导数题型方法总结(绝对经典)
导数知识点各种题型归纳方法总结
![导数知识点各种题型归纳方法总结](https://img.taocdn.com/s3/m/f6c5e9fda0c7aa00b52acfc789eb172ded6399bc.png)
导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数各类题型方法总结(绝对经典)
![导数各类题型方法总结(绝对经典)](https://img.taocdn.com/s3/m/cdc9732faf1ffc4fff47ac30.png)
依题得
0 a 1,2a a 1
第三种:构造函数求最值 题型特征 : f (x) g(x)恒成立
f (x) g(x) 恒成立, 从而转化成第一、 二种处理方法
2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否 需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数) -----(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
3、根分布;
2
4、判别式法 f (x) x3 3ax2 3在R上单调递增,则a
5、二次函数区间最值求法:
(1)对称轴(重视单调区间)与定义域的关系
(2)端点处和顶点是最值所在
一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下四个步骤进行解决: 第一步:写定义域并求导 第二步:令导函数为0求根 第三步:列表或画图(注意又赋值) 第四步:作答求值。
1 1 3
3 4或1 1 1 3
t
3 4,
t
t
(i)0 t 2 3时, h(4) 0, t 1
1 t 2 3
4
4
(ii)t 2 3时, h(1 1) 0, t
此时 0, 2 3 t 2 3(舍去) 综上所述t的取值范围是1 t 2 3
--(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
二、常考题型一:已知函数在某个区间上的单调性求参数的范围
解法一 : 转化为f '(x) 0或f '(x) 0恒成立,回归基础题型
解法二:利用子区间(即子集思想); 首先求出函数的单调增或减区间, 然后让所给区间是求的增或减区间的子集;
导数题型总结(12种题型)
![导数题型总结(12种题型)](https://img.taocdn.com/s3/m/228a0cfaa26925c52cc5bfb8.png)
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数常考题型归纳总结
![导数常考题型归纳总结](https://img.taocdn.com/s3/m/950bc1785627a5e9856a561252d380eb629423de.png)
导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。
在高中数学中,导数是一个常考的内容。
为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。
一、常数函数求导常数函数的导数始终为零。
这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。
二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。
设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。
例如,对于y=x^2,求导后得到dy/dx=2x。
对于y=x^3,求导后得到dy/dx=3x^2。
这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。
三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。
即dy/dx = e^x。
这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。
四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。
根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。
这个公式对于解决对数函数的导数问题非常有用。
五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。
我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。
这些公式可以根据求导的定义进行推导,同学们需要牢记。
六、复合函数求导复合函数指的是由多个函数复合而成的函数。
对于复合函数的导数求解,我们可以利用链式法则。
链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。
通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。
导数大题20种主要题型总结及解题方法
![导数大题20种主要题型总结及解题方法](https://img.taocdn.com/s3/m/85bf0183970590c69ec3d5bbfd0a79563c1ed480.png)
导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
导数大题题型归纳解题方法
![导数大题题型归纳解题方法](https://img.taocdn.com/s3/m/93be0d75f011f18583d049649b6648d7c1c70818.png)
导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
(整理)导数应用的题型与解题方法.
![(整理)导数应用的题型与解题方法.](https://img.taocdn.com/s3/m/15c34610482fb4daa58d4bc8.png)
导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
导数经典题型及解答策略
![导数经典题型及解答策略](https://img.taocdn.com/s3/m/c24dc8abf90f76c661371af5.png)
导数经典题型及解答策略对基础典型题进行归类解析,并辅之以同类变式题目进行巩固练习,是老师教学笔记的核心内容与教学精华所在,也是提高学生好题本含金量的试题秘集。
当学生会总结数学题,会对所做的题目分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了学数学的窍门,才能真正做到"任它千变万化,我自岿然不动"。
题型一:利用导数概念求导数例1.已知s=221gt ,求t=3秒时的瞬时速度。
解析:由题意可知某段时间内的平均速度t s ∆∆随t ∆变化而变化,t ∆越小,t s∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,ts∆∆的极限。
V=0lim →∆x t s ∆∆=0lim →∆x =∆-∆+t s t s )3()3(0lim →∆x t g t g ∆-∆+22321)3(21=g 21lim →∆x (6+)t ∆=3g=29.4(米/秒)。
变式练习:求函数y=24x 的导数。
解析:2222)()2(44)(4x x x x x x x x x y ∆+∆+∆-=-∆+=∆22)(24x x x xx x y ∆+∆+⋅-=∆∆∴00limlim→∆→∆=∆∆x x x y⎥⎦⎤⎢⎣⎡∆+∆+⋅-22)(24x x x x x =-38x 2、例2已知函数y =f (x )在x =x 0处的导数为11,则li mΔx →0f (x 0-2Δx )-f (x 0)Δx=____解析:li mΔx →0 f (x 0-2Δx )-f (x 0)Δx =-2li m-2Δx →0 f (x 0-2Δx )-f (x 0)-2Δx=-2f ′(x 0)=-2×11=-22. 变式练习:若f ′(x 0)=2,求lim k →0 f (x 0-k )-f (x 0)2k的值. 解:令-k =Δx ,∵k →0,∴Δx →0.则原式可变形为lim Δx →0 f (x 0+Δx )-f (x 0)-2Δx=-12lim Δx →0 f (x 0+Δx )-f (x )Δx =-12f ′(x 0)=-12×2=-1. 二、题型二:深入领会导数的几何意义导数的几何意义: 导数值对应函数在该点处的切线斜率。
导数题的十大解题技巧
![导数题的十大解题技巧](https://img.taocdn.com/s3/m/dd38f218ec630b1c59eef8c75fbfc77da3699758.png)
导数题的十大解题技巧一、导数概念1、先了解基本的导数概念,掌握常用的求导法则,如链式规则、技术分解法之类的解题方法。
二、根据定义式求导数2、若检验某函数的连续性,则可以用极限的方法求出导数,考虑函数的不同取值求导数的变化。
三、图像的理解运用3、利用函数图像求取导数,判断函数的性质,进而探究关于函数的性质,例如凸凹形态等。
四、反比例函数求导4、利用反比例函数求导,了解反比例函数的导数特征,能快速求得反比例函数的导数的函数,有效提高解题效率。
五、指数函数求导5、利用指数函数求导,弄清楚指数函数的导数特点,掌握求取指数函数导数的方法,做到心中有数,有助于提高解题效率。
六、复合函数求导6、利用复合函数求导,它的求导需要利用到链式规则和技术分解法等方法,能够准确求取复合函数的导数,配合其他解题方式,可以准确解出复杂的复合函数的导数。
七、导数的几何意义7、根据函数的解析式对曲线进行分析,用导数的几何意义可以很好的分析函数的凹凸性,分别解决凸函数和凹函数的情况,利用几何图形可以直观的确定曲线的凹凸性。
八、极值点8、从求导的角度出发,考虑一元函数的极值点,掌握求极值点的基本方法,主要是求解一阶导数的极限即可,结合函数的定义域可以判断函数的极值点分布情况。
九、积分函数求导9、由于积分函数可以形成函数,而函数求导可以利用积分函数求导,根据求积分的原则可以对积分函数进行求导,如分部积分法、积分反演法等,考虑函数在定义域的变化,可以熟练掌握积分函数的求导方法。
十、椭圆函数求导10、考虑函数的特点,可以把椭圆函数拆分为有限多个单独的函数,再利用求导法则求取导数,合并求得得出椭圆函数的导数,熟练掌握椭圆函数的求导方法,可以有效提高解题的效率。
导数超经典汇编 绝对经典
![导数超经典汇编 绝对经典](https://img.taocdn.com/s3/m/fecf3a1059eef8c75fbfb3bd.png)
1已知函数,.(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;(3)求函数在x∈[1,6]上的最小值.解:(1)因为a=2,且x∈[2,3],所以f(x)=e|x﹣3|+e|x﹣2|+1=e3﹣x+e x﹣1==2e,当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分(2)由题意知,当x∈[a,+∞)时,e|x﹣2a+1|≤e|x﹣a|+1,即|x﹣2a+1|≤|x﹣a|+1 恒成立…6分所以|x﹣2a+1|≤x﹣a+1,即2ax≥3a2﹣2a 对x∈[a,+∞)恒成立,则由,得所求a的取值范围是0≤a≤2…9分(3)记h1(x)=|x﹣(2a﹣1)|,h2(x)=|x﹣a|+1,则h1(x),h2(x)的图象分别是以(2a﹣1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.①当1≤2a﹣1≤6,即1≤a≤时,∴g(x)在x∈[1,6]上的最小值为f1(2a﹣1)=e0=1…10分②当a<1时,可知2a﹣1<a,所以(ⅰ)当h1(a)≤h2(a),得|a﹣(2a﹣1)|≤1,即﹣2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2﹣a;(ii)当h1(a)>h2(a),得|a﹣(2a﹣1)|>1,即a<﹣2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3﹣2a;③当a>时,因为2a﹣1>a,可知2a﹣1>6,且h1(6)=2a﹣7>a﹣5=h2(6),所以(ⅰ)当时,g(x)的最小值为f2(a)=e(ii)当a>6时,因为h1(a)=a﹣1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=e a﹣5…15分综上所述,函数g(x)在x∈[1,6]上的最小值为…2已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.若f(x)的最小值为1,求a的取值范围.解:f′(x)=,∵x≥0,a>0,∴ax+1>0,1+x>0.当a≥2时,在区间(0,+∞)上f′(x)≥0,f(x)递增,f(x)的最小值为f(0)=1.当0<a<2时,由f′(x)>0,解得x>;由f′(x)<0,解得x<.∴f(x)的单调减区间为(0,),单调增区间为(,+∞).于是,f(x)在x=处取得最小值f()<f(0)=1,不合.综上可知,若f(x)得最小值为1,则a的取值范围是[2,+∞)3.(1)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;(3)当x∈[1,2]时,不等式恒成立,求实数m的取值范围.解:(1),令x+1=t,t<0,则=因为x<﹣1,所以t<0,所以,当,所以,即AP的最小值是,此时,点P的坐标是.(2)问题即为对x∈[1,2]恒成立,也就是对x∈[1,2]恒成立,要使问题有意义,0<m<1或m>2.法一:在0<m<1或m>2下,问题化为对x∈[1,2]恒成立,即对x∈[1,2]恒成立,mx﹣m≤x2≤mx+m对x∈[1,2]恒成立,①当x=1时,或m>2,②当x≠1时,且对x∈(1,2]恒成立,对于对x∈(1,2]恒成立,等价于,令t=x+1,x∈(1,2],则x=t﹣1,t∈(2,3],,t∈(2,3]递增,∴,,结合0<m<1或m>2,∴m>2对于对x∈(1,2]恒成立,等价于令t=x﹣1,x∈(1,2],则x=t+1,t∈(0,1],,t∈(0,1]递减,∴,∴m≤4,∴0<m<1或2<m≤4,综上:2<m≤4法二:问题即为对x∈[1,2]恒成立,也就是对x∈[1,2]恒成立,要使问题有意义,0<m<1或m>2.故问题转化为x|x﹣m|≤m对x∈[1,2]恒成立,令g(x)=x|x﹣m|①若0<m<1时,由于x∈[1,2],故g(x)=x(x﹣m)=x2﹣mx,g(x)在x∈[1,2]时单调递增,依题意g(2)≤m,,舍去;②若m>2,由于x∈[1,2],故,考虑到,再分两种情形:(ⅰ),即2<m≤4,g(x)的最大值是,依题意,即m≤4,∴2<m≤4;(ⅱ),即m>4,g(x)在x∈[1,2]时单调递2<m≤44已知函数(a∈R).求函数f(x)在[0,2]上的最小值.令t=x+1,则t∈[1,3]∴f(x)=g(t)=,g′(t)=﹣若a+1=0,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0若a+1≠0,则g(t)在(0,|a+1|)上递减,在(|a+1|,+∞)上递增,①若0<|a+1|≤1,即﹣2≤a≤0且a≠﹣1时,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0;②若1<|a+1|<3,即﹣4<a<﹣2或0<a<2,g(t)在[1,|a+1|]上递减,在[|a+1|,3]递增,故g(t)即f(x)的最小值为g(|a+1|)=2|a+1|﹣(a2+2a+2);③若|a+1|≥3,即a≥2或a≤﹣4时,g(t)在t∈[1,3]上递减,故g(t)即f(x)的最小值为综上所述:f(x)min=.经典5.已知函数,记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.证明:(i)若a≤0,则f'(x)≥0,f(x)在(0,+∞)上为单调增函数,所以直线l与y=F(x)的图象不可能有两个切点,不合题意.(ⅱ)若a>0,f(x)在x=a处取得极值f(a)=1+lna.若1+lna≥0,a≥时,由图象知不可能有两个切点.故0<a<,设f(x)图象与x轴的两个切点的横坐标为s,t(不妨设s <t),则直线l与y=F(x)的图象有两个切点即为直线l与和的切点.y1'=﹣=,y2'=﹣+=,设切点分别为A(x1,y1),B(x2,y2),则0<x1<x2,且==﹣﹣,==+,=,即=1﹣lnx 1…①;=1﹣lnx2…②;a=,③①﹣②得:﹣=﹣lnx1+lnx2=﹣ln,由③中的a代入上式可得:(﹣)•,即,令=k(0<k<1),则(k2+1)lnk=2k2﹣2,令G(k)=(k2+1)lnk﹣2k2+2,(0<k<1),因为=1﹣>0,=﹣<0,故存在k0∈(0,1),使得G(k0)=0,即存在一条过原点的直线l与y=F(x)的图象有两个切点6.设函数f(x)=alnx(x>0);当若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围.解:若不等式f(x)≥m+x对所有的都成立,则alnx≥m+x对所有的都成立,即m≤alnx﹣x,对所有的都成立,(8分)令h(a)=alnx﹣x,则h(a)为一次函数,m≤h(a)min∵x∈(1,e2],∴lnx>0,∴上单调递增∴h(a)min=h(0)=﹣x,∴m≤﹣x对所有的x∈(1,e2]都成立,∵1<x≤e2,∴﹣e2≤﹣x<﹣1,∴m≤(﹣x)min=﹣e2.(13分)7已知函数f(x)=(x2﹣3x+3)e x,其定义域为[﹣2,t](t>﹣2),)求证:对于任意的t >﹣2,总存在x n∈(﹣2,t),满足=,并确定这样的x o的个数.证明:∵,∴=∴=0(,)﹣足8f(x)=x3﹣12x+1…设0<m≤2,若对任意的t1,t2∈[m﹣2,m],不等式|f(t1)﹣f(t2)|≤16m恒成立,求实数m的最小值.如果m不受限制呢?解:求导数f′(x)=3(x+2)(x﹣2),则f(x)在[﹣2,2]上单调递减,在[2,+∞)上单调递增∵0<m≤2,∴﹣2<m﹣2≤0,∴f(x)在[m﹣2,m]上单调递减∴[f(x)]max=f(m﹣2),[f(x)]min=f(m)依题意[f(x)]max﹣[f(x)]min≤16m,即3m2+2m ﹣8≥0∴m≤﹣2或m≥∵0<m≤2,∴∴m的最小值为…9(已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,求实数a的取值范围.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x ﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna 单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f (x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).10已知函数(a∈R).(3)求函数f(x)在[0,2]上的最小值.令t=x+1,则t∈[1,3]∴f(x)=g(t)=,g′(t)=﹣若a+1=0,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0若a+1≠0,则g(t)在(0,|a+1|)上递减,在(|a+1|,+∞)上递增,①若0<|a+1|≤1,即﹣2≤a≤0且a≠﹣1时,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0;②若1<|a+1|<3,即﹣4<a<﹣2或0<a<2,g(t)在[1,|a+1|]上递减,在[|a+1|,3]递增,故g(t)即f(x)的最小值为g(|a+1|)=2|a+1|﹣(a2+2a+2);③若|a+1|≥3,即a≥2或a≤﹣4时,g(t)在t∈[1,3]上递减,故g(t)即f(x)的最小值为综上所述:f(x)min=12.设函数f(x)=x2﹣(a﹣2)x﹣alnx.(2)若函数有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:.解:(1)x∈(0,+∞)==.当a≤0时,f′(x)>0,函数f(x)在(0,+∞0上单调递增,即f(x)的单调递增区间为(0,+∞).当a>0时,由f′(x)>0得;由f′(x)<0,解得.所以函数f(x)的单调递增区间为,单调递减区间为.(2)由(1)可得,若函数f(x)有两个零点,则a>0,且f(x)的最小值,即.∵a>0,∴.令h(a)=a+﹣4,可知h (a)在(0,+∞)上为增函数,且h(2)=﹣2,h(3)==,所以存在零点h(a0)=0,a0∈(2,3),当a>a0时,h(a)>0;当0<a<a0时,h(a)<0.所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2﹣ln3)>0,f(1)=0,∴a=3时,f(x)由两个零点.综上所述,满足条件的最小正整数a的值为3.(3)∵x1,x2是方程f(x)=c得两个不等实数根,由(1)可知:a>0.不妨设0<x1<x2.则,.两式相减得+alnx2=0,化为a=.∵,当时,f′(x)<0,当时,f′(x)>0.故只要证明即可,即证明x1+x2>,即证明,设,令g(t)=lnt﹣,则=.∵1>t>0,∴g′(t)>0∴g(t)在(0,1)上是增函数,又在t=1处连续且g(1)=0,∴当t∈(0,1)时,g(t)<0纵成立.13.已知函数若存在t∈[0,1],使得对任意x∈[﹣4,m],不等式f(x)≤x成立,求整数m的最大值解:不等式f(x)≤x,即(x3+2x2+5x+t)e﹣x≤x,即t≤xe x﹣x3﹣2x2﹣5x.转化为存在实数t∈[0,1],使得对任意x∈[﹣4,m],不等式t≤xe x﹣x3﹣2x2﹣5x恒成立,即不等式0≤xe x﹣x3﹣2x2﹣5x对于x∈[﹣4,m]恒成立,当m≤0时,则有不等式e x﹣x2﹣2x ﹣5≤0对于x∈[﹣4,m]恒成立,设g(x)=e x﹣x2﹣2x﹣5,则g′(x)=e x﹣2x﹣2,又m为整数,则当m=﹣1时,则有﹣4≤x≤﹣1,此时g′(x)=e x﹣2x﹣2>0,则g(x)在[﹣4,﹣1]上为增函数,∴g(x)≤g(﹣1)<0恒成立.m=0时,当﹣1<x≤0时,因为[g′(x)]′=e x﹣2<0,则g′(x)在(﹣1,0]上为减函数,g′(﹣1)=e﹣1>0,g′(0)=﹣1<0,故存在唯一x0∈(﹣1,0],使得g′(x0)=0,即=2x0+2,则当﹣4≤x<x0,有g′(x)>0,;当x0<x≤0时,有g′(x)<0;故函数g(x)在区间[﹣4,x0]上为增函数,在区间[x0,0]上为减函数,则函数g(x)在区间[﹣4,0]上的最大值为﹣2x0﹣5,又=2x0+2,则g(x0)=(2x0+2)﹣﹣2x0﹣5=﹣﹣3<0,故不等式0≤xe x﹣x3﹣2x2﹣5x对于x∈[﹣4,0]恒成立,而当m=1时,不等式0≤xe x﹣x3﹣2x2﹣5x对于x=1不成立.综上得,m=0.14.如果g(x)图象与x轴交于A (x1,0),B(x2,0),x1<x2,AB中点为C(x0,0),求证:g′(x0)≠0.解:.假设结论成立,则有,(1)﹣(2),得.所以.由(4)得,所以,即,即=,令.则,所以u(t)在0<t<1上是增函数,u(t)<u(1)=0,所以(5)式不成立,与假设矛盾,所以g'(x0)≠0.15.已知函f(x)=ax2﹣e x(a∈R).(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2).(或者二次求导)(i)求实数a的取值范围;(ii)证明:﹣.(注:e是自然对数的底数)(Ⅱ)(i)由f(x)=ax2﹣e x,所以,f′(x)=2ax﹣e x.若f(x)有两个极值点x1,x2,则x1,x2是方程f′(x)=0的两个根,故方程2ax﹣e x=0有两个根x1,x2,又因为x=0显然不是该方程的根,所以方程有两个根,设,得.若x<0时,h(x)<0且h′(x)<0,h(x)单调递减.若x>0时,h(x)>0.当0<x<1时h′(x)<0,h(x)单调递减,当x>1时h′(x)>0,h(x)单调递增.要使方程有两个根,需2a>h(1)=e,故且0<x1<1<x2.故a的取值范围为.(ii)证明:由f′(x1)=0,得:,故,x1∈(0,1)=,x1∈(0,1)设s(t)=(0<t<1),则,s(t)在(0,1)上单调递减故s(1)<s(t)<s(0),即.16.已知函数(x∈R)的图象为曲线C.(1)求过曲线C上任意一点的切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;(3)证明:不存在与曲线C同时切于两个不同点的直线.解:(1)f′(x)=x2﹣4x+3,则f′(x)=(x﹣2)2﹣1≥﹣1,即过曲线C上任意一点的切线斜率的取值范围是[﹣1,+∞);(2)由(1)可知,解得﹣1≤k<0或k≥1,由﹣1≤x2﹣4x+3<0或x2﹣4x+3≥1得:;(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,则切线方程是:y﹣=(x12﹣4x1+3)(x﹣x1),化简得:y=(x12﹣4x1+3)x而过B(x2,y2)的切线方程是y=(x22﹣4x2+3)x,由于两切线是同一直线,则有:x12﹣4x1+3=x22﹣4x2+3,得x1+x2=4,又由=,即﹣+2(x1﹣x2)(x1+x2)=0﹣,即x1(x1+x2)+x22﹣12=0即(4﹣x2)×4+x22﹣12=0×4+x22﹣12=0,x22﹣4x2+4=0得x2=2,但当x2=2时,由x1+x2=4得x1=2,这与x1≠x2矛盾.所以不存在一条直线与曲线C同时切于两点.难!17已知函数f (x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对∀x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.①求证:x1>1>x2;②若当x≥x1时,关于x的不等式ax2﹣x+xe﹣x+1≤0恒成立,求实数a的取值范围.解:(1)依题意对∀x∈(0,+∞)均有e x≥kx≥lnx成立即对任意∀x∈(0,+∞)均有≥k≥成立∴()min≥k≥因为()=故在(0,1)上减,(1,+∞)增∴()min=e又故在(0,e)上减,(e,+∞)增∴即k的取值范围是[,e](2)由题知:h(x)即为y﹣e=e(x﹣x1)即y=e•x+e﹣x1 e也为y=lnx2=即y=+lnx2﹣1∴又x1=0,∴e>1 即>1⇒x1>1即x1>1>x2…(8分)(3)令F(x)=ax2﹣x+xe﹣x+1(x≥x1)∴F′(x)=﹣1﹣xe﹣x+e﹣x=﹣1+e﹣x(1﹣x)(x≥x1)又x≥x1>1,F′(x)=﹣1﹣xe﹣x+e﹣x=﹣1+e﹣x(1﹣x)<0即F(x)=ax2﹣x+xe﹣x+1(x≥x1)单调减,所以只要F(x)≤F(x1)=ax2﹣x1+x1e+1≤0即a+x 1﹣x1e+e≤0…由∴即故只要≤0得:a≤1综上,实数a的取值范围是(﹣∞,1]…18f(x)=x3﹣(m+n)x2+mnx,其中m>n>0若m+n≤2,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).解:设切点Q(x0,y0),则切线的斜率又,所以切线的方程是…(9分)又切线过原点,故所以,解得x0=0,或.…(10分)两条切线的斜率为,,由,得(m+n)2≤8,∴,∴,所以,又两条切线垂直,故k1k2=﹣1,所以上式等号成立,有,且mn=1.所以.19.已知函数,a为正常数.(1)若f(x)=lnx+φ(x),且,求函数f(x)的单调增区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范解:(1),∵,令f′(x)>0,得x>2,或,∴函数f(x)的单调增区间为,(2,+∞).(2)∵,∴,∴,设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数.当1≤x≤2时,,,令h′(x)≤0,得:对x∈[1,2]恒成立,设,则,∵1≤x≤2,∴,∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为,∴(当0<x<1时,,,令h′(x)≤0,得:,设,则,∴t(x)在(0,1)上是增函数,∴t(x)<t(1)=0,∴a≥0,(15分)综上所述,20(2)若过点(0,0)可作曲线y=f(x)的三条切线,求a的取值范围;(3)设曲线y=f(x)在点(x1,f(x1)),(x2,f(x2))(x1≠x2)处的切线都过点(0,0),证明:f′(x1)≠f′(x2).∴.经检验,f(x)在x=0处取得极大值.设切点为(x0,y0),则切线方程为即为把(﹣a,f(﹣a))代入方程可得,即,所以x0=﹣a.即点A为切点,且切点是唯一的,故切线有且只有一条.所以切线方程为;(2)解:因为切线方程为,把(0,0)代入可得,因为有三条切线,故方程得有三个不同的实根.设(a<0)g′(x)=2x+2ax,令g′(x)=2x+2ax=0,可得x=0和x=﹣a.当x∈(﹣∞,0)时,g′(x)>0,g(x)为增函数,当x∈(0,﹣a)时,g′(x)<0,g(x)为减函数,当x∈(﹣a,+∞)时,g′(x)>0,g(x)为增函数,所以,当x=0时函数g(x)取得极大值为g(0)=1>0.当x=﹣a时函数g(x)取得极小值,极小值为.因为方程有三个根,故极小值小于零,,所以.(3)证明:假设,则,所以(x1﹣x2)(x1+x2)=﹣2a(x1﹣x2)因为x1≠x2,所以x1+x2=﹣2a.由(2)可得,两式相减可得.因为x1≠x2,故.把x 1+x2=﹣2a代入上式可得,,所以,.所以.又由,这与矛盾.所以假设不成立,即证得。
高考压轴题:导数题型及解题方法总结很全
![高考压轴题:导数题型及解题方法总结很全](https://img.taocdn.com/s3/m/c6b07842be23482fb4da4c85.png)
高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )二.单调性问题题型1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。
导数题型及解题方法归纳
![导数题型及解题方法归纳](https://img.taocdn.com/s3/m/a0592d7dc950ad02de80d4d8d15abe23492f037e.png)
导数题型及解题方法归纳一、导数概述导数是微积分学中的一个重要概念,它描述了函数在某一点的变化率。
具体来说,导数表示函数在某一点的切线斜率。
导数不仅在微积分中有重要应用,而且在物理、经济等领域也有广泛的应用。
二、导数的定义1. 函数f(x)在x=a处可导的充分必要条件是:$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$$存在,若该极限存在,则称其为函数f(x)在x=a处的导数,记作$f'(a)$或$\frac{df}{dx}(a)$。
2. 函数f(x)在区间I上可导的充分必要条件是:对于I上任意一点$x_0$,极限$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$存在。
3. 函数f(x)在区间I上可导,则称函数f(x)在I上为可导函数。
若函数f(x)在区间I上每个点都可导,则称函数f(x)在I上为光滑函数。
三、常见的求导法则1. 常数法则:若c为常数,则$(c)'=0$。
2. 幂法则:若$f(x)=x^n$,其中n为正整数,则$f'(x)=nx^{n-1}$。
3. 和差法则:若$f(x)=u(x)+v(x)$,则$f'(x)=u'(x)+v'(x)$。
4. 积法则:若$f(x)=u(x)v(x)$,则$f'(x)=u'(x)v(x)+u(x)v'(x)$。
5. 商法则:若$f(x)=\frac{u(x)}{v(x)}$,其中$v(x)\neq0$,则$$f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$$6. 复合函数求导法则:若$y=f(u), u=g(x)$,则$$\frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}=f'(u) \cdot g'(x)$$四、高阶导数1. 函数f的一阶导数为$f'$,二阶导数为$(f')'$或$f''$。
导数常见题型与解题方法总结
![导数常见题型与解题方法总结](https://img.taocdn.com/s3/m/1e526b465bcfa1c7aa00b52acfc789eb172d9e04.png)
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
导数专题的题型总结
![导数专题的题型总结](https://img.taocdn.com/s3/m/6e97f3b7846a561252d380eb6294dd88d1d23d5f.png)
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
导数知识点各种题型归纳方法总结
![导数知识点各种题型归纳方法总结](https://img.taocdn.com/s3/m/454f102577c66137ee06eff9aef8941ea76e4bb6.png)
导数知识点各种题型归纳方法总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】导数的基础知识一.导数的定义:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x y f x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①'0()C C =为常数;②1()'nn x nx -=;11()'()'n n n x nx x---==-;1()'mmn n m x x n -==③(sin )'cos x x =;④(cos )'sin x x =-⑤()'x x e e =⑥()'ln (0,1)x x a a a a a =>≠且;⑦1(ln )'x x =;⑧1(log )'(0,1)ln a x a a x a=>≠且法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号)法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2,4)1(=-'f ,则a=( )三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t =时的导数()0f t ',即有()00V f t '=。
导数题的十大解题技巧
![导数题的十大解题技巧](https://img.taocdn.com/s3/m/089ffbecac51f01dc281e53a580216fc710a537f.png)
导数题的十大解题技巧
导数题的十大解题技巧
一、熟练掌握基本形式的导数
解决导数问题,最基本的是要掌握几种常见函数的导数形式,如常用的多项式函数、三角函数、泰勒级数等。
二、熟练运用基本运算法则
基本运算法则是指对函数的加减乘除、乘方、链式法则等多项操作的计算公式。
三、利用倒数公式
在两函数相除时,可以利用倒数公式把除法变成乘法。
也就是相除的两个函数导数的乘积等于其一除以另一函数的倒数的导数。
四、运用链式法则
链式法则是求解复杂函数导数的有力工具。
它的做法是用函数的导数来求复合函数的导数,即将复杂函数分解为几个简单函数的组合。
五、会用技巧简化运算
解决导数问题,要熟悉几种常用的技巧,比如去项技巧、因式分解技巧、合并同类项技巧等,尽量减少计算量。
六、善于利用对称性
在有关导数的计算中,当函数具有对称性时,有时可以利用对称性把计算时间缩短。
七、多分类讨论
对于某种特殊情况的求导,要多分类考虑,把它们分开,分别求
解。
八、把不熟悉的形式改写成熟悉的形式
有时,在求解导数时,可以把不熟悉的函数形式改写成熟悉的形式,从而简化计算。
九、运用泰勒展开法
当函数形式太复杂时,可以用泰勒级数展开法来求解它的导数,其中,泰勒展开第N项的系数是函数的N次导数值。
十、加强练习熟练掌握
多进行练习,加强熟练掌握,能有效帮助学生解决导数问题。
导数题型及解题方法归纳
![导数题型及解题方法归纳](https://img.taocdn.com/s3/m/490e85702f3f5727a5e9856a561252d380eb2024.png)
导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。
给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。
导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。
二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。
一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。
- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。
- 指数函数的导数:(e x )′=e x 。
- 对数函数的导数:(lnx )′=1x 。
- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。
一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。
- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。
3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。
高阶导数可以通过多次使用导数公式和求导法则求解。
4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。
隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。
三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。
2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。
导数大题方法总结
![导数大题方法总结](https://img.taocdn.com/s3/m/4438cdfa51e2524de518964bcf84b9d528ea2c17.png)
导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。
那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。
一、总论一般来说,导数的大题有两到三问。
每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。
二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。
②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。
所以做两个字来概括这一类型题的方法就是:淡定。
别人送分,就不要客气。
③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。
切线要写成一般式。
(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。
这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。
导数题的十大解题技巧
![导数题的十大解题技巧](https://img.taocdn.com/s3/m/885a69f259f5f61fb7360b4c2e3f5727a5e924b7.png)
导数题的十大解题技巧导数题的十大解题技巧一、熟练掌握导数的定义1、函数的导数:函数y=f(x)的导数,记作f′(x),表示函数y=f(x)在点x处的切线斜率。
2、数列的导数:数列y的极限导数,记作y′,表示数列y中趋势的变化率。
二、准确掌握导数的计算1、用法则:将函数代入法则(如指数函数法则,三角函数法则等)所给表达式中,可得出函数的导数;2、变量分离:将函数用变量分离法(如商式分解法,多项式分解法等)分解,再用法则进行求导;3、链式法则:将函数中的连续函数拆分,用累加法或链式法则进行求导;4、转换关系:将函数中的变量用等价关系(如t=sax,x=a/t)进行转换,使变量适合法则,再求导;5、隐函数法:将函数中的变量用隐函数(如x=f(t))进行表达,再求导;6、偏导法:将函数中的变量用偏导数(如y/t)表达,再求导。
三、理解利用导数性质1、函数的导数是函数表示的变化率;2、导数的正负性有助于判断函数的单调性;3、函数的极值点可判断导数的符号;4、函数尖峰和凹处的判断;5、导数判断函数的模式;6、可以用导数的特性求函数的拐点;7、用导数可以求函数的泰勒级数;8、可以用导数的递推来求函数的定义域;9、可以用导数求一些曲线的面积。
四、利用科学计算器快速完成计算1、熟悉科学计算器的使用功能,即可完成导数的运算;2、可按法则准确求函数的导数;3、可以快速判断函数的极值、拐点等;4、对于复杂函数,可以简化计算,提高效率。
五、熟悉求导方程的解法1、建立方程,移项,量化,变形,以达到最简形状;2、变换为通解方程,求其特解;3、使用科学计算器计算求得函数的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章导数及其应用一.导数的概念1..已知的值是()A. B. 2 C. D. -2变式1:()A.-1B.-2C.-3D.1变式2:()A.B.C.D.导数各种题型方法总结请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵当时, 恒成立,当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数”则等价于当时恒成立变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围.(二次函数区间最值的例子)解:(Ⅰ)令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值=当x=3a时,极大值=b.(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)-2 23aa a 3a即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数. (∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数.(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围.解:.(Ⅰ)∵是偶函数,∴. 此时,,令,解得:.列表如下:(-∞,-2) -2(-2,2) 2(2,+∞)+ 0 -0 +递增极大值递减极小值递增可知:的极大值为,的极小值为.(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:.综上,的取值范围是.例5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。
子集思想(I)1、当且仅当时取“=”号,单调递增。
2、单调增区间:单调增区间:-1a-1(II )当则是上述增区间的子集:1、时,单调递增符合题意2、,综上,a的取值范围是[0,1]。
三、题型二:根的个数问题题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,,且在区间上为增函数.(1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值范围.解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:—↗极大值↘极小值↗由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得综上,所求的取值范围为根的个数知道,部分根可求或已知。
例7、已知函数(1)若是的极值点且的图像过原点,求的极值;(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。
解:(1)∵的图像过原点,则,又∵是的极值点,则(2)设函数的图像与函数的图像恒存在含的三个不同交点,等价于有含的三个根,即:整理得:即:恒有含的三个不等实根(计算难点来了:)有含的根,则必可分解为,故用添项配凑法因式分解,十字相乘法分解:恒有含的三个不等实根等价于有两个不等于-1的不等实根。
题2:切线的条数问题====以切点为未知数的方程的根的个数例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范-1围.(1)由题意得:∴在上;在上;在上因此在处取得极小值∴①,②,③由①②③联立得:,∴(2)设切点Q,过令,求得:,方程有三个根。
需:故:;因此所求实数的范围为:题3:已知在给定区间上的极值点个数则有导函数=0的根的个数解法:根分布或判别式法例8、解:函数的定义域为(Ⅰ)当m=4时,f (x)=13x3-72x2+10x,=x2-7x+10,令,解得或.令,解得可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.(Ⅱ)=x2-(m+3)x+m+6,要使函数y=f (x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)根分布问题:1则,解得m>3例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.解:(1)当时,令解得,令解得,所以的递增区间为,递减区间为.当时,同理可得的递增区间为,递减区间为.(2)有且仅有3个极值点=0有3个根,则或,方程有两个非零实根,所以或而当或时可证函数有且仅有3个极值点其它例题:1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.(Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数的取值范围.解:(Ⅰ)令=0,得+ 0 -↗极大↘因此必为最大值,∴因此,,即,∴,∴(Ⅱ)∵,∴等价于,令,则问题就是在上恒成立时,求实数的取值范围,为此只需,即,解得,所以所求实数的取值范围是[0,1].2、(根分布与线性规划例子)(1)已知函数(Ⅰ) 若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;(Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程.解:(Ⅰ).由, 函数在时有极值 ,∴∵∴又∵在处的切线与直线平行,∴故∴……………………. 7分(Ⅱ) 解法一: 由及在取得极大值且在取得极小值, ∴即令, 则∴∴故点所在平面区域S为如图△ABC,易得, , , , ,同时DE为△ABC的中位线,∴所求一条直线L的方程为:另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分, 设直线L方程为,它与AC,BC 分别交于F、G, 则,由得点F的横坐标为:由得点G的横坐标为:∴即解得: 或 (舍去) 故这时直线方程为:综上,所求直线方程为:或 .…………….………….12分(Ⅱ) 解法二: 由及在取得极大值且在取得极小值, ∴即令, 则∴∴故点所在平面区域S为如图△ABC,易得, , , , ,同时DE为△ABC的中位线, ∴所求一条直线L的方程为:另一种情况由于直线BO方程为:, 设直线BO与AC交于H ,由得直线L与AC交点为:∵, ,∴所求直线方程为:或3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;(Ⅱ)若函数的图象在点处的切线方程为,求函数f ( x )的解析式;(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:(Ⅰ)由图可知函数f ( x )的图像过点( 0 , 3 ),且= 0得(Ⅱ)依题意= – 3 且f ( 2 ) = 5解得a = 1 , b = – 6所以f ( x ) = x 3 – 6x 2 + 9x + 3(Ⅲ)依题意f ( x ) = ax 3 + bx 2 – ( 3a + 2b )x + 3 ( a >0 )= 3ax 2 + 2bx – 3a – 2b 由= 0b = – 9a ①若方程f ( x ) = 8a 有三个不同的根,当且仅当满足f ( 5 )<8a <f ( 1 ) ②由①②得 – 25a + 3<8a <7a + 3<a <3所以当<a <3时,方程f ( x ) = 8a 有三个不同的根。
………… 12分4、(根的个数问题)已知函数(1)若函数在处取得极值,且,求的值及的单调区间;(2)若,讨论曲线与的交点个数.解:(1)………………………………………………………………………2分令得令得∴的单调递增区间为,,单调递减区间为…………5分 (2)由题得即-令……………………6分令得或……………………………………………7分当即时此时,,,有一个交点;…………………………9分当即时,+—,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点.………………………13分综上可知,当或时,有一个交点;当时,有两个交点.…………………………………14分5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.(Ⅰ)若函数在处有极值,求的解析式;(Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.函数中任意性和存在性问题探究高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究一、相关结论:结论1:;【如图一】结论2:;【如图二】结论3:;【如图三】结论4:;【如图四】结论5:的值域和的值域交集不为空;【如图五】【例题1】:已知两个函数;(1)若对,都有成立,求实数的取值范围;(2)若,使得成立,求实数的取值范围;(3)若对,都有成立,求实数的取值范围;解:(1)设,(1)中的问题可转化为:时,恒成立,即。