质量的同一膜层,工艺气体必须使用纯度为99.995%的高纯气体。
在反应溅射中,在反应气体中混合少量的惰性气体(如氩)可以提高溅射速率。
2.1.3 气体压强将气体压强降低到某一点可以提高离子的平均自由程、进而使更多的离子具有足够的能量去撞击阴极以便将粒子轰击出来,也就是提高溅射速率。
超过该点之后,由于参与碰撞的分子过少则会导致离化量减少,使得溅射速率发生下降。
如果气压过低,等离子体就会熄灭同时溅射停止。
提高气体压强可以提高离化率,但是也就降低了溅射原子的平均自由程,这也可以降低溅射速率。
能够得到最大沉积速率的气体压强围非常狭窄。
如果进行的是反应溅射,由于它会不断消耗,所以为了维持均匀的沉积速率,必须按照适当的速度补充新的反应气体。
2.1.4 传动速度玻璃基片在阴极下的移动是通过传动来进行的。
降低传动速度使玻璃在阴极围经过的时间更长,这样就可以沉积出更厚的膜层。
不过,为了保证膜层的均匀性,传动速度必须保持恒定。
镀膜区一般的传动速度围为每分钟0 ~ 600 英寸(大约为0 ~ 15.24 米)之间。
根据镀膜材料、功率、阴极的数量以及膜层的种类的不同,通常的运行围是每分钟90 ~ 400(大约为2.286 ~ 10.16 米)英寸之间。
2.1.5 距离与速度及附着力为了得到最大的沉积速率并提高膜层的附着力,在保证不会破坏辉光放电自身的前提下,基片应当尽可能放置在离阴极最近的地方。
溅射粒子和气体分子(及离子)的平均自由程也会在其中发挥作用。
当增加基片与阴极之间的距离,碰撞的几率也会增加,这样溅射粒子到达基片时所具有的能力就会减少。
所以,为了得到最大的沉积速率和最好的附着力,基片必须尽可能地放置在靠近阴极的位置上。
2.2系统参数工艺会受到很多参数的影响。
其中,一些是可以在工艺运行期间改变和控制的;而另外一些则虽然是固定的,但是一般在工艺运行前可以在一定围进行控制。
两个重要的固定参数是:靶结构和磁场。
2.2.1靶结构每个单独的靶都具有其自身的部结构和颗粒方向。
由于部结构的不同,两个看起来完全相同的靶材可能会出现迥然不同的溅射速率。
在镀膜操作中,如果采用了新的或不同的靶,应当特别注意这一点。
如果所有的靶材块在加工期间具有相似的结构,调节电源,根据需要提高或降低功率可以对它进行补偿。
在一套靶中,由于颗粒结构不同,也会产生不同的溅射速率。
加工过程会造成靶材部结构的差异,所以即使是相同合金成分的靶材也会存在溅射速率的差异。
同样,靶材块的晶体结构、颗粒结构、硬度、应力以及杂质等参数也会影响到溅射速率,而这些则可能会在产品上形成条状的缺陷。
这也需要在镀膜期间加以注意。
不过,这种情况只有通过更换靶材才能得到解决。
靶材损耗区自身也会造成比较低下的溅射速率。
这时候,为了得到优良的膜层,必须重新调整功率或传动速度。
因为速度对于产品是至关重要的,所以标准而且适当的调整方法是提高功率。
2.2.2磁场用来捕获二次电子的磁场必须在整个靶面上保持一致,而且磁场强度应当合适。
磁场不均匀就会产生不均匀的膜层。
磁场强度如果不适当(比如过低),那么即使磁场强度一致也会导致膜层沉积速率低下,而且可能在螺栓头处发生溅射。
这就会使膜层受到污染。
如果磁场强度过高,可能在开始的时候沉积速率会非常高,但是由于刻蚀区的关系,这个速率会迅速下降到一个非常低的水平。
同样,这个刻蚀区也会造成靶的利用率比较低。
2.3可变参数在溅射过程中,通过改变改变这些参数可以进行工艺的动态控制。
这些可变参数包括:功率、速度、气体的种类和压强。
2.3.1功率每一个阴极都具有自己的电源。
根据阴极的尺寸和系统设计,功率可以在0 ~ 150KW(标称值)之间变化。
电源是一个恒流源。
在功率控制模式下,功率固定同时监控电压,通过改变输出电流来维持恒定的功率。
在电流控制模式下,固定并监控输出电流,这时可以调节电压。
施加的功率越高,沉积速率就越大。
2.3.2速度另一个变量是速度。
对于单端镀膜机,镀膜区的传动速度可以在每分钟0 ~ 600英寸(大约为0 ~ 15.24米)之间选择。
对于双端镀膜机,镀膜区的传动速度可以在每分钟0 ~ 200英寸(大约为0 ~ 5.08米)之间选择。
在给定的溅射速率下,传动速度越低则表示沉积的膜层越厚。
2.3.3气体最后一个变量是气体。
可以在三种气体中选择两种作为主气体和辅气体来进行使用。
它们之间,任何两种的比率也可以进行调节。
气体压强可以在1 ~ 5×10-3 torr之间进行控制。
2.3.4阴极/基片之间的关系在曲面玻璃镀膜机中,还有一个可以调节的参数就是阴极与基片之间的距离。
平板玻璃镀膜机中没有可以调节的阴极。
3试验3.1试验目的①熟悉真空镀膜的操作过程和方法。
②了解磁控溅射镀膜的原理及方法。
③学会使用磁控溅射镀膜技术。
④研究不同工作气压对镀膜影响。
3.2试验设备SAJ-500超高真空磁控溅射镀膜机(配有纯铜靶材);氩气瓶;瓷基片;擦镜纸。
3.3试验原理3.3.1磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。
磁控溅射系统在阴极靶材的背后放置强力磁铁,真空室充入0.1~10Pa 压力的惰性气体(Ar),作为气体放电的载体。
在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域等离子体密度很高。
经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,最终落在基片、真空室壁及靶源阳极上。
而Ar+离子在高压电场加速作用下,与靶材的撞击并释放出能量,导致靶材表面的原子吸收Ar+离子的动能而脱离原晶格束缚,呈中性的靶原子逸出靶材的表面飞向基片,并在基片上沉积形成薄膜。
3.4试验过程3.4.1准备过程(1)动手操作前认真学习讲操作规程及有关资料,熟悉镀膜机和有关仪器的结构及功能、操作程序与注意事项,保证安全操作。
(2)清洗基片。
用无水酒精清洗基片,使基片镀膜面清洁无脏污后用擦镜纸包好,放在干燥器备用。
(3)镀膜室的清理与准备。
先向真空腔充气一段时间,然后升钟罩,装好基片,清理镀膜室,降下钟罩。
3.4.2试验主要流程(1)打开总电源,启动总控电,升降机上升,真空腔打开后,放入需要的基片,确定基片位置(A、B、C、D),确定靶位置(1、2、3、4,其中4为清洗靶)。