最新初中数学因式分解经典测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.将下列多项式因式分解,结果中不含有因式(a+1)的是()
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
【答案】C
【解析】
试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
最新初中数学因式分解经典测试题及答案
一、选择题
1.把代数式2x2﹣18分解因式,结果正确的是( )
A.2(x2﹣9)B.2(x﹣3)2
C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)
【答案】C
【解析】
试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.
解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).
故选A
考点:因式分解
【解析】
试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.
解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;
B、x2﹣1=(x+1)(x﹣1),故本选项正确;
C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;
D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.
把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.
【详解】
A.和因式分解正好相反,故不是分解因式;
B.是分解因式;
C.结果中含有和的形式,故不是分解因式;
D. x2−4y2=(x+2y)(x−2y),解答错误.
故选B.
【点睛】
本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
【详解】
∵a﹣2b+c<0,a+2b+c=0,
∴a+c=﹣2b,
∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,
∴b>0,
∴b2﹣ac= = ,
即b>0,b2﹣ac≥0,
故选:C.
【点睛】
此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac的正负情况.
18.把x2-y2-2y-1分解因式结果正确的是().
∴2(a+b)=10,ab=6,
则a+b=5,
故ab2+a2b=ab(b+a)
=6×5
=30.
故选:B.
【点睛】
此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.
7.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
A.60B.16C.30D.11
【答案】C
D、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,
故选A.
【点睛】
本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.
4.下列多项式不能使用平方差公式的分解因式是( )
Fra Baidu bibliotekA. B. C. D.
【答案】A
【解析】
【分析】
原式各项利用平方差公式的结构特征即可做出判断.
B、右边不是积的形式,故选项错误;
C、x2-1=(x+1)(x-1),正确;
D、等式不成立,故选项错误.
故选:C.
【点睛】
熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.
3.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()
A.2x B.﹣4x C.4x4D.4x
11.下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2
C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)
【答案】C
【解析】
【分析】
【详解】
解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;
B、a2+a+1无法因式分解,故此选项错误;
C、xy﹣x=x(y﹣1),故此选项正确;
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
20.多项式 与多项式 的公因式是()
A. B. C. D.
【答案】A
【解析】
试题分析:把多项式分别进行因式分解,多项式 =m(x+1)(x-1),多项式 = ,因此可以求得它们的公因式为(x-1).
【分析】
根据题意,提取公因式-3xy,进行因式分解即可.
【详解】
解:原式=-3xy×(4y-2x-1),空格中填2x-1.
故选:C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.
13.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )
A.2xB.-2xC.2x-1D.-2x-l
【答案】C
【解析】
D、2x+y无法因式分解,故此选项错误.
故选C.
【点睛】
本题考查因式分解.
12.下列因式分解结果正确的是( ).
A.10a3+5a2=5a(2a2+a)
B.4x2-9=(4x+3)(4x-3)
C.a2-2a-1=(a-1)2
D.x2-5x-6=(x-6)(x+1)
【答案】D
【解析】
【分析】
A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.
【详解】
下列多项式不能运用平方差公式分解因式的是 .
故选A.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
5.下列分解因式正确的是()
A.x3﹣x=x(x2﹣1)
B.x2﹣1=(x+1)(x﹣1)
C.x2﹣x+2=x(x﹣1)+2
D.x2+2x﹣1=(x﹣1)2
【答案】B
【解析】
【分析】
先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.
【详解】
∵矩形的周长为10,
∴a+b=5,
∵矩形的面积为6,
∴ab=6,
∴a2b+ab2=ab(a+b)=30.
故选:C.
【点睛】
本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
8.多项式 分解因式的结果是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据提取公因式和平方差公式进行因式分解即可解答.
【详解】
解: ;
故选:A.
【点睛】
本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.
9.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是()
故选A.
19.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2B.﹣1C.1D.2
【答案】C
【解析】
【分析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
【详解】
A、原式=5a2(2a+1),故A不符合题意;
B、原式=(2x+3)(2x-3),故B不符合题意;
C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;
D、原式=(x-6)(x+1),故D符合题意;
故答案为D
【点睛】
此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.
考点:因式分解.
17.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则( )
A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0
C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0
【答案】C
【解析】
【分析】
根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.
【答案】A
【解析】
【分析】
分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.
【详解】
A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;
B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;
C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;
故选B.
考点:提公因式法与公式法的综合运用.
6.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()
A.60B.30C.15D.16
【答案】B
【解析】
【分析】
直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.
【详解】
∵边长分别为a、b的长方形的周长为10,面积6,
A. B.
C. D.
【答案】C
【解析】
【分析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
A.(x+y+1)(x-y-1)B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1)D.(x-y+1)(x+y+1)
【答案】A
【解析】
【分析】
由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.
【详解】
解:原式=x2-(y2+2y+1),
=x2-(y+1)2,
=(x+y+1)(x-y-1).
故选C.
考点:提公因式法与公式法的综合运用.
2.下列各式从左到右的变形中,是因式分解的为().
A. B.
C. D.
【答案】C
【解析】
【分析】
根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
【详解】
解:A、是整式的乘法运算,故选项错误;
14.将下列多项式因式分解,结果中不含有因式 的是()
A. B. C. D.
【答案】D
【解析】
【分析】
先把各个多项式分解因式,即可得出结果.
【详解】
解: ,


结果中不含有因式 的是选项D;
故选:D.
【点睛】
本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.
15.下列因式分解正确的是( )
A.-2 B.2 C.-50 D.50
【答案】A
【解析】
试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.
当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.
考点:因式分解的应用.
10.下列分解因式,正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
相关文档
最新文档