材料力学第三章扭转

合集下载

材料力学 第03章 扭转

材料力学 第03章 扭转

sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章


§3.1
一、定义 二、工程实例 三、两个名词


一、定义
Me Me


扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(

4
d /2
4
)
0
πd 4 32
d
d A 2π d

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

材料力学:第三章扭转强度

材料力学:第三章扭转强度

解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学第3章扭转

材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx

dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy

τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理

材料力学第3章扭转总结

材料力学第3章扭转总结

5 圆截面的极惯性矩Ip和扭转截面系数Wt
πd 4 实心圆截面: I P 32
πd 3 Wt 16
πD4 空心圆截面: I ( 4) 1 P 32
πd 3 Wt ( 4) 1 16
6. 强度条件
max [ ]
对于等直圆轴亦即
Tmax [ ] Wt
7. 刚度条件 等直圆杆在扭转时的刚度条件:
圆周扭转时切应力分布特点:
T
max
Tr r Ip
max
d
圆周扭转时切应力分布特点:在横截面的同一半径 r 的圆周上各点处的切应力r 均相同,其值 与r 成正比,
其方向垂直于半径。
横截面周边上各点处(r r)切应力最大。
即单元体的两个相互垂直的面上,与该两个面的交线 垂直的切应力 和 数值相等,且均指向(或背离)该两个 面的交线——切应力互等定理。
Tmax
180 [ ] GI p
l
Ti li *若为阶梯扭矩、阶梯截面 GI i 1 pi
总结
1 扭转外力特点:
垂直轴线的平面内受一对大小相等、转向相反 力偶作用
变形特点: 杆件的任意两个横截面围绕其轴线作相对转动
外力矩计算
{M e }Nm
{P}kw 9.55 10 {n} r
3
min
2 扭转时内力:扭矩
扭矩(torque)--其力偶作用面与横截面平行
Me
T(+) T
T(-)
3

材料力学 第三章 扭 转

材料力学 第三章 扭 转

T2
T1
d
T3
Mx1=0.5kN· m
Mx2 =0.32kN· m lAB=300mm G=80GPa d=50mm
B
T2
φAB
lAB
A T1
lAC d φAC
C T3
B
lAB
A
lAC
C
M x1l AB j AB = GI P 500 0.3 = 9 80 10 0.054 32
r O
Mx
几何分析
变 形 应变分布
物理关系
应力分布
平面假定 静力学方程
应力公式
1. 变形几何关系
周线
a b c d
T
周线
a c d
γ
T
φ
b
纵线
dx
纵线
dx
a
c
a
γ
c c' d d'
b
d
b
(1)变形后所有圆周线的大小、形状和间距均不变,绕杆轴线相对转动。 (2)所有的纵线都转过了同一角度g。
T
周线
A

ρ o
ρ2dA
∫ 0ρ2·2πρdρ =
π d = 32
4
d/2
d
3 Ip π d Wp = r = 16
2. 空心圆截面
π D 4 - π d 4 π D 4(1-α4) Ip= 32 32 = 32 α=d/D
ρ o

π D3 Wp = 16 (1-α4)
d D
3.薄壁圆环截面
I P = 2r0
故该轴满足切应力强度要求。
二、刚度计算 等直圆杆扭转的刚度条件为
θ max = Mxmax ≤[θ] GI

材料力学-第三章

材料力学-第三章

21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量

材料力学——第三章 扭转

材料力学——第三章 扭转

33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T


rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b


d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)

材料力学 第三章 扭转

材料力学  第三章  扭转

为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

材料力学课件第三章 扭转

材料力学课件第三章 扭转

工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:

T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。

材料力学_扭转

材料力学_扭转

2
A1 =
πD12
4
= 2122mm 2
因此在承载能力相同的条件下,使用空心轴比较节约材料,比较经济. 因此在承载能力相同的条件下,使用空心轴比较节约材料,比较经济.
3.4 圆轴扭转时的变形 刚度条件
一,扭转变形 圆轴扭转的变形用相对扭转角度量
d T = dx GI p
d =
T dx GI p
Tdx l GI p Tl = GI p
用截面法计算各段轴内的扭矩
T = MB = 1637Nm 1 T2 = MB MC = 3274Nm T3 = MD = 2183Nm
根据扭矩方程画扭矩图 从图上可看出,最大扭矩发生在 段内各截面 从图上可看出,最大扭矩发生在CA段内各截面 扭矩方程
1637
3274 ( Nm )
Tmax = 3274Nm
例: 某传动轴,用45号钢无缝钢管制成,其外径D =66mm,壁厚 t=5 某传动轴, 45号钢无缝钢管制成,其外径 =66 , =5mm,使用时 , 号钢无缝钢管制成 =5 最大扭矩为T =1500N.m,试校核此轴的强度.已知[τ]=60 最大扭矩为 =1500 ,试校核此轴的强度.已知[ ]=60MPa.若此轴改为实心轴, .若此轴改为实心轴, 并要求强度仍与原空心轴相当, 为多少? 并要求强度仍与原空心轴相当,则实心轴的直径 D1为多少? 解:计算传动轴的抗扭截面模量
Ip R
=
πD / 32
4
D/2
=
πD
3
16
空心圆截面: 空心圆截面:
Ip = ∫
D/2
d /2
2πρ 3dρ =
α =d/D πD 4 πd 4 πD 4
32 32 = 32

材料力学第三章扭转

材料力学第三章扭转

材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ

材料力学第三章

材料力学第三章

等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
3.理论分析 3.理论分析 变形几何关系: (1) 变形几何关系: G1G′ ρ ⋅ dϕ γ ρ ≈ tanγ ρ = =
dϕ γρ = ρ dx dϕ :扭转角 沿x轴的变化 轴的变化 ϕ dx 率。对给定截面上的各 它是常量。 点,它是常量。
28
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
5
§3-2 薄壁圆筒的扭转
1 为平均半径) 薄壁圆筒: 薄壁圆筒:壁厚 δ ≤ r0 (r0:为平均半径) 10
实验: 实验:
实验前:绘纵向线,圆周线; 实验前:绘纵向线,圆周线;
然后施加一对外力偶 Me。
6
§3-2 薄壁圆筒的扭转
当其两端面上作用有外力 偶矩时,任一横截面上的 内力偶矩——扭矩(torque) T = Me
4
§3.1 概述
工程实际中,有很多构件,如车床的光杆、 工程实际中,有很多构件,如车床的光杆、搅拌机 轴、汽车传动轴等,都是受扭构件。 汽车传动轴等,都是受扭构件。 还有一些轴类零件,如电动机主轴、水轮机主轴、 还有一些轴类零件,如电动机主轴、水轮机主轴、 机床传动轴等,除扭转变形外还有弯曲变形, 机床传动轴等,除扭转变形外还有弯曲变形,属于组合 变形。 变形。 本章研究杆件发生除扭转变形外,其它变形可忽略 的情况,并且以圆截面(实心圆截面或空心圆截面)杆为 主要研究对象。此外,所研究的问题限于杆在线弹性范 围内工作的情况。
Ⅰ. 横截面上的应力 表面 变形 情况 横截面 上应力 变化规 律 内力与应力的关系 横截面上应 力的计算公 式
23
横截 推断 面的 变形 情况
横截面 上应变 应力-应变关系 的变化 规律

材料力学第3章-扭转

材料力学第3章-扭转

第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。

2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。

又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。

规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。

3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。

(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。

γτG = G 为比例常数,称为材料的切变模量。

弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。

dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。

则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。

材料力学课件第3章扭转

材料力学课件第3章扭转
扭转外力及变 形特点:
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA

Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I

p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴


Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wp

Tmax

Tmax=1.5kN·m
[]=50MPa
d/D = 0.9
(3) 比较重量
同种材料,杆长相同,所以,重量 比即为横截面面积之比


重量比 4
D2 d2

4
d02
762 68.52 0.395 542
空心轴远比实心轴轻,说明空心轴材 料利用率高。原因?
(2) 杆内最大剪应力 max (3) 两端截面之间相对扭转角
y
m0
A
m0
z
BC
m0=14kN·m
D = 100mm
解:(1) 求A、B、C三点应力:
Ip

D3
32
由截面法,易求得轴任意截面的扭矩均为 T = m0

A

T Ip
A
A

D 2


14 103 100 4 10 12
m0
m0

1. 横截面上的应力 1). 变形几何关系
① 各圆周线形状、大小、相邻两圆周线的间距不变。 ② 各纵向线近似于直线,只是倾斜了一个相同的角度。
轴表面变形前的矩形格,变形后成了平行四边形格。
设想,从轴上取出微段dx
m
1
y
1 2m
z
o
x
12 x dx
l
1
2
o
A
max
d
A
1 dx 2
将圆轴看成由无数个同心薄壁圆筒组成,然后,再想象从
O
3. 薄壁圆筒切应变为:
m
m

r
l


3-3 传动轴的外力偶矩 扭矩及扭矩图
作用在轴上的外力偶往往不是直接给出的,而是 给出轴所传递的功率和轴的转速,因而需要换算。 1.外力偶矩的计算
直接计算
按输入功率和转速计算
已知:
轴转速-n 转/分钟 输出功率-Pk 千瓦 求:力偶矩M
电机每秒输入功: 外力偶作功完成:
y
A
T
Cz B
由剪应力分布关系求大小, 定方向。
(2) 求最大剪应力:
a dA

o
dA b
d T
dx GI p


G
d
dx

T Ip



T Ip

max

T Ip
r

T Ip
D 2

T wp
wp

Ip r

Ip D
2
—— 抗扭截面模量
圆轴扭转剪应力的有限元解
2. Ip 与 Wp 的计算
空心轴


p
实心轴 空心轴
令d=0
(作用力反作用力)
为了表达方便,按变形特点规定符号 3.扭矩符号规定
右手螺旋法则 (扭矩矢量指离截面为 + ,指向截面为 -)
无论保留左段还是右
m
m
段,得到的扭矩大小、符
号均相同,同时,若给出 m
某截面扭矩的大小和符号,
Tx
则无论保留左段还是右段,
都能方便地画出该截面的
T
m
扭矩 (大小、转向)。
例 : 某传动轴受力如图所示,已知:MA=350N·m, MB=1000N·m, MC=650N·m。作此轴的扭矩图。
解: 1.求扭矩
对AB段,1-1左:
MeA
MeB
1
A1
B
M x 0 : T1 M A 0
T1 M A 350 N m
MeA T1
MeC
C
例 某传动轴受力如图所示,已知:MA=350N·m, MB=1000N·m, MC=650N·m。作此轴的扭矩图。
3-2 薄壁圆筒的扭转
先讨论比较简单的薄壁圆筒的扭转问题。
t
R0
t R0
t1 ( ) R0 10
1.薄壁圆筒扭转时的切应力
1).变形几何关系
me
me

① 圆周线的大小、形状不变,圆周线的间距 不变——横截面上只有切向剪应力 τ。
② 纵向线倾斜相同角度γ, 薄壁圆筒横截面绕轴线转 动了一个角度φ——半径相同处切应变相同。
由于, 为常数,且 t<< R0
上式中的 r 可用 R0 代,于是
rT
R0
T
R0
dA
A

R0
2R0t

2R02t


T
2R02t
2.切应力互等定理
材料单元体 三棱边为微元长度
Fy 0
y
1dzdy 2dzdy
1 2
mZ 0
2 dy 4 1
dx
3
T1=1114 (N.m) T2=557 (N.m) T3=185.7 (N.m)
max
E

T1 Wp1


16 1114 π 703 10-9

Pa
16.54MPa
max
H

T2 Wp2


16 557 π 503 10-9

Pa

22.69MPa
[]=50MPa
d/D = 0.9

d03
16

Tmax

d0
3
16Tmax

3
161.5103 3.14 50 106
53.5103 m 53.5mm 取 d0 54mm
(2) 设计空心圆轴


16
D3 (1
4
)

Tm a x

D3
16 Tm ax
GI p
d l T dx
l
0 GI p
d l T dx
l
0 GI p
若在l长度内,T、G、Ip为常数,则上式可写成:
l T dx T
l
dx
Tl
0 GI p
GI p 0
GI p
适用条件:线弹性材料;
相对扭转角 抗扭刚度
n

Tili
解: 1.求扭矩
MeA
MeB
1
MeC
2
对AB段: T1 350 N m
A1
B2
C
对BC段: T2 650 N m
2.作扭矩图
350 N . m
T
+
T 650 N m max
-
650 N . m
解: (1)计算外力偶矩
由公式
Pk/n
(2)计算扭矩 (3) 扭矩图
§3-4 等直圆杆扭转时的应力·强度条件
Ip
p
实心轴与空心轴 Ip 与 Wp 对比
p
p
例题
3
已知:P1=14kW,P2= P3=P1/2, n1=n2=120r/min,z1=36,z3=12;d1=7 0mm, d 2=50mm, d3=35mm.
求:各轴横截面上的最大切应力。
解:1、计算各轴的功率与转速 2、计算各轴的扭矩
M=9549 P/n (N.m)
又由于t<<R0,所以我们又可假设剪应力沿厚度方向均布。
me
me


T
故 薄壁圆筒的横截面上各点的剪应力均匀分布。
结论: 薄壁圆筒在受扭转变形时,横截面上将产 生剪应力,它的方向沿圆周切线方向,且在整个 横截面的大小相等。
3). 静力学关系
横截面上的分布内力系合成为扭矩T,即
T AdA r
i1 GI Pi
GIp —— 抗扭刚度
对比
轴向拉压 l FNl
EA
圆轴扭转 Tl
GI p
公式形式相似,适用L=1m,
两端受外力偶矩m0=14kN·m作用,如图所示。 设材料的剪切弹性模量G=80GPa。
y
m0
A
m0
z
BC
试求:
(1) 杆内图示截面上A、B、C三点处的剪应力 数值及方向(C距横截面中心为25mm);
50
10 3
32
y
m0
A
m0
z
71.4106 pa 71.4MPa
B
y

B

T Ip
B
m0
A
m0
z
BC


14 103 100 4 10 12
50
10 3
32
71.4MPa
T =14kN·m
D =100mm
B

D 2
Q A = B A B
Tmax=1.5kN·m , 许 用 剪 用 力 []=50MPa , 试 按
下列两种方案确定轴的截面尺寸,并比较其 重量。
(1) 横截面为实心圆截面 (2) 横截面是 d/D = 0.9的空心截面
解:① 设计实心圆轴
max
Tmax Wp



Wp

Tmax

Tmax=1.5kN·m
第三章 扭转
3-1 概述
传动轴
汽车传动轴
齿轮传动轴
机器中的传动轴
直升机的旋转轴
Me
Me


受力特点:在垂直于杆轴线的平面内作用有力偶。 变形特点:任意两个横截面都绕杆轴线作相对转动。
以扭转变形为主的杆称为轴。
受扭转变形杆件通常为轴类零件,其横截面 大都是圆形的。
材料力学只研究圆轴扭转问题。
相关文档
最新文档