中考数学第一轮复习资料试卷及答案
中考数学一轮复习习题及答案
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨···(2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23,03.14) A .1个 B .2个 C .3个 D .4个考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1) 例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A.5-2 B. 2-5 C. 5-3 D.3-5例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为 考点4 平方根、算术平方根、立方根与二次根式若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是3a 。
初三数学一轮试卷及答案
一、选择题(每题4分,共20分)1. 若实数a,b满足a + b = 3,则a² + b²的最小值为()A. 5B. 6C. 7D. 82. 在直角坐标系中,点A(2,3),B(-1,-4)关于原点对称的点分别是()A. A(-2,-3),B(1,4)B. A(-2,3),B(1,-4)C. A(2,-3),B(-1,4)D. A(2,-3),B(-1,-4)3. 若等比数列{an}的前三项分别为1,-2,4,则该数列的公比为()A. -2B. 2C. -1/2D. 1/24. 若函数f(x) = ax² + bx + c的图象开口向上,且顶点坐标为(1,-3),则a,b,c的符号分别为()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c > 05. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C.120°D. 135°二、填空题(每题5分,共20分)6. 若二次方程x² - 5x + 6 = 0的两根为m和n,则m + n的值为______。
7. 若等差数列{an}的首项为2,公差为3,则第10项an的值为______。
8. 若函数f(x) = -x² + 4x + 3的图象与x轴的交点坐标为(1,0),则该函数的对称轴方程为______。
9. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC的面积S为______。
三、解答题(共60分)10. (12分)已知等差数列{an}的前三项分别为3,5,7,求该数列的通项公式。
11. (12分)在△ABC中,∠A = 60°,∠B = 45°,边BC = 6cm,求△ABC的外接圆半径R。
2025年广东省东莞市中考数学一轮复习:有理数(附答案解析)
2025年广东省东莞市中考数学一轮复习:有理数一.选择题(共10小题)1.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.>02.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和13.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣24.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3% 5.在0,﹣2,5,14,﹣0.3中,负数的个数是()A.1B.2C.3D.46.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.017.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0 8.下列各数中:+3、+(﹣2.1)、−12、﹣π、0、﹣|﹣9|、﹣0.1010010001中,负有理数有()A.2个B.3个C.4个D.5个9.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④10.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.2016二.填空题(共5小题)11.已知|U+|U=0,则B|B|的值为.12.某种零件,标明要求是φ20±0.02mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件(填“合格”或“不合格”).13.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.14.若|x|+3=|x﹣3|,则x的取值范围是.15.在数学兴趣小组活动中,小明为了求12+122+123+124+⋯+12的值,在边长为1的正方形中,设计了如图所示的几何图形.则12+122+123+124+⋯+12的值为(结果用n表示).三.解答题(共5小题)16.计算:﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].17.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+r的值.18.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.19.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?20.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.2025年广东省东莞市中考数学一轮复习:有理数参考答案与试题解析一.选择题(共10小题)1.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.>0【考点】数轴.【答案】B【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选:B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.2.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【考点】绝对值.【答案】C【分析】根据正负数的定义,绝对值的性质、平方的性质即可判断.【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C错误,符合题意,故选:C.【点评】本题考查了正负数的定义,绝对值的性质、平方的性质,熟练掌握性质是解答此题的关键.3.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2【考点】绝对值.【答案】B【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7∵|a+b|=a+b,∴a+b≥0,∴a=±5.b=7,当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣12;故a﹣b的值为﹣2或﹣12.故选:B.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.4.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3%【考点】正数和负数.【答案】A【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.5.在0,﹣2,5,14,﹣0.3中,负数的个数是()A.1B.2C.3D.4【考点】正数和负数.【答案】B【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,14,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.6.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01【考点】正数和负数.【答案】B【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.7.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【考点】绝对值.【专题】数感;符号意识.【答案】C【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.8.下列各数中:+3、+(﹣2.1)、−12、﹣π、0、﹣|﹣9|、﹣0.1010010001中,负有理数有()A.2个B.3个C.4个D.5个【考点】有理数.【答案】C【分析】先化简,根据负数的意义:数字前面带“﹣”的数,直接得出答案即可.【解答】解:+(﹣2.1)=﹣2.1,﹣|﹣9|=﹣9;所以负有理数有:+(﹣2.1)、−12、﹣|﹣9|,﹣0.1010010001共4个.故选:C.【点评】此题考查负数的意义,注意把数据化为最简形式,再进一步判定即可.9.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【考点】数轴.【专题】符号意识.【答案】B【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.10.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.2016【考点】数轴.【答案】C【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答】解:2014﹣(﹣1)=2015,故A,B两点间的距离为2015.故选:C.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.二.填空题(共5小题)11.已知|U+|U=0,则B|B|的值为﹣1.【考点】绝对值.【专题】压轴题.【答案】见试题解答内容【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵|U+|U=0,∴a、b异号,∴ab<0,∴B|B|=B−B=−1.故答案为:﹣1.【点评】本题考查了绝对值的性质,主要利用了负数的绝对值是它的相反数,判断出a、b异号是解题的关键.12.某种零件,标明要求是φ20±0.02mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件不合格(填“合格”或“不合格”).【考点】正数和负数.【专题】应用题.【答案】见试题解答内容【分析】φ20±0.02mm,知零件直径最大是20+0.02=20.02mm,最小是20﹣0.02=19. 98mm,合格范围在19.98mm和20.02mm之间.【解答】解:零件合格范围在19.98mm和20.02mm之间.19.9mm<19.98mm,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.13.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=0.【考点】绝对值;数轴;相反数.【答案】见试题解答内容【分析】在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出a,b,c的位置,比较大小.在此基础上化简给出式子进行计算.【解答】解:由图知,a>0,b<0,c>a,且a+b=0,∴|a﹣c|﹣|b+c|=c﹣a﹣c﹣b=﹣(a+b)=0.【点评】把绝对值、相反数和数轴结合起来求解.要注意借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.14.若|x|+3=|x﹣3|,则x的取值范围是x≤0.【考点】绝对值.【专题】压轴题;分类讨论.【答案】见试题解答内容【分析】根据绝对值的性质,要化简绝对值,可以就x≥3,0<x<3,x≤0三种情况进行分析.【解答】解:①当x≥3时,原式可化为:x+3=x﹣3,无解;②当0≤x<3时,原式可化为:x+3=3﹣x,此时x=0;③当x<0时,原式可化为:﹣x+3=3﹣x,等式恒成立.综上所述,则x≤0.【点评】此题主要是能够根据x的取值范围进行分情况化简绝对值,然后根据等式是否成立进行判断.15.在数学兴趣小组活动中,小明为了求12+122+123+124+⋯+12的值,在边长为1的正方形中,设计了如图所示的几何图形.则12+122+123+124+⋯+12的值为1−12(结果用n表示).【考点】有理数的乘方.【专题】压轴题;规律型.【答案】见试题解答内容【分析】根据图中可知正方形的面积依次为12,122,⋯12.根据组合图形的面积计算可得.【解答】解:12+122+123+124+⋯+12=1−12.答:12+122+123+124+⋯+12的值为1−12.故答案为:1−12.【点评】考查了正方形的面积公式,及组合图形的面积计算.正方形的面积为1,根据图中二等分n次,面积为12.三.解答题(共5小题)16.计算:﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【考点】有理数的混合运算.【答案】见试题解答内容【分析】先算乘方和括号里面的,再算乘法,由此顺序计算即可.【解答】解:原式=﹣1﹣0.5×13×(2﹣9)=﹣1﹣(−76)=16.【点评】此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+r的值.【考点】倒数;相反数;绝对值.【专题】常规题型.【答案】见试题解答内容【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+r=2+1+0=3;当m=﹣2时,m+cd+r=−2+1+0=﹣1.【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.18.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【考点】绝对值;数轴.【答案】见试题解答内容【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.19.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣4,点P表示的数是6﹣6t(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【考点】数轴.【答案】见试题解答内容【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+ 8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点Q,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点评】此题考查的知识点是两点间的距离及数轴,根据已知得出各线段之间的关系等量关系是解题关键.20.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【考点】数轴.【专题】方程思想.【答案】见试题解答内容【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=163.故相遇点M所对应的数是163.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO与BQ的时间相等得出方程是解题关键,要分类讨论,以防遗漏.。
中考数学一轮复习各章节复习有答案完美版
中考数学一轮复习第1讲:实数概念与运算一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( )A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )二、能力提升 6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A .4℃ B .9℃ C .-1℃ D .-9℃ 7、定义一种运算☆,其规则为a ☆b =+,根据这个规则、计算2☆3的值是( ) A .65 B .C .5D .68、下列计算不正确的是( )(A ) (B ) (C ) (D 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )131a 1b 1531222-+=-21139⎛⎫-= ⎪⎝⎭33-==A. 6或6- B. 6 C. 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、― 2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、23、4、A5、C二、能力提升6、C7、A8、A三、课外拓展>9、a b四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(=2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x 32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍C .扩大9倍D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-24.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -y B .x 2-2xy +y 2x -y =x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12B .-12C .2D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(—)·的结果是( ) A . 4 B . -4 C .2a D .-2a13.分式方程的解是( )A .x=-2B .x=2C . x=±2 D.无解14.把分式中的,都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3. 2-a a2+a aa a 24-2114339x x x +=-+-(0)xyx y x y +≠+x y 13参考答案一、夯实基础1.B B 项分母中含有字母.2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1.二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=a a -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23 D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________.9.当-1<x<3时,化简:x-2+x2+2x+1=__________.10.如果代数式4x-3有意义,则x的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
中考数学一轮复习《圆》专项练习题-附参考答案
中考数学一轮复习《圆》专项练习题-附参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知⊙O的直径是10,点P到圆心O的距离是10,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在圆心2.如图,点A、B、C、D都在⊙O上,OA⊥BC若∠AOB=40°,则∠ADC的度数为()A.20°B.30°C.40°D.80°3.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水面AB的宽度为24cm,则水的最大深度为()A.5cm B.10cm C.13cm D.8cm4.如图,边长为1的小正方形网格中,点A、B、C、E在格点上,过A、B、E三点的圆交BC于点D,则∠AED 的正切值是()A.12B.2 C.√52D.√555.如图所示,将⊙O沿弦AB折叠,AB⌢恰好经过圆心O.若⊙O的半径为3,则AB⌢的长为().A.12πB.πC.2πD.3π6.如图,AB为⊙O的切线,切点为A,连接OA、OB,OB交⊙O于点C,点D在⊙O上,连接CD、AD若∠ADC= 30°,OA=1,则AB的长为()A.1B.√3C.2D.47.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.√3B.√6C.3 D.2√38.如图所示,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后,刚好经过AB的中点D.若⊙O的半径为2√5,AB=8,则BC的长是().A.5√3B.√2552C.6√2D.14√53二、填空题9.扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于cm2.10.如图,点A,B,C在⊙O上,∠ACB=30°,则∠ABO的度数是.11.如图,A、B、C、D均在⊙O上,E为BC延长线上一点,若∠A=102°,则∠DCE= .⌢的长12.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则BE度为.,OB=6,则PB的长为.13.如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,tanP=34三、解答题14.如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交BC,AC于点D,E,连接DE,OD.⌢=ED⌢.(1)求证:BD⌢,BE⌢的度数之比为4∶5时,求四边形ABDE四个内角的度数.(2)当AE15.如图,中,以为直径作,点为上一点,且,连接并延长交的延长线于点(1)判断直线与的位置关系,并说明理由;(2)若求的值.16.已知,如图,AB为⊙O的直径,△ABC内接于⊙O,BC>AC,点P是△ABC的内心,延长CP交⊙O于点D,连接BP.(1)求证:BD=PD;(2)已知⊙O的半径是3√2,CD=8,求BC的长.17.如图,AB是的直径,点C,M为上两点,且C点为的中点,过C点的切线交射线BM、BA于点EF.(1)求证:;(2)若, MB=2 ,求的长度.18.如图,在中以为直径的分别与、相交于点、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为,求图中阴影部分的面积.参考答案1.C2.A3.D4.A5.C6.B7.C8.C9.18π10.60°11.102°12.23π13.414.(1)证明:如图,连接AD∵AB是直径∴∠ADB=90°∵AB=AC∴∠BAD=∠CAD∴BD⌢=ED⌢.(2)解:∵AE⌢ + BE⌢ =180°,AE⌢与BE⌢的度数之比为4:5∴AE⌢ =80°,BE⌢ =100°∴BD⌢ = ED⌢ =50°∴AD⌢ = AE⌢ + ED⌢ =130°∴∠BAE=12BE⌢=50°,∠B=12AD⌢=65°∵∠AED+∠B=180°,∠BDE+∠A=180°∴∠AED=115°,∠BDE=130°∴∠BAE=50°,∠B=65°,∠BDE=130°,∠AED=115°.15.(1)解:是的切线证明:连接在和中∵OD是圆的半径是的切线(2)解:.设在中.设的半径为,则在中.在中16.(1)证明:∵AB为直径∴∠ACB=90°∵点P是△ABC的内心∴∠ACD=∠BCP=45°,∠CBP=∠EBP∴∠ABD=∠ACD=45°∵∠DPB=∠BCP+∠CBP=45°+∠CBP,∠DBP=∠ABD+∠CBP=45°+∠EBP ∴∠DPB=∠DBP∴BD=DP(2)解:连接AD,如图所示∵AB是直径∴△ABD是等腰直角三角形∵⊙O的半径是3√2∴AB=6√2∴△ABD是等腰直角三角形∴BD=√22×AB=√22×6√2=6∵∠EDB=∠BDC ∵△DBE∽△DCB∴DEDB =DBCD∵CD=8∴DE=DB2CD =628=4.5∵∠ACD=∠ABD=45°∴△AEC∽△BED∴ACBD =CEDE∴AC=143∴在Rt△ABC中BC=√AB2−AC2=2√1133. 17.(1)证明:如图连接.∵是的切线∴∵点C是的中点∴∵OB=OC∴∴∴∴∴(2)解:如图,连接∵∴∵OM=OB∴为等边三角形∴OB=MB=2∴的长度18.(1)证明:连接.是的直径.又AB=AC,∴D是BC的中点.连接;由中位线定理,知又.是的切线;(2)解:连接,的半径为第11 页共11 页。
2023年江西省中考数学第一轮复习效果检测试卷及参考答案
江西省2023年初中第一轮复习效果检测数学试题卷注意:1. 本卷共6道大题,23道小题,满分为120分;2. 请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题只有一个正确的选项,每小题3分,共18分)1. 倒数是2023的数的相反数是( )A.2023B.2023−C.12023−D.12023−−2. 某正多面体的主视图如图所示,则这个多面体的面数为( )A.12B.16C.20D.243. 下列计算正确的个数为( )①2323+= ②2ab b a ab −⋅⨯=− ③()23254m n m n =A.0B.1C.2D.34. 已知甲醇、乙醇、丙醇、丁醇的化学式分别为3CH OH 、25C H OH 、37C H OH 、49C H OH ,那么按照这个规律,辛醇的化学式为( )A.613C H OHB.715C H OHC.817C H OHD.919C H OH5. 要使杠杆保持平衡,作用在杠杆两端(动力点和阻力点)的两个力的大小跟它们的力臂的长短成反比,即,动力×动力臂=阻力×阻力臂.如图,某杠杆左端挂了一个受重力10N 的物体,其阻力臂为5cm ,现在杠杆右端施加一个向下的动力F ,且动力F 的动力臂为1l ,若令N F a =,1cm l b =那么下列说法正确的是( )A.50a b +=B. 105a b ÷=÷C.2a b ÷=D. 10000a ≠第2题图 第5题图 第6题图6. 如图,边长为4的正方形被分为了5个等腰直角三角形和一个平行四边形,则图中“小鱼”(阴影部分)的面积为( )C.323D.403二、填空题(本大题共6小题,每小题3分,共18分)7. 因式分解:324x x −=__________.8. 边长为1的正n 边形的一个内角为135︒,则这个多边形的面积等于__________.9. 二次函数()211y mx m x =+++的与x 轴交点分别为点A 、点B ,且点A 在点B 的左边,点A 为定点,点B 在x 轴负半轴上,则m 的取值范围是:__________.10. 甲小组和乙小组在合作完成“猫咪剪绘”任务,有甲小组先剪下小猫的纸片,再由乙小组对纸片进行绘画,上色.已知甲小组每分钟一共可以剪出30张卡片,乙小组每分钟一共可以绘画50张卡片,要求完成的猫咪卡片一共有x 张,为了让甲、乙两个小组同时在整分钟的时间完成任务,需要让甲组同学提前y 分钟开始工作,则y 与x 的关系式为:__________(写出x 需满足的条件).11. 中华文化博大精深,阴阳太极图中的S 型曲线(由两个半圆组成)象征着阴阳两分.如图1,某同学手绘了一个阴阳太极图,其具体大小如图2所示,设这个图形中黑(灰)色部分面积为1S ,白色部分面积为2S ,则12S S −=__________.第11题图1 第11题图2 第12题图12. 如图,正方形ABCD 的边长为10,其边上有一动点E (未画出),设O 为AC 、BD的交点,连接OE ,以OE 为边作正五边形OEFGH ,连接OG ,若OG 的值为整数,则OG =__________.三、(本大题共5小题,每小题6分,共30分)13. (13π+−−(2)解不等式组:30240x x +>⎧⎨−≤⎩14. 先化简,再求值:322x x x x x −−⎛⎫−÷ ⎪⎝⎭,其中,14x <<,x 为整数.A B CD15. 如图,正八边形ABCDEFGH 的边长为1,点A 上有一个棋子,小明同学将棋子沿正八边形边顺时针或逆时针移动2个或3个单位长度,小红同学再将棋子沿正八边形边顺时针或逆时针移动3个或4个单位长度.(1)棋子第一次移动到点B 是__________(选填“必然”、“随机”或“不可能”)事件;(2)用列表或树状图的方式得出第二次移动到点D 的概率.第15题图16. 如图,在平面直角坐标系xOy 中,点A 、B 、C 的坐标分别为()1,1、()2,3和()3,1,请只使用无刻度直尺作图:(1)线段AB 中点M ;(2)直线2133y x =+. 17. 实验室使用m g 浓度为40%的盐水和n g 蒸馏水配置x g 浓度为2%的稀盐水.(1)m n=__________; (2)若1000x =,求m 、n 的值.四、(本大题共3小题,每小题8分,共24分)18. 初三(1)班和初三(2)班举行数学竞赛,现各班分数如下:初三(1)班:50、52、54、56、60、62、66、68、68、68、70、70、74、74、76、76、76、77、77、77、78、78、79、79、80、80、84、84、84、86、88、90、92、94、94、96、96、98、98、98初三(2)班:60、60、60、64、69、70、72、73、75、78、80、80、82、83、84、84、84、84、84、84、86、88、89、90、90、90、90、90、90、92、92、94、94、96、96(1)a =__________,b =__________;CD(2)若学生成绩不低于90分就算优秀,求初三(1)班、初三(2)班的优秀率,并估计全年级的优秀率;(3)比较并分析初三(1)班和初三(2)班的成绩.19. 【回归教材】如图1,在三角形ABC 中,E 、D 分别为B 、C 向三边作的垂线,其交点为H ,连接并延长AH 交BC 于点F ,求证:AF BC ⊥;【拓展思考】如图2,在图1的基础上,设M 为BC 中点,P 为H 关于点M 的对称点,Q 为H 关于点F 的对称点,求证:A 、B 、C 、P 、Q 共圆.图1 图220. 如图为某平板即其后背支架的侧视图抽象图,其中平板AB 长12cm ,当后背软支架CD 、BD 均与OB 重合时,A 、C 恰好与O 重合.当45ABC ∠=︒时,1.69cm OC ≈.(1)求CD 的长;(2)设OC y =,ABO α∠=(090α︒<<︒),用含α的式子表示y .1.414≈3.742≈,第(1)问的结果保留整数)B AC HE DF BC PQ五、(本大题共2小题,每小题9分,共18分)21. 如图,四边形ABCD 为矩形6AB =,8AD =,连接BD ,点O 在边AD 上,满足1tan 2OBD ∠=,以点O 为圆心,OA 为半径作圆. (1)求证:直线BD 与圆O 相切;(2)点P 为圆O 上的一个动点,连接DP 、CP ,求53CP DP +的最小值.22. 如图,运动员(已略去)手持篮球向水平细篮筐MN 发出了一个向右上方的力,使篮球向篮筐运动,篮球的中心点A 的轨迹是一条抛物线,球一次性从上向下穿过篮筐MN (不碰到篮板PQ ,不碰到篮筐MN )记为投一次空心球,此时,篮球中心A 距离地面高2.25m ,点A 与点M 的水平距离为7.5m ,MN 长0.5m ,篮球直径为0.25m ,篮筐MN 距离地面高3.05m ,球在空中的轨迹可看作是一条抛物线,且该抛物线与出手力的作用线相切,现建立平面直角坐标系xOy ,其中,x 轴为地面,y 轴恰好过点A ,以下计算均在此平面中进行,设这条抛物线的解析式为2y ax bx c =++(0x ≥且0y >).(1)求该抛物线的解析式(用仅含a 的式子表示);(2)若该篮球运动员投出的球是空心球,求a 的取值范围.A B C DO六、(本大题共12分)23. 【基本图形构建】如图1,点M 、N 的正上方有点A 、C ,点B 在线段MN 上,连接AB 、BC ,90ABC ∠=︒,则易知△ABM ∽△BCN .【模型初步运用】如图2,四边形ABCD 为正方形,边长为6,点E 为BC 中点,点F 在边CD 上,且90AEF ∠=︒,求DF 的长度.【模型拓展构造】如图3,四边形ABCD 为正方形,边长为6,点E 为BC 中点,连接AE ,将三角形ABE 沿AE 折至三角形AB E ',直接写出B '到边AB 的距离.【模型创新理解】如图4,四边形ABCD 为正方形,边长为6,以AD 为底向上作等边三角形ADE ,P 、Q 为线段DE 、CD 上的动点(未画出),满足DP DQ =,连接AP 、AQ ,求AP AQ +的最小值.图1 图2图3 图4A MB N CAB C DE FA B C D EB 'A BC DE江西省2023年初中第一轮复习效果检测 数学试题参考答案、解析、评分标准注意:1. 本卷共6道大题,23道小题,满分为120分;2. 请将答案写在答题卡上,否则不给分。
中考数学一轮复习测试题(有答案)
中考数学一轮复习测试题(有答案)想要学好数学,一定要多做练习,以下所引见的中考数学一轮温习测试题,主要是针对学过的知识来稳固自己所学过的内容,希望对大家有所协助!A级基础题1.要使分式1x-1有意义,那么x的取值范围应满足()A.x=1B.x≠0C.x≠1D.x=02.分式x2-1x+1的值为零,那么x的值为()A.-1B.0C.±1D.13.化简a3a,正确结果为()A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.a-ba+b=15,那么ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2021年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2021年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2. B级中等题10.化简:2mm+2-mm-2÷mm2-4=________.11.假定x+y=1,且x≠0,那么x+2xy+y2x÷x+yx的值为________.12.实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷?a+1??a+2?a2-2a+1的值.C级拔尖题13.三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,那么xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.参考答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=?x+4?+?x-4??x+4??x-4???x+4??x-4?2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=?m-2?2?m+1??m-1??m-1m-2+2m-1=m-2m+1+2m-1=?m-2??m-1 ?+2?m+1??m+1??m-1?=m2-m+4?m+1??m-1?,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2?a+1??a-1???a-1?2?a+1??a+2?=1a+1-a-1?a+1?2 =2?a+1?2,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a?b+1??b+1??b-1?+b-1?b-1?2=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.。
2023年中考数学一轮复习 第8讲 分式方程 专题训练(浙江专用)(含解析)
第8讲分式方程 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·杭州)照相机成像应用了一个重要原理,用公式1f=1μ+1ν(v≠f)表示,其中f表示照相机镜头的焦距,μ表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则μ=()A.fvf−v B.f−vfv C.fvv−f D.v−ffv2.(2022·金东模拟)众志成城,抗击疫情,某医护用品集团计划生产口罩1500万只,实际每天比原计划多生产2000只,结果提前5天完成任务,则原计划每天生产多少万只口罩?设原计划每天生产x万只口罩,根据题意可列方程为()A.1500x+0.2−1500x=5B.1500x=1500x+2000+5C.1500x+2000=1500x+5D.1500x−1500x+0.2=53.(2022·丽水)某校购买了一批篮球和足球,已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x﹣30,则方程中x表示()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量4.(2022·萧山模拟)师徒两人每小时共加工35个电器零件,徒弟做了120个时,师傅恰好做了160个.设徒弟每小时做x个电器零件,则根据题意可列方程为()A.120x=16035−x B.12035−x=160xC.120x=16035+x D.12035+x=160x5.(2022·椒江模拟)北京冬奥会吉祥物“冰墩墩”引爆购买潮,导致“一墩难求”,某工厂承接了60万只冰墩墩的生产任务,实际每天的生产效率比原计划提高了25%,提前10天完成任务.设原计划每天生产x万只冰墩墩,则下面所列方程正确的是()A.60x−60×(1+25%)x=10B.60(1+25%)x−60x=10C.60×(1+25%)x−60x=10D.60x−60(1+25%)x=106.(2022·舟山模拟)“五•一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为( ) A .180x−2 ﹣ 180x =3B .180x+2 ﹣ 180x =3C .180x ﹣ 180x−2=3 D .180x −180x+2=3 7.(2022·吴兴模拟)某书店分别用500元和700元两次购进一本小说,第二次数量比第一次多4套,且两次进价相同.若设该书店第一次购进x 套,根据题意,列方程正确的是( ) A .500x =700x−4B .500x−4=700xC .500x =700x+4D .500x+4=700x8.(2022·衢州模拟)若关于x 的一元一次不等式组{3x −2≥2(x +2)a −2x <−5的解集为x ≥6,且关于y 的分式方程y+2a y−1+3y−81−y =2的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .159.(2022·宁海模拟)分式方程1x−1=x 1−x +2的解为( ) A .x =−1 B .x =1 C .x =3D .x 1=1,x 2=310.(2022·温州模拟)同学聚餐预定的酒席价格为2400元,但有两位同学因时间冲突缺席,若总费用由实际参加的人平均分摊,则每人比原来多支付40元,设原来有x 人参加聚餐,由题意可列方程( )A .2400x+2=2400x +40B .2400x+40+40=2400xC .2400x =2400x−2+40 D .2400x +40=2400x−2二、填空题11.(2022·台州)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是 .先化简,再求值: 3−x x−4+1 ,其中 x =解:原式 =3−xx−4⋅(x −4)+(x −4)…①12.(2022·宁波)定义一种新运算:对于任意的非零实数a,b,a ⊗b= 1a+1b.若(x+1) ⊗x= 2x+1x,则x的值为13.(2022·秀洲模拟)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度。
中考数学第一轮复习资料试题试卷练习题含解析
河南省实验中学内部中考数学第一轮复习资料第一章 实数课时1.实数的有关概念【课前热身】1. 2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .3.的相反数是 .4. 3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】 例1 在“()05,3.14 ,()33,()23-,coos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴2--的倒数是( )A .2 B.12C.12-D.-2 ⑵若,则的值为( )A .B .C .0D .4 ⑶如图,数轴上点P 表示的数可能是( )B. 3.2- D.例3 德州市实现生产总值(GDP )1545.35亿元,用科学记数法表示应是(结果保留3个有效数字)(A)81054.1⨯ 元 (B)1110545.1⨯元 (C)101055.1⨯元(D)111055.1⨯元【中考演练】1. -3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-30,0.31,,2,2.161 161…,(-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.若0)3(12=++-+y y x ,则y x -的值为 . 6.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字23(2)0m n -++=2m n +4-1-227π7. 51-的倒数是 ( ) A .51- B .51C .5-D .58.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.如果()222+=(a +b )2(a ,b 为有理数),那么a +b 等于(A )2 (B )3 (C )8 (D )1010.下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11. 16的算术平方根是( )A.4B.-4C.±4D.16 12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14. 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.计算:=-13_______. 3.比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.下列各式正确的是( )A .33--=B .C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,A BO-34!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-p a (其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.【典例精析】 例1 计算:⑴ 04sin 45(3)4︒+-π+- ⑵22(2)2sin 60--+.例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cdm ++-+的值.【中考演练】1. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .2、观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.3. 计算:(1) |2-(2)(π-3.14)0-|-3|+121-⎪⎭⎫⎝⎛-(-1)(3)1201002(60)(1)|28|(301)21cos tan -÷-+--⨯-- ﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】1. 31-x 2y 的系数是 ,次数是 . 2.计算:2(2)a a -÷= . 3.下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. 计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 . 【典例精析】例1 若0a >且2x a =,3ya =,则x y a -的值为( )2A .1-B .1C .23D .32例2 按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ ,其中.﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则.4. 简便计算:2200820092008-⨯ = .5. 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +- D .122++a a【考点链接】 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ . 3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,)(2)(2y x y y x -+-2,1==y x1 1 1 12 11 3 3 1 14 6 4 1 ....................................... ⅠⅡ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:(1)33222ax y axy ax y +-=__________________. ⑵3y 2-27=___________________.⑶244x x ++=_________________. ⑷ 221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________.3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________.5.分解因式2232ab a b a -+= . 6.将3214x x x +-分解因式的结果是 .7.分解因式am an bm bn +++=_____ _____; 8. 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.ba11.计算:(1)299; (2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ①()()()2222222b a c b a b a -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。
中考数学一轮复习综合试卷及答案
中考数学一轮复习试卷(二)(解析版)一、选择题(共10小题;共30分)1.在直角坐标系中,点M(sin50°,﹣cos70°)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.点M(﹣sin60°,cos60°)关于x轴对称的点的坐标是()A.()B.(﹣) C.(﹣)D.(﹣)3.如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3 B.C.4 D.4.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO 交D点,连接BD,当DB⊥x轴时,k的值是()A.6 B.﹣6C.12D.﹣125.如图所示,已知P点的坐标是(a,b),则sinα等于()A.B.C.D.6.如图,直线y=﹣x+与x轴、y轴分别交于A,B两点,OP⊥AB于点P,∠POA=α,则cosα的值为()A.B.C.D.7.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB?AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(4,8);③sin ∠COA=;④AC+OB=12,其中正确的结论有()A.1个B.2个C.3个D.4个8.如图,点C在线段AB上,AB=8,AC=2,P为线段CB上点一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D,设CP=x,△CPD的面积为y,则下列图象中能表示y 与x关系的图象大致是()A.B.C.D.9.如图,在△ABC中,AB=AC,tan∠B=2,BC=3.边AB上一动点M从点B出发沿B→A运动,动点N从点B出发沿B→C→A运动,在运动过程中,射线MN与射线BC交于点E,且夹角始终保持45°.设BE=x,MN=y,则能表示y与x的函数关系的大致图象是()A.B.C.D.10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C 时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10 时,y=0.4t2D.当t=12s 时,△PBQ 是等腰三角形二、填空题(共6小题;共18分)11.直线y=kx﹣4与y轴相交所成的锐角的正切值为,则k的值为______.12.反比例函数y=的图象经过点(tan45°,cos60°),则k=______.13.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x <0)的图象上,则k=______.14.如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB ⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(______,______).15.如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于______.(结果保留π)16.如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,点C在第二象限内且为直线AB上一点,OC=AB,反比例函数y=的图象经过点C,则k的值为______.三、解答题(共8小题;共72分)17.如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD 交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.(1)求点C的坐标;(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.18.如图,某机器人在点A待命,得到指令后从A点出发,沿着北偏东30°的方向,行了4个单位到达B点,此时观察到原点O在它的西北方向上,求A点的坐标(结果保留根号).19.如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30度.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.(2)当五边形BCDNM面积最小时,请判断△AMN的形状.20.如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.21.如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)22.已知方程x 2+mx+n=0 的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.23.如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D 是否在该反比例函数的图象上?24.如图,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒 1 个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c 经过点O 和点P.已知矩形ABCD 的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求c,b(可用含t 的代数式表示);(2)当t>1 时,抛物线与线段AB 交于点M.在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;(3)在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t 的取值范围.2016年山西省阳泉市中考数学一轮复习试卷(二)参考答案与试题解析一、选择题(共10小题;共30分)1.在直角坐标系中,点M(sin50°,﹣cos70°)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】锐角三角函数的定义;点的坐标.【分析】先判断出sin50°>0,﹣cos70°<0,即可判断出点M(sin50°,﹣cos70°)所在象限.【解答】解:∵sin50°>0,﹣cos70°<0,∴点M在第四象限.故选D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.2.点M(﹣sin60°,cos60°)关于x轴对称的点的坐标是()A.()B.(﹣) C.(﹣)D.(﹣)【考点】特殊角的三角函数值;关于x轴、y轴对称的点的坐标.【分析】先根据特殊三角函数值求出M点坐标,再根据对称性解答.【解答】解:∵sin60°=,cos60°=,∴点M(﹣).∵点P(m,n)关于x轴对称点的坐标P′(m,﹣n),∴M关于x轴的对称点的坐标是(﹣).故选:B.【点评】考查平面直角坐标系点的对称性质,特殊角的三角函数值.3.如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3 B.C.4 D.【考点】一次函数综合题.【分析】根据三角函数求出点B的坐标,代入直线y=x+b(b>0),即可求得b的值.【解答】解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.【点评】本题灵活考查了一次函数点的坐标的求法和三角函数的知识,注意直线y=x+b(b >0)与x轴的夹角为45°.4.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO 交D点,连接BD,当DB⊥x轴时,k的值是()A.6B.﹣6C.12D.﹣12【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】首先过点C作CE⊥x轴于点E,由∠BOC=60°,顶点C的坐标为(m,3),可求得OC的长,又由菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,可求得OB的长,且∠AOB=30°,继而求得DB的长,则可求得点D的坐标,又由反比例函数y=的图象与菱形对角线AO交D点,即可求得答案.【解答】解:过点C作CE⊥x轴于点E,∵顶点C的坐标为(m,3),∴OE=﹣m,CE=3,∵菱形ABOC中,∠BOC=60°,∴OB=OC==6,∠BOD=∠BOC=30°,∵DB⊥x轴,∴DB=OB?tan30°=6×=2,∴点D的坐标为:(﹣6,2),∵反比例函数y=的图象与菱形对角线AO交D点,∴k=xy=﹣12.故选D.【点评】此题考查了菱形的性质以及反比例函数图象上点的坐标特征.注意准确作出辅助线,求得点D的坐标是关键.5.如图所示,已知P点的坐标是(a,b),则sinα等于()A.B.C.D.【考点】锐角三角函数的定义;坐标与图形性质;勾股定理.【分析】首先根据P点坐标利用勾股定理计算出OP的长,再根据正弦定义计算sinα即可.【解答】解:∵P点的坐标是(a,b),∴OP=,∴sinα=,故选:D.【点评】此题主要考查了锐角三角函数的定义,关键是掌握正弦定义:把锐角A的对边a 与斜边c的比叫做∠A的正弦,记作sinA.6.如图,直线y=﹣x+与x轴、y轴分别交于A,B两点,OP⊥AB于点P,∠POA=α,则cosα的值为()A.B.C.D.【考点】一次函数图象上点的坐标特征;勾股定理;锐角三角函数的定义.【分析】首先根据直线解析式计算出A、B两点坐标,然后再根据勾股定理计算出AB长,根据余弦定义可得cos∠ABO,然后再根据同角的余角相等可得∠α=∠AOB,进而得到答案.【解答】解:根据题意:直线AB的方程为y=﹣x+,则A点坐标为(1,0),B点坐标为(0,),故AO=1,BO=,AB=,cos∠ABO===,由于同角的余角相等即∠α=∠AOB,所以cosа=cos∠ABO=.故选A.【点评】此题主要考查了三角函数的定义,利用余角的性质得到∠α=∠AOB是解决问题的关键.7.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB?AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(4,8);③sin ∠COA=;④AC+OB=12,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】反比例函数综合题.【分析】过点B作BM⊥x轴于点M,借助菱形与三角形的面积公式即可求出BM的长,在Rt△ABM中,利用勾股定理即可求出AM的长,从而可找出点B的坐标,根据菱形的性质即可得出点D的坐标,由点D的坐标利用待定系数法即可求出双曲线的解析式,从而得出①错误;由点E的纵坐标结合双曲线的解析式即可求出点E的坐标,从而得出②正确;根据菱形的性质即可得出AB∥OE,从而得出∠COA=∠BAM,再根据正弦的定义即可得出③正确;在Rt△OBM中利用勾股定理即可求出OB的长度,再根据OB?AC=160即可求出AC的长度,从而得出④正确.综上即可得出结论.【解答】解:过点B作BM⊥x轴于点M,如图所示.∵A点的坐标为(10,0),∴OA=10.∵四边形OABC为菱形,且OB?AC=160,∴S△OAB=OA?BM=OB?AC=40,AB=OA=10,∴BM=8.在Rt△ABM中,AB=10,BM=8,∴AM==6,∴OM=OA+AM=16,∴B(16,8),D(8,4).∵点D(8,4)在双曲线y=(x>0)上,∴4=,k=32,∴双曲线的解析式为y=(x>0),∴①不正确;∵点E在双曲线y=上,且E的纵坐标为8,∴E(,8),即(4,8),∴②正确;∵四边形OABC为菱形,∴AB∥OE,∴∠COA=∠BAM,sin∠COA=sin∠BAM==,∴③正确;在Rt△OBM中,BM=8,OM=16,∴OB==8,∵OB?AC=160,∴AC=4,OB+AC=12,∴④正确.故选C.【点评】本题考查了待定系数法求函数解析式、菱形的性质、勾股定理以及正弦的定义,解题的关键是逐一分析4条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据菱形的性质找出相等的边角关系是关键.8.如图,点C在线段AB上,AB=8,AC=2,P为线段CB上点一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D,设CP=x,△CPD的面积为y,则下列图象中能表示y 与x关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】在△CPD中,利用CP+CD>PD,CD+PD>CP,可得2<x<4.在△CPD中,设∠DCP=θ,由余弦定理可得cosθ==.利用平方关系可得sinθ=,利用三角形的面积计算公式可得y=×CP×CD×sinθ=2,利用二次函数的单调性即可得出.【解答】解:由题意,DC=2,CP=x,DP=6﹣x,根据三角形的构成条件可得,解得2<x<4;在△CPD中,设∠DCP=θ,由余弦定理可得cosθ==.∴sinθ==,∴y=×CP×CD×sinθ=2,∴当且仅当x=3时,y取得最大值,y最大=2.综上所述,只有选项B符合条件.故选:B.【点评】本题考查了三角形三边的大小关系、余弦定理、平方关系、三角形的面积计算公式、二次函数的单调性等基础知识与基本技能方法,属于难题.9.如图,在△ABC中,AB=AC,tan∠B=2,BC=3.边AB上一动点M从点B出发沿B→A运动,动点N从点B出发沿B→C→A运动,在运动过程中,射线MN与射线BC交于点E,且夹角始终保持45°.设BE=x,MN=y,则能表示y与x的函数关系的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分两种情况讨论:①当点N在边BC时,点E与N重合如图1,此时0<x≤3.过点M作MG⊥BC于点G,解等腰直角三角形MGN,得出GN=y.由tan∠B=2,得出BG=y.由BG+GE=BE得到y+y=x,即y=x;②当点N在BC延长线上时,如图2,此时3<x≤.过点M作MG⊥BC于点G,过点N作NF⊥BC于点F,过点N作NH⊥MG于点H,设NE=a,求出MH=HN=GF=y,NF=FE=a,MG=GE=y+a=(y+a),BG=(y+a).由BC=BG+GF+FC,得出(y+a)+y+a=3,即a=.再根据BG+GF+FE=BE得到(12﹣y)+y+(12﹣3y)=x,即y=﹣x+12.【解答】解:分两种情况:①当点N在边BC时,点E与N重合,如图1,此时0<x≤3.过点M作MG⊥BC于点G,∵∠MNG=45°,∴MG=GN=y.∵tan∠B=2,∴BG=y.∵BG+GE=BE,∴y+y=x,即y=x;②当点N在BC延长线上时,如图2,此时3<x≤.过点M作MG⊥BC于点G,过点N作NF⊥BC于点F,过点N作NH⊥MG于点H,设NE=a,∵∠MEG=45°,HN∥BC,∴MH=HN=y,NF=FE=a,MG=GE=y+a=(y+a).∵AB=AC,tan∠B=2,∴tan∠NCF=2.∴FC=a.又∵tan∠B=2,∴BG=(y+a).∵BC=BG+GF+FC,GF=HN,∴(y+a)+y+a=3,∴a=.∴FE=a=(12﹣3y),BG=(y+)=(12﹣y),∴(12﹣y)+y+(12﹣3y)=x,即y=﹣x+12.综上所述,y与x的函数关系为y=.故选D.【点评】本题考查了动点问题的函数图象,等腰三角形的性质,等腰直角三角形的判定和性质,锐角三角函数的定义,利用数形结合与分类讨论是解题的关键.10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C 时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()。
中考数学第一轮复习题及答案
中考数学第一轮复习题及答案2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc0B.2a+b0C.a-b+c0D.4ac-b204.二次函数y=ax2+bx的图象如图3-4-12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2022年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2022年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2022年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.中考数学第一轮复习题B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3-4-13,给出下列结论:①2a+b0;②bac;③若-112.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短若P点存在,求出P点的坐标;若P点不存在,请说明理由.中考数学第一轮复习题C级拔尖题13.如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.下一页查看中考数学第一轮复习题答案。
中考数学第一轮复习资料(全)(含答案)
•2••b中考数学第一轮复习资料课题一:数与式(一)一、考点讲解:1.了解实数的概念,会进行分类. 2.理解相反数、绝对值的意义. 3.会用适当的方法比较实数的大小.4.掌握实数的运算法则、运算律,并能熟练应用它们解决计算问题.5.了解近似数与有效数字的概念,能用科学记数法按问题的要求对结果取近似值. 6.会利用数轴解决数形结合的问题. 二、经典题剖析:1.将下列各数填入相应的集合内.( 2 - 3 )°,227,21--,2,8-,3π,︒30sin ,4-,7,1.2121121112......无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 2.实数c b a ,,在数轴上对应点的位置如图所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个 3.下列说法正确的是( )A .近似数3.9×103精确到十分位.B .按科学计数法表示的数8.04×105其原数是80400.C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001.4.唐家山堰塞湖是“5•12汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为________________立方米.5.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,•小聪发现当台阶数分别为1级,2级,3级,4级,5级,6级,7级……逐渐增加时,上台阶的不同方法种数依次为1,2,3,5,8,13,21,……这就是著名的斐波那契数列,•那么小聪上这9级台阶共有_____种不同方法.6.若a 的倒数是-1,b+2与a -3互为相反数,c 的绝对值为2,且ac>0,试比较:b+c 与ab 的大小. 7.计算: ⑴(-13-12)×(-6)-(-2)3÷(-12)2+π0 ⑵(79-56-718)×18-1.45×6-3.55×6; 8.比较大小:(1)3 54(2)65 ____56 (3)58______51-(4) 67_____56-- (5) 已知a 2=2,b 3=3,且a>0,比较a 、b 大小. 三、针对性训练:1.-(-4)的相反数是_______; 2.2--的倒数是_______. 3.已知有理数x 、y 满足1+2y-4+z-6=0x -,求xyz 的值.4.如图,数轴上表示12A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ).(1) (2) (3)(4)A .12-B .21-C .22-D .22-5.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为( )(结果保留整数) A .-26°C B .-22°C C .-18°C D .22°C 6.如图,数轴上点P 表示的数可能是( )7 B. 7- 3.2- D. 10-7.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( )A .①②③B .②③④C .①②④D .②④8.据某网站报道:一粒废旧纽扣电池可以使600t 水受到污染,某校团委四年来共回收废旧纽扣电池3 600粒.若这3 600粒废旧纽扣电池可以使m (t )水受到污染,用科学记数法表示m 为__________(保留2位有效数字);用四舍五入法得到的近似数3.20×105的精确度是精确到_______位,有效数字为_________.9.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。
中考数学第一轮复习基础卷答案试题
第一轮复习数学根底卷20一、选择题:〔本大题一一共6题,每一小题4分,满分是24分〕 1.以下运算正确的选项是〔A 〕3931= 〔B 〕3931±= 〔C 〕 〔D 〕3921±=2.关于x 的方程012=--mx x 根的情况是〔A 〕有两个不相等的实数根 〔B 〕有两个相等的实数根 〔C 〕没有实数根 〔D 〕不能确定的3.函数x k y )1(-=中,假如y 随着x 增大而减小,那么常数k 的取值范围是〔A 〕1<k 〔B 〕1>k 〔C 〕1≤k 〔D 〕1≥k4.在一个袋中,装有除颜色外其它完全一样的2个红球和2个白球,从中随机摸出两个球, 摸到的两个球颜色不同的概率是 〔A 〕41 〔B 〕 21 〔C 〕31 〔D 〕325.对角线互相平分且相等的四边形是〔A 〕菱形 〔B 〕矩形 〔C 〕正方形 〔D 〕等腰梯形 6.假如⊙O 1的半径是5,⊙O 2的半径为8,421=O O ,那么⊙O 1与⊙O 2的位置关系是 〔A 〕内含 〔B 〕内切 〔C 〕相交 〔D 〕外离 二、填空题:〔本大题一一共12题,每一小题4分,满分是48分〕 7.计算:2)23(-= . 8.化简:=÷3a a 366 . 9.不等式组⎩⎨⎧<-≤-32,01x x 的整.数解..是 . 10. 方程x x =+6的根为 .11.函数3223+-=x x y 的定义域为 .12.),0(0222≠=-+y y xy x 那么=yx. 13.假如点A 、B 在一个反比例函数的图像上,点A 的坐标为〔1,2〕,点B 横坐标为2,那么A 、B 两点之间的间隔 为 . 14. 数据3、4、5、5、6、7的方差是 .15.在四边形ABCD 中,AB =CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写上一种情况)16.在△ABC 中,点D 在边BC 上, CD =2BD ,b BC a AB ==,,那么=DA . 17.如图,点A 、B 、C 在半径为2的⊙O 上,四边形OABC 是菱形,那么由BC 和弦BC 所组成的弓形面积是 .18.如图,在△ABC 中,∠C=90°,点D 为AB 的中点,BC=3,31cos =B ,△DBC 沿着CD 翻折后, 点B 落到点E ,那么AE 的长为 .三、解答题:〔本大题一一共7题,满分是78分〕 19.〔此题满分是10分〕化简:012)2()1(231-+-++--x x x x ,并求当13+=x 时的值.C〔第17题图〕〔第18题图〕OCBA20.〔此题满分是10分〕解方程组:⎪⎪⎩⎪⎪⎨⎧=+-+=+++.116,21322yx y x y x y x21.〔此题满分是10分,第〔1〕小题满分是6分,第〔2〕小题满分是4分〕 :如图,在□ABCD 中,AB =5,BC =8,AE ⊥BC ,垂足为E ,53cos =B . 求:〔1〕DE 的长; 〔2〕∠CDE 的正弦值.〔第21题图〕BCE22.〔此题满分是10分第〔1〕小题满分是6分,第〔2〕小题满分是4分〕20个集装箱装满了甲、乙、丙三种商品一共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:〔1〕假如甲种商品装x个集装箱,乙种商品装y个集装箱,求y与x之间的关系式;〔2〕假如其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.励志赠言经典语录精选句;挥动**,放飞梦想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步步为赢:中考数学第一轮复习资料目录第一章实数课时1.实数的有关概念…………………………………………( 1 )课时2.实数的运算与大小比较……………………………( 4 )第二章代数式课时3.整式及运算……………………………………………( 7 )课时4.因式分解…………………………………………………( 10 )课时5.分式……………………………………………………( 13 )课时6.二次根式…………………………………………………( 16 )第三章方程(组)与不等式课时7.一元一次方程及其应用……………………………( 19 )课时8.二元一次方程及其应用……………………………( 22 )课时9.一元二次方程及其应用………………………………( 25 )课时10.一元二次方程根的判别式及根与系数的关系…( 28 )课时11.分式方程及其应用……………………………………( 31 )课时12.一元一次不等式(组)………………………………( 34 )课时13.一元一次不等式(组)及其应用……………………( 37 )第四章函数课时14.平面直角坐标系与函数的概念……………………( 40 )课时15.一次函数…………………………………………………( 43 )课时16.一次函数的应用………………………………………( 46 )课时17.反比例函数……………………………………………( 49 )课时18.二次函数及其图像…………………………………( 52 )课时19.二次函数的应用……………………………………( 55 )课时20.函数的综合应用(1)………………………………( 58 )课时21.函数的综合应用(2)………………………………( 61 )第五章统计与概率课时22.数据的收集与整理(统计1)……………………( 64 )课时23.数据的分析(统计2)………………………………( 67 )课时24.概率的简要计算(概率1)…………………………( 70 )课时25.频率与概率(概率2)…………………………………( 73 )第六章三角形课时26.几何初步及平行线、相交线………………………( 76 )课时27.三角形的有关概念…………………………………( 79 )课时28.等腰三角形与直角三角形…………………………( 82 )课时29.全等三角形……………………………………………( 85 )课时30.相似三角形……………………………………………( 88 )课时31.锐角三角函数…………………………………………( 91 )课时32.解直角三角形及其应用……………………………( 94 )第七章四边形课时33.多边形与平面图形的镶嵌..............................( 97 )课时34.平行四边形...................................................( 100 )课时35.矩形、菱形、正方形 (103)课时36.梯形 (106)第八章圆课时37.圆的有关概念与性质 (109)课时38.与圆有关的位置关系 (112)课时39.与圆有关的计算 (115)第九章图形与变换课时40.视图与投影 (118)课时41.轴对称与中心对称 (121)课时42.平移与旋转 (124)第一章实数课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是.2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08的相反数是 . 4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴(06成都)2--的倒数是( )A .2 B.12C.12-D.-2 ⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 ⑶(07扬州)如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,0,2,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.(06北京)若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.(06泸州)51-的倒数是 ( ) A .51- B .51C .5-D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或3 9.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21 B .21- C .21± D .2 10.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.(08巴中)下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5.【典例精析】 例1计算:⑴(08龙岩)20080+|-1|-3cos30°+ (21)3; ⑵22(2)2sin 60--+.例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. (07盐城)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .2. 比较大小:73_____1010--. 3.(08江西)计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 12 4. (08宁夏)下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴(08南宁)4245tan 21)1(10+-︒+--;⑵(08年郴州)201()2sin 3032--+︒+-;⑶ (08东莞) 01)2008(260cos π-++-.﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】 1. 31-x 2y 的系数是 ,次数是 . 2.(08遵义)计算:2(2)a a -÷= . 3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. (08湖州)计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n= . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= .7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 (08乌鲁木齐)若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) (08江西)x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( )A.633·x x x = B.422523x xx =+ C.532)(x x = D .222()x y x y +=+ ﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( )A .18B .12C .9D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解【课前热身】1.(06 温州)若x -y =3,则2x -2y = .2.(08茂名)分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. (08东莞) 下列式子中是完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a1 1 1 12 11 3 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++【考点链接】 1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:⑴(08聊城)33222ax y axy ax y +-=__________________.⑵(08宜宾)3y 2-27=___________________. ⑶(08福州)244x x ++=_________________. ⑷ (08宁波) 221218x x -+= . 例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________.5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 . 7.(08中山)分解因式am an bm bn +++=_____ _____; 8.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )新课标第一网A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.11.计算: (1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。